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Abstract

This research work primarily frame-up with some topological indices

on the different types of general graphs, molecular graphs and graph

operations. Analyzed some explicit expression for the Gourava index of

four operation on graphs in terms of first and second Zagreb index. The

investigation on generalized version of some adriatic indices of Dutch

windmill graph using graph operators such as subdivision, line and de-

rived graphs. We frame-up with the general expression for some discrete

adriatic indices and Sanskruti index of carbon nanocones CNCm[n].

The computation of certain degree based adriatic indices of triglyceride

using different graph operators. The explicit interpretation of inverse

sum indeg, reformulated Zagreb, atom-bond connectivity and Shegehalli

and Kanabur1 indices in terms of the graph size and maximum or min-

imum vertex degrees of special splice graphs are obtained. Determine

the DS of S-vertex(edge) corona and S-edge neighbourhood corona op-

erations of standard graphs. Also, generalizing DS of S-vertex(edge)

corona and S-vertex(edge) neighbourhood corona operations of graphs.
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Chapter 1

Prelude

1.1 Brief History

A topological index or a connectivity index is a sort of atomic descriptor

or molecular descriptor that is calculated based on the atomic graph or

molecular system of a chemical compound. Topological indices are the

numerical parameter of a graph that describe its topology and is nor-

mally graph invariant. Atomic graph of topological indices are formed

on the basis of shifting into a number which characterize the graph

topology [39]. Significance of topological index started by a chemist

Harold Wiener in the year 1947 [2] developed the most widely known

topological descriptor, the Wiener index, and used it to determine the

physical properties of types of alkanes known as paraffin.

Based on the information given by the International Academy of

1



Prelude 2

Mathematical Chemistry (IAMC) [28]. Vukicevic and Gasperov in-

troduced 148 bond-additive Discrete Adriatic indices and shown highly

correlated with physical properties in chemical science and there was

tremendous research identified with topological records and their prop-

erties.

A graph consists of vertices and edges whereas the atomic graph

represents atoms and bonds. A topological index can be computed

from the atomic graph and used to characterize some properties of the

underlying molecule. [12] These calculated numerical values of topo-

logical indices are used in the development of studies in the ”Quanti-

tative Structure-Property Relationships (QSPR) and in Quantitative

Structure-Activity Relationships (QSAR)”.

In this research work, we consider a certain topological indices that

are proved to be effective. In appropriate, topological indices such as

first and second zagreb index, Gourava index, Inverse sum index, Mis-

balance index and few discrete adriatic indices are preferred for the

research. Moreover, we enclose our work to degree based topological

indices on different classes of graphs and graph operations such as F -

sum graphs, Derived graph, S-vertex(edge) splice graph, S-vertex(edge)

neighbourhood splice graph, S(G), L(G), R(G), Q(G), T (G) respec-

tively.
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1.2 Essential of topological indices

The following table contains definitions are utilized for the forthcoming

chapters [1, 10, 19,24,27,34,38,42,49,50].

Name of index Representation

ISI
∑

uv∈E(G)
dudv
du+dv

M1

∑
uv∈E(G)[du + dv]

AZI
∑

uv∈E(G)

[
dudv

du+dv−2

]3
M2

∑
uv∈E(G)[dudv]

SDD
∑

uv∈E(G)
d2u+d

2
v

dudv

GO1

∑
uv∈E(G)[du + dv + dudv]

LM1

∑
uv∈E(G) 2

[
lndu
du

+ lndv
du

]
LM1

∑
uv∈E(G) ln

[
du + dv

]
MLD

∑
uv∈E(G) | lndu − lndv |

MRD
∑

uv∈E(G) |
√
du −

√
dv |

MHD
∑

uv∈E(G) | 2−du − 2−dv |
MIRD

∑
uv∈E(G) | 1√

du
− 1√

dv
|

MD
∑

uv∈E(G) | du − dv |
MLSD

∑
uv∈E(G) | ln2du − ln2dv |

ISLSD
∑

uv∈E(G)

[
1√

lndu+
√
lndv

]
SK1

∑
uv∈E(G)

[
du+dv

2

]
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EM1

∑
uv∈E(G) d(e)2

ABC
∑

uv∈E(G)

√
du+dv−2
dudv

F
∑

u∈V (G) d
3
u

H
∑

uv∈E(G)

[
2

du+dv

]
S

∑
uv∈E(G)

[
SuSv

Su + Sv − 2

]3

1.3 Basic terminologies

A non-empty vertex set V = V (G) of a graph named as vertices with

a disordered pairs of different points of edge set E = E(G) of G. The

order of vertex V and size E is represented as (n,m).

Path is a finite or infinite walk and no vertex is repeated, a closed

path is called cycle and complete graph with n-vertices having each

vertex degree as (n− 1).

A graph G = (V = {V1, V2}, E) interfaces every vertex from set V1

to each vertex from set V2 [33] is called a complete bipartite graph .

If a solitary vertex belongs to one set and all other vertices belong to

another set in a complete bipartite graph is known as a Star graph . A

graph having each vertex degree is r and is called r-regular graph.

Definition 1.3.1. The Graph Distance [21] is the minimal path con-

necting between distance d(u, v) of any two vertices u and v in G.
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Definition 1.3.2. The Total graph T (G) [14,29] is a non-empty ver-

tex set V (G)∪E(G) in T (G) and any two vertices of T (G) are said to

be adjacent when they are either incident or adjacent in G.

Definition 1.3.3. The Derived graph [4,25,46] of G, symbolized by

G† is the graph having set V (G), in which their length in G is two in

case the two vertices are adjacent in G†.

Definition 1.3.4. The Subdivision graph S(G) [7,31,35] of a graph

G is the graph obtained by adding a new vertex of degree 2 in each

edge of G.

Definition 1.3.5. The Line graph L(G) [23, 44] of a simple graph

G is the graph in which there is a one to one correspondence between

vertices of L(G) and edges of G and two vertices of L(G) are connected

by an edge if and only if the corresponding edges are adjacent in G.

Definition 1.3.6. The Q(G) or semi-total line graph [6,17] T1(G) is

the graph having V (G)
⋃
E(G) where two vertices of T1(G) are adjacent

if and only if

(i) one is a vertex of G and the other is an edge of G incident to that

vertex or (ii) they are adjacent edges of G.
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Definition 1.3.7. The R(G) or semi-total point graph [32] T2(G)

of G is the graph having V (G)
⋃
E(G) where two vertices of T2(G) are

adjacent if and only if

(i) one is a vertex of G and the other is an edge of G incident with it

or (ii) they are adjacent vertex of G.

Definition 1.3.8. The Cartesian product is an important method

to construct a ample graph and play vital role in the design and analysis

the network [18]. The cartesian product of two connected graphs G and

H, which is denoted by G2H, is a graph such that the set of vertices is

V (G)2V (H) and two vertices (p1, q1) and (p2, q2) of G2H are adjacent

if and only if p1 = p2 and q1 is adjacent with q2 in H otherwise q1 = q2

and p1 is adjacent with p2 in G.

1.4 Summary of the thesis

The primary objective of this thesis is to focus on analyzing the distinct

types of topological indices of graph operations. In chapter 2, expres-

sions for the Gourava index of four operation on graphs in terms of first

and second zagreb indices. Chapter 3 deals with investigation of adri-

atic indices for the Dutch windmill graph of graph operators. Chapter 4
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is concentrated on general expression for some discrete adriatic indices

and Sanskruti index of carbon nanocones CNCm[n].

In chapter 5 computed the degree based adriatic indices of graph

operators of triglyceride. Chapter 6 inverstigation of lower and upper

bounds on splice graphs through topological indices. In [47] Tyshkevich

et. al., established a correspondence between DSs of graph. Inspired

from that in chapter 7 obtain the DSs of S-corona operations of stan-

dard graphs. Chapter 8 generalization of S-corona operators of different

graphs.

Finally, conclusion and future scope on topological indices are tinted.

The bibliography is placed at the end and appropriate references are

cited throughout the thesis.



Chapter 2

The Gourava index of

four operations on

graphs

2.1 Preliminaries

Let G and H be two connected graphs. M. Eliasi, B. Taeri [15] intro-

duced four new operations named as F -sum graphs, on these graphs

that are based on S, T2, T1, T as follows.

Let F be one of the symbols S, T2, T1 or T [5,11,43]. The F -sum de-

noted by G+F H of graphs G and H, is a graph with the set of vertices

8
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V (G+FH) = (V (G)
⋃
E(G))×V (H) and (p1, p2) (q1, q2) ∈ E(G+FH),

if and only if p1 = p2 ∈ V (G) and q1q2 ∈ E(H) or q1 = q2 and

(p1, p2) ∈ E(F (G)).

Figure 1: Graph G, H and G+FH.

In this chapter, we discuss main results of Gourava index of F -sum

of graphs.
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2.2 Relation connecting topological indices

of Gourava index of F -sum in terms of

Gourava, first and second zagreb in-

dices

Theorem 1. Let G and H be two connected graphs. Then

GO1(G+s H) = nHGO1(G) + nGGO1(H) + eHM1(G) + 2eGM1(H)

+ 8nHeG + 12eHeG.

Proof. From the definition of Gourava index,

GO1(G+s H) =
∑

(p1,q1)(p2,q2)∈E(G+sH)

dG+sH(p1, q1) + dG+sH(p2, q2)

+ dG+sH(p1, q1)dG+sH(p2, q2)

=
∑

p1∈V (G)

∑
q1q2∈E(H)

dG+sH(p1, q1) + dG+sH(p1, q2)

+ dG+sH(p1, q1)dG+sH(p1, q2)

+
∑

q1∈V (H)

∑
p1p2∈E(S(G))

dG+sH(p1, q1) + dG+sH(p1, q2)

+ dG+sH(p1, q1)dG+sH(p1, q2)
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= I1 + I2. (1)

Where I1, I2 are the sums of the above terms, in order.

∀ vertex p1 ∈ V (G) and q1q2 ∈ E(H) we get

I1 =
∑

p1∈V (G)

∑
q1q2∈E(H)

dG(p1) + dH(q1) + dG(p1) + dH(q2)

+ [dG(p1) + dH(q1)][dG(p1) + dH(q2)]

=
∑

p1∈V (G)

∑
q1q2∈E(H)

2dG(p1) + dH(q1) + dH(q2) + d2G(p1)

+ dG(p1)[dH(q1) + dH(q2)]dH(q1)dH(q2)

=
∑

p1∈V (G)

2eHdG(p1) +M1(H) + eHd
2
G(p1) + dG(p1)M1(H) +M2(H)

= 4eHeG + nGGO1(H) + eHM1(G) + 2eGM1(H).

∀ edge p1p2 ∈ E(S(G)), where the vertex p1 ∈ V (G), p2 ∈ V (S(G))−

V (G) and q1 ∈ V (H), since |E(S(G))| = 2|E(G)|.

I2 =
∑

q1∈V (H)

∑
p1p2∈E(S(G))

dS(G)(p1) + dH(q1) + dS(G)(p2)

+ [dS(G)(p1) + dH(q1)]dS(G)(p2)

=
∑

q1∈V (H)

GO1(S(G)) + 2eGdH(q1)) + 2eGdH(q1))

= nHGO1(S(G)) + 8eHeG.
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We know that, M1[S(G)] = M1(G)+4eG and M2[S(G)] = M2(G)+4eG

therefore GO1(S(G)) = GO1(G) + 8eG

I2 = nHGO1(G) + 8nHeG + 8eHeG.

Substituting I1 and I2 in (1) we get required result.

GO1(G+s H) = nHGO1(G) + nGGO1(H) + eHM1(G) + 2eGM1(H)

+ 8nHeG + 12eHeG.

Theorem 2. Let G and H be two connected graphs. Then

GO1(G+T1 H) = nGGO1(H) + 5eHM1(G) + 3eGM1(H) + 2nHM1(G)

+ 2eGnHM1(G) + 10eHeG + nH
∑

uiuj∈E(G),
ujuk∈E(G)

dG(ui)[1 + dG(uk)]

+ dG(uk)[1 + dG(uj)] + dG(uj)[dG(ui) + dG(uj)].

Proof. consider,

GO1(G+T1 H) =
∑

(p1,q1)(p2,q2)∈E(G+T1
H)

dG+T1
H(p1, q1) + dG+T1

H(p2, q2)
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+ dG+T1
H(p1, q1)dG+T1

H(p2, q2)

=
∑

p1∈V (G)

∑
q1q2∈E(H)

dG+T1
H(p1, q1) + dG+T1

H(p1, q2)

+ dG+T1
H(p1, q1)dG+T1

H(p1, q2)

+
∑

q1∈V (H)

∑
p1p2∈E(T1(G))

dG+T1
H(p1, q1) + dG+T1

H(p2, q1)

+ dG+T1
H(p1, q1)dG+T1

H(p2, q1).

The edge set E(T1(G)) split in to E(S(G)) and E(L(G)).

Let E(T1(G)) = α1, V (G) = β, V (T1(G))− V (G) = γ1

GO1(G+T1 H) =
∑

p1∈V (G)

∑
q1q2∈E(H)

dG+T1
H(p1, q1) + dG+T1

H(p1, q2)

+ dG+T1
H(p1, q1)dG+T1

H(p1, q2) +
∑

q1∈V (H)

∑
p1p2∈α1,
p1∈β,
p2∈γ1

dG+T1
H(p1, q1)

+ dG+T1
H(p2, q1) + dG+T1

H(p1, q1)dG+T1
H(p2, q1)

+
∑

q1∈V (H)

∑
p1p2∈α1,
p1,p2∈γ1

dG+T1
H(p1, q1) + dG+T1

H(p2, q1)

+ dG+T1
H(p1, q1)dG+T1

H(p2, q1)

= J1 + J2 + J3. (2)
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Where J1, J2, J3 are the sums of the above terms, in order

J1 =
∑

p1∈V (G)

∑
q1q2∈E(H)

2dT1(G)(p1) + dH(q1) + dH(q2)

+ [dT1(G)(p1) + dH(q1)][dT1(G)(p1) + dH(q2)]

=
∑

p1∈V (G)

∑
q1q2∈E(H)

2dT1(G)(p1) + dH(q1) + dH(q2) + d2T1(G)(p1) + dT1(G)(p1)dH(q2)

+ dH(q1)dH(q2) + dT1(G)(p1)dH(q1)

=
∑

p1∈V (G)

2eHdG(p1) +GO1(H) + eHd
2
G(p1) + dG(p1)dH(q2) + dG(p1)dH(q1)

= nGGO1(H) + eHM1(G) + eGM1(H) + 2eHeG.

J2 =
∑

q1∈V (H)

∑
p1p2∈α1,
p1∈β,
p2∈γ1

[dT1(G)(p1) + 2dH(q1) + dT1(G)(p2)]

+ dT1(G)(p1) + dH(q1)][dT1(G)(p2) + dH(q1)]

=
∑

q1∈V (H)

∑
p1p2∈α1,
p1∈β,
p2∈γ1

[dG(p1) + 2dH(q1) + dT1(G)(p2)]

+ [dG(p1) + dH(q1)][dT1(G)(p2) + dH(q1)]

=
∑

q1∈V (H)

∑
p1p2∈α1,
p1∈β,
p2∈γ1

dG(p1) + 2dH(q1) + dT1(G)(p2) + dG(p1)dT1(G)(p2)

+ dG(p1)dH(q1) + dH(q1)dT1(G)(p2) + d2H(q1)
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=
∑

q1∈V (H)

∑
p1∈V (G)

dG(p1)[dG(p1) + 2dH(q1) + dG(p1)dH(q1) + d2H(q1)]

+
∑

q1∈V (H)

∑
p1p2∈α1,
p1∈β,
p2∈γ1

dT1(G)(p2) + dG(p1)dT1(G)(p2) + dH(q1)dT1(G)(p2).

We observe,

for p2 ∈ V (T1(G)) − V (G), dT1(G)(p2) = dG(wi) + dG(wj) where p2 =

wiwj ∈ E(G).

J2 = nHM1(G) + 8eHeG + 2eHM1(G) + 2eGM1(H) + dH(q1)[dG(wi) + dG(wj)]

+
∑

q1∈V (H)

∑
wiwj∈E(G)

dG(wi) + dG(wj) + dG(p1)[dG(wi) + dG(wj)]

= 2nHM1(G) + 8eHeG + 4eHM1(G) + 2eGM1(H) + 2eGnHM1(G).

J3 =
∑

q1∈V (H)

∑
p1p2∈α1,p1,p2∈γ1

[dT1(G)(p1) + dT1(G)(p2)] + [dT1(G)(p1)dT1(G)(p2)]

= nH
∑

uiuj∈E(G),
ujuk∈E(G)

[dG(ui) + dG(uj) + dG(uj) + dG(uk)]

+ [dG(ui) + dG(uj)][dG(uj) + dG(uk)]

= nH
∑

uiuj∈E(G),
ujuk∈E(G)

dG(ui)[1 + dG(uk)] + dG(uk)[1 + dG(uj)]

+ dG(uj)[dG(ui) + dG(uj)].
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Adding J1, J2, J3 in (2) we get desired result.

Theorem 3. Let G and H be two connected graphs. Then

GO1(G+T2 H) = 4nHGO1(G) +GO1(H) + 8eHM1(G) + 5eGM1(H)

+ 6nHM1(G) + 4nHM2(G) + 24eHeG + 4nHeG.

Proof. We know that,

GO1(G+T2 H) =
∑

(p1,q1)(p2,q2)∈E(G+T2
H)

dG+T2
H(p1, q1) + dG+T2

H(p2, q2)

+ dG+T2
H(p1, q1)dG+T2

H(p1, q2)

=
∑

p1∈V (G)

∑
q1q2∈E(H)

dG+T2
H(p1, q1) + dG+T2

H(p1, q2)

+ dG+T2
H(p1, q1)dG+T2

H(p1, q2) + dG+T2
H(p2, q1)

+
∑

q1∈V (H)

∑
p1p2∈E(T1(G))

dG+T2
H(p1, q1)

+ dG+T2
H(p1, q1)dG+T2

H(p2, q1)

= K1 +K2. (3)
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Where K1 and K1 are the sums of the above terms, in order

K1 =
∑

p1∈V (G)

∑
q1q2∈E(H)

2dT2(G)(p1) + dH(q1) + dH(q2) + d2T2(G)(p1)

+ dT2(G)(p1)[dH(q1) + dH(q2)] + dH(q1)dH(q2)

=
∑

p1∈V (G)

∑
q1q2∈E(H)

4d(G)(p1) + dH(q1) + dH(q2) + 4d2G(p1)

+ 2d(G)(p1)[dH(q1) + dH(q2)] + dH(q1)dH(q2)

=
∑

p1∈V (G)

4eHdG(p1) +GO1(H) + 4eHd
2
G(p1) + 2dG(p1)M1(H)

= 8eHeG +GO1(H) + 4eHM1(G) + 4eGM1(H). (3a)

∀ edge p1p2 ∈ E(T2(G)) and vertex q1 ∈ V (H). Here we denote

E(T2(G)) = α2, V (G) = β, V (T2(G))− V (G) = γ2

K2 =
∑

q1∈V (H)

∑
p1p2∈E(T2(G))

dG+T2
H(p1, q1) + dG+T2

H(p2, q1)

+ dG+T2
H(p1, q1)dG+T2

H(p2, q1) +
∑

q1∈V (H)

∑
p1p2∈α2,
p1∈β,
p2∈γ2

dG+T2
H(p1, q1)

+ dG+T2
H(p2, q1) + dG+T2

H(p1, q1)dG+T2
H(p2, q1)

= K3 +K4. (3b).

∀ q1 ∈ V (H) and edge p1p2 ∈ E(T2(G)) if and only if p1p2 ∈ E(G).
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K3 =
∑

q1∈V (H)

∑
p1p2∈E(G)

dG+T2(G)H(p1, q1) + dG+T2(G)H(p2, q1)

+ dG+T2(G)H(p1, q1)dG+T2(G)H(p2, q1)

=
∑

q1∈V (H)

∑
p1p2∈E(G)

dT2(G)(p1) + dH(q1) + dT2(G)(p2) + dH(q1)

+ [dT2(G)(p1) + dH(q1)][dT2(G)(p2) + dH(q1)]

=
∑

q1∈V (H)

∑
p1p2∈E(G)

2dG(p1) + 2dH(q1) + 2dG(p2) + 4dG(p1)dG(p2)

+ 2dG(p1)dH(q1) + 2dH(q1)dG(p2) + d2H(q1)

= 4nHGO1(G) + 4eHM1(G) + eGM1(H) + 4nHM2(G) + 4eHeG.

Since we have dT2(G)(a) = 2dG(a) for each vertex p1 ∈ V (G) and

dT2(p2) = 2 for each vertex p2 ∈ V (T2(G))− V (G).

K4 =
∑

q1∈V (H)

∑
p1p2∈α2,
p1∈β,
p2∈γ2

dT2(G)(p1) + dH(q1) + dT2(G)(p2)

+ [dT2(G)(p1) + dH(q1)]dT2(G)(p2)

=
∑

q1∈V (H)

∑
p1p2∈α2,
p1∈β,
p2∈γ2

dT2(G)(p1) + dH(q1) + dT2(G)(p2)

+ dT2(G)(p1)dT2(G)(p2) + dH(q1)dT2(G)(p2)
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=
∑

q1∈V (H)

∑
p1p2∈α2,
p1∈β,
p2∈γ2

[6dG(p1) + 3dH(q1) + 2]

=
∑

q1∈V (H)

∑
p1∈V (G)

dG(p1)[6dG(p1) + 3dH(q1) + 2]

= 6nHM1(G) + 12eGeH + 4nHeG.

Adding K3 and K4 and substitute in (3b) we get

4nHGO1(G) + 16eHeG + 6nHM1(G) + 4eHM1(G) + eGM1(H)

+4nHM2(G) + 4nHeG. (3c)

Substitute (3a) and (3c) in (3) we get desired results.

GO1(G+T2 H) = 4nHGO1(G) +GO1(H) + 8eHM1(G) + 5eGM1(H)

+ 6nHM1(G) + 4nHM2(G) + 24eHeG + 4nHeG.

Theorem 4. Let G and H be two connected graphs. Then

GO1(G+T H) = 4nHGO1(G) + nGGO1(H) + 12eHM1(G)
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+ 6eGM1(H) + 2nHM1(G) + eGM2(H) + 8eGM1(G)

+ 20eHeG + nH
∑

qiqj∈E(G),
qjqk∈E(G)

dG(qi) + 2dG(qj) + dG(qk)

+ [dG(qi) + dG(qj)][dG(qj) + dG(qk)].

Proof. Let,

GO1(G+T H) =
∑

(p1,q1)(p2,q2)∈E(G+TH)

dG+TH(p1, q1) + dG+TH(p2, q2)

+ dG+TH(p1, q1)dG+TH(p2, q2)

=
∑

p1∈V (G)

∑
q1q2∈E(H)

dG+TH(p1, q1) + dG+TH(p1, q2)

+ dG+TH(p1, q1)dG+TH(p1, q2) +
∑

q1∈V (H)

∑
p1p2∈E(T (G))

dG+TH(p1, q1)

+ dG+TH(p2, q1) + dG+TH(p1, q1)dG+TH(p2, q1).

Note that E(T (G)) = E(G)
⋃
E(S(G))

⋃
E(L(G))

GO1(G+T H) =
∑

p1∈V (G)

∑
q1q2∈E(H)

dG+TH(p1, q1) + dG+TH(p1, q2)

+ dG+TH(p1, q1)dG+TH(p1, q2) +
∑

q1∈V (H)

∑
(p1p2)∈E(T (G)),
(p1,p2)∈V (G)

dG+TH(p1, q1)

+ dG+TH(p2, q1) + dG+TH(p1, q1)dG+TH(p2, q1)
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+
∑

q1∈V (H)

∑
(p1p2)∈α3,
p1∈β,
p2∈γ3

dG+TH(p1, q1) + dG+TH(p2, q1)

+ dG+TH(p1, q1)dG+TH(p2, q1) +
∑

q1∈V (H)

∑
(p1p2)∈α3,
(p1,p2)∈γ3

dG+TH(p1, q1)

+ dG+TH(p2, q1) + dG+TH(p1, q1)dG+TH(p2, q1)

= L1 + L2 + L3 + L4. (4)

where L1, L2, L3, L4 are the sums of the above terms, in order

L1 =
∑

p1∈V (G)

∑
q1q2∈E(H)

2dT (G)(p1) + dH(q1) + dH(q2)

+ [dT (G)(p1) + dH(q1)][dT (G)(p1)dH(q2)]

=
∑

p1∈V (G)

∑
q1q2∈E(H)

4dG(p1) + dH(q1) + dH(q2) + 4d2G(p1) + 2dG(p1)dH(q1)

+ 2dG(p1)dH(q2) + dH(q1)dH(q2)

= nGGO1(H) + 4eHM1(G) + 4eGM1(H) + 8eGeH .

L2 =
∑

q1∈V (H)

∑
p1p2∈α3,p1,p2∈β

dT (G)(p1) + 2dH(q1) + dT (G)(p2)

+ [dT (G)(p1) + dH(q1)][dT (G)(p2)dH(q1)]

=
∑

q1∈V (H)

∑
p1p2∈E(G)

2dG(p1) + 2dG(p2) + 2dH(q1) + d2H(q1) + 2dG(p2)dH(q1)
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+ 4dG(p1)dG(p2) + 2dG(p1)dH(q1)

= 2nHGO1(G) + 4eHM1(G) + eGM2(H) + 2nHM2(G) + 4eGeH .

L3 =
∑

q1∈V (H)

∑
p1p2∈α3,
p1∈β,
p2∈γ3

[dT (G)(p1) + dT (G)(p2) + 2dH(q1)]

+ [dT (G)(p1) + dH(q1)][dT (G)(p2)dH(q1)]

=
∑

q1∈V (H)

∑
(p1∈V (G)

dG(p1)(2dG(p1) + dH(q1) + dH(q1) + dG(p1)dH(q1) + d2H(q1)

+
∑

q1∈V (H)

∑
p1p2∈α3,
p1∈β,
p2∈γ3

dT (G)(p2) + 2dG(p1)dT (G)(p2) + dH(q1)dT (G)(p2).

Note that p2 ∈ V (T (G))− V (G), dT (G)(p2) = dG(p) + dG(q)

where p2 = pq ∈ E(G)

= 2nHM1(G) + 4eHM1(G) + 2eGM1(H) + 8eHeG +
∑

q1∈V (H)

∑
p1∈β,
p2∈γ3

(dG(p) + dG(q))

+ 2dG(p1)(dG(p) + dG(q)) + dH(q1)(dG(p) + dG(q))

= 2nHM1(G) + 4eHM1(G) + 2eGM1(H) + 2nHM1(G) + 8eGM1(G) + 4eHM1(G)

= 4nHM1(G) + 4eHM1(G) + 8eGM1(G) + 2eGM1(H) + 8eHeG.



The Gourava Index of Four Operations on Graphs 23

L4 =
∑

q1∈V (H)

∑
(p1,p2)∈γ3

dG+TH(p1, q1) + dG+TH(p2, q1) + dG+TH(p1, q1)dG+TH(p2, q1)

=
∑

q1∈V (H)

∑
p1,p2∈γ3

dT (G)(p1) + dT (G)(p2) + dT (G)(p1)dT (G)(p2)

= nH
∑

qiqj∈E(G),qjqk∈E(G)

(dG(qi) + dG(qj)) + (dG(qj) + dG(qk))

+ [dG(qi) + dG(qj)][dG(qj) + dG(qk)].

Adding L1, L2, L3, L4 in (4) we get required result.



Chapter 3

Some adratic indices of

Dutch windmill graph

using graph operator

3.1 Introduction

The Dutch windmill graph is denoted by Dm
n and it is the graph ob-

tained by taking m copies of the cycle Cn with a vertex in common [30].

It contains (n− 1)m+ 1 vertices and mn edges.

V.Lokesha and et. al., [28, 45] are discussed on the operators and

nano structures. Motivated from this, we computed Dutch windmill

graph of certain graph operators using adriatic indices.

24



Some adriatic indices of Dutch Windmill Graph using graph operator 25

3.2 On discrete adriatic indices of a subdivision-

Dutch windmill graph

Theorem 5. Let S(Dm
n ) be a subdivision formed by dutch windmill

graph then

1. Adr(S(Dm
n ))ζ1(x,y) = 2m

(
(n−1)(log2)2+log(2)log(2m)

)
, if µi,a =

µ1,1

2. Adr(S(Dm
n ))ζ2(x,y) =


m(n− 1)√
log(2)

+
2m√

log(2) +
√
log(2m)

, if µi,a = µ1,1/2

2m(n− 1) +
4m2

1 +m
, if µ2,−1

3. Adr(S(Dm
n ))ζ3(x,y) =



2m | log2− log2m |, if µi,a = µ1,1

2m | log2(2)− log2(2m) |, if µ1,2

2m |
√

2(1−
√
m) |, if µ2,1/2

2m | 2(1−m) |, if µ2,1

m
2 |

m−1
n2 |, if µ3,1/2
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4. Adr(S(Dm
n ))ζ4(x,y) =


| m− 1 |, if µi,a = µ2,−1

2
√

2
√
m−1√
m
, if µ2,−1/2

5. Adr(S(Dm
n ))ζ5(x,y) = 2(mn−m+

√
m), if µi,a = µ2,1/2

6. Adr(S(Dm
n ))ζ6(x,y) =



2m(
√
m+ n− 1), if µi,a = µ2,1/2

2m(m+ n− 1), if µ2,1

2m(m2 + n− 1), if µ2,2

7. Adr(S(Dm
n ))ζ7(x,y) = 2m2 + 4mn− 4m+ 2, if µi,a = µ2,1

Proof. We define the edge set of S(Dm
n ) with their vertices degrees.

There are two types of edges with respect to degrees of end vertices

in S(Dm
n ), namely the degrees of end vertices (2, 2) and degrees of end

vertices (2, 2m). Thus, we have shown in the following Table 3.1.

Table 3.1: The edge partition of the edges of S(Dm
n ) based on degrees

of end vertices

E{d(u),d(v)} E(2,2) E(2,2m)

Number of Edges 2m(n− 1) 2m
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We presented these partitions with their edge cardinalities in Ta-

ble 3.1. Hence utilizing the adriatic indices definitions, we obtained

required results.

3.3 On discrete adriatic indices of a derived-

Dutch windmill graph

Theorem 6. Let (Dm
n )† be derived graph formed by Dutch windmill

graph then

1. Adr(Dm
n )†ζ1(x,y) = [(n−1)m+1](n−1)m

2 (log(n− 1)m)2, if µi,a = µ1,1

2. Adr(Dm
n )†ζ2(x,y) =



[(n− 1)m+ 1](n− 1)m

4
√
log(n− 1)m

, if µi,a = µ1,1/2

[(n− 1)m+ 1](n− 1)2m2

4
, if µ2,−1

3. Adr(Dm
n )†ζ3(x,y) = 0, if µi,a = µ1,1, µ1,2, µ2,1/2, µ2,1 and µ3,1/2

4. Adr(Dm
n )†ζ4(x,y) = 0, if µi,a = µ2,−1 and µ2,−1/2
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5. Adr(Dm
n )†ζ5(x,y) = [(n−1)m+1](n−1)m

2 , if µi,a = µ2,1/2

6. Adr(Dm
n )†ζ6(x,y) = [(n−1)m+1](n−1)m

2 , if µi,a = µ2,1/2, µ2,1 and µ2,2

7. Adr(Dm
n )†ζ7(x,y) = [(n− 1)m+ 1](n− 1)m, if µi,a = µ2,1

Proof. Consider the Dutch windmill graph Dm
n . Splitting the edges of

the type E(du,dv) where uv is an edge. In derived graph of Dm
n we get

edge of the type E((n−1)m,(n−1)m). The number of edges of these types

are given in the Table 3.2.

Table 3.2: The edge partition of the edges of (Dm
n )† based on degrees

of end vertices

E{d(u),d(v)} E((n−1)m,(n−1)m)

Number of Edges ((n− 1)m+ 1)(n− 1)m/2

Using the above cardinalities of E and the definitions of adriatic

indices, we get desired results.
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3.4 On discrete adriatic indices of a line-

Dutch windmill graph

Theorem 7. Let L(Dm
n ) be line graph formed by Dutch windmill graph

then

1. Adr(L(Dm
n ))ζ1(x,y) = mlog(2)

(
(n−3)log(2)+2log(2)

)
+m(2m−

1)(log(2m))2, if µi,a = µ1,1.

2. Adr(L(Dm
n ))ζ2(x,y) =


m

(
n− 3

2
√
log2

+
2√

log(2) +
√
log(2m)

+
2m− 1

2
√
log(2m)

)
, if µ1,1/2

m2(2m+ n
4

1 +m
− 4), if µ2,−1

3. Adr(L(Dm
n ))ζ3(x,y) =



2m | log(m) |, if µi,a = µ1,1

2m | log2(2)− log2(2m) |, if µ1,2

2
√

2m | (1−
√
m) |, if µ2,1/2

4m | (1−m) |, if µ2,1

2m | 1
22 −

1
2

2m |, if µ3,1/2
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4. Adr(L(Dm
n ))ζ4(x,y) =


| m− 1 |, if µi,a = µ2,−1

2
√

2m |
√
m−1√
m
|, if µ2,−1/2

5. Adr(L(Dm
n ))ζ5(x,y) = m(2m− n− 4) + 2

√
m, if µi,a = µ2,1/2

6. Adr(L(Dm
n ))ζ6(x,y) =



m(2m+ 2m
1
2 + n− 4), if µi,a = µ2,1/2

m(4m+ n− 4), if µ2,1

m(2m+ 2m2 + n− 4), if µ2,2

7. Adr(L(Dm
n ))ζ7(x,y) = 2m(m2 + 2m+ n− 3), if µi,a = µ2,1

Proof. We define the partitions of the edge set of L(Dm
n ) with respect

to degree of vertices. There are three types of edges with respect to

degrees of end vertices in L(Dm
n ) namely, (2, 2), (2, 2m), and (2m, 2m).

Thus, we have shown in the following Table 3.3.

Table 3.3: The edge partition of the edges of L(Dm
n ) based on degrees

of end vertices

E{d(u),d(v)} E(2,2) E(2,2m) E(2m,2m)

Number of Edges m(n− 3) 2m m(2m− 1)
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We presented these partitions with their cardinalities of E in Ta-

ble 3.3. Hence utilizing the adriatic indices definitions, we obtained

required results.



Chapter 4

Adriatic indices and

Sanskruti index envisage

of carbon nanocone

4.1 Introduction and Preliminaries

The central part of graphical structure of carbon nanocone CNCm[n]

[40] have a cycle of m-length and at the conical exterior around its cen-

tral part n-levels of hexagons are positioned. The edge and vertex sets

of carbon nanocone areE(CNCm[n]) = m(n+1)(3n+2)
2 and V (CNCm[n]) =

m(n + 1)2 respectively, where n ≥ 1, m = 3, 4, 5, .... One can see

[16,22,26,36,51] for relevant work on carbon nanomaterials.

32
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Figure 4.1: Carbonnanocone

4.2 Topological indices of carbon nanocone

graph

Table 4.1: The edge partition of carbon nanocone CNCm[n] based on
degrees of end vertices of each edge.

Number of edges (du, dv), uv ∈ E(G)

m (2, 2)
mn(3m+ 1)/2 (3, 3)

2mn (3, 2)
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Theorem 8. Let G be a graph of CNCm[n] nanocones for n = 1, 2, 3, ...

and m ≥ 3.Then

ISI[G] = m
20 [45n2 + 27n+ 20].

AZI[G] = 8m+ 36

27mn(3n+ 1) + 16mn.

SDD[G] = m

[
2 + n

(
3n+ 16

3

)]
.

Proof. The graph G consists of m(n+1)2 vertices and m(n+1)(3n+2)
2 edges

as shown in Figure 4.1. Using Table 4.1 we obtain the results as follows.

∴ ISI[G] = m

[
2.2
2+2

]
+ mn(3n+1)

2

[
3.3
3+3

]
+ 2mn

[
3.2
3+2

]
= m

20 [45n2 + 27n+ 20].

AZI[G] = m

[
2.2

2+2−2

]3
+ mn(3n+1)

2

[
3.3

3+3−2

]3
+ 2mn

[
3.2

3+2−2

]3
= 8m+ 36

27mn(3n+ 1) + 16mn.

SDD[G] = m

[
22+22

2.2

]
+ mn(3n+1)

2

[
32+32

3.3

]
+ 2mn

[
32+22

3.2

]
= m

[
2 + n

(
3n+ 16

3

)]
.
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Theorem 9. Let G be a graph of CNCm[n] nanocones for n = 1, 2, 3, ...

and m ≥ 3.Then

LM1[G] = 2m

[
ln2 + n(3n+1)

3 ln3 + n
3 [ln72]

]
.

LM1[G] = ln[4.(6)
n(3n+1)

2 52n]m.

MLD[G] = 2mn|ln(32)|.

MLSD[G] = 2mn|ln23− ln22|.

Proof. The graph G consists of m(n+1)2 vertices and m(n+1)(3n+2)
2 edges

as shown in Figure 4.1. Using Table 4.1 we obtain the results as follows.

∴ LM1[G] = 2m

[
ln2
2 + ln2

2

]
+ 2

[
mn(3n+1)

2

][
ln3
3 + ln3

3

]
+ 2(2mn)

[
ln2
2 + ln3

3

]
= 2m

[
ln2 + n(3n+1)

3 ln3 + n
3 [ln72]

]
.

LM1[G] = m[ln(2 + 2)] + mn(3n+1)
2 [ln(3 + 3)] + 2mn[ln(3 + 2)]

= ln[4.(6)
n(3n+1)

2 52n]m.

MLD[G] = m|ln2− ln2|+ mn(3n+1)
2 |ln3− ln3|+ 2mn|ln3− ln2|

= 2mn|ln
(

3
2

)
|.

MLSD[G] = m|ln22− ln22|+ mn(3n+1)
2 |ln23− ln23|+ 2mn|ln23− ln22|

= 2mn|ln23− ln22|.
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Theorem 10. Let G be a graph of CNCm[n] for n = 1, 2, 3, ... and

m ≥ 3.Then

MRD[G] = 2mn|
√

3−
√

2|.

MIRD[G] = 2mn| 1√
3
− 1√

2
|.

ISLSD[G] = m

[
1

2
√
2

]
+ mn(3n+1)

2

[
1

2
√
3

]
+ 2mn

[
1√

3+
√
2

]
.

Proof. The graph G consists of m(n+1)2 vertices and m(n+1)(3n+2)
2 edges

as shown in Figure 4.1. Using Table 4.1 we obtain the results as follows.

∴MRD[G] = m|
√

2−
√

2|+ mn(3n+1)
2 |

√
3−
√

3|+ 2mn|
√

3−
√

2|

= 2mn|
√

3−
√

2|.

MIRD[G] = m| 1√
2
− 1√

2
|+ mn(3n+1)

2 | 1√
3
− 1√

3
|+ 2mn| 1√

3
− 1√

2
|

= 2mn| 1√
3
− 1√

2
|.

ISLSD[G] = m

[
1√

2+
√
2

]
+ mn(3n+1)

2

[
1√

3+
√
3

]
+ 2mn

[
1√

3+
√
2

]
= m

[
1

2
√
2

]
+ mn(3n+1)

2

[
1

2
√
3

]
+ 2mn

[
1√

3+
√
2

]
.
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4.3 On Sanskruti index of carbon nanocone

Table 4.2: The edge partition of carbon nanocone CNCm[n] based on
degree sum of neighbourhood vertices of end vertices of each edge.

Number of edges (Su, Sv),uv ∈ E(G)

m (5, 5)
2m (5, 7)

m(2n− 2) (6, 7)
mn (7, 9)

(mn/2)(3n− 1) (9, 9)

Theorem 11. Let G be a graph of CNCm[n] for n = 1, 2, 3, ... and

m ≥ 3.Then

S[G] =

[
81
16

]3
+mn

[
9
2

]3
+m

[
25
8

]3
+ 2m

[
7
2

]3
+m(2n− 2)

[
42
11

]3
.

Proof. The graph G consists of m(n+1)2 vertices and m(n+1)(3n+2)
2 edges

as shown in Figure 4.1. Using Table 4.2 we obtain the results as follows.

∴ S[G] = mn
2 (3n− 1)

[
9.9

9+9−2

]3
+mn

[
7.9

7+9−2

]3
+m

[
5.5

5+5−2

]3
+ 2m

[
5.7

5+7−2

]3
+ m(2n− 2)

[
6.7

6+7−2

]3
=

[
81
16

]3
+mn

[
9
2

]3
+m

[
25
8

]3
+ 2m

[
7
2

]3
+m(2n− 2)

[
42
11

]3
.
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4.4 On Inverse sum indeg and symmet-

ric division deg indices of a semi-total

point graph of carbon nanocone

Table 4.3: The edge partition of semi-total point graph of carbon
nanocone R[CNCm[n]].

Number of edges (du, dv),uv ∈ E(G)

2m(n+ 1) (2, 4)
m (4, 4)

3mn(n+ 1) (2, 6)
2mn (4, 6)

(mn/2)(3n+ 1) (6, 6)

Theorem 12. Let G be a graph of R[CNCm[n]] nanocones for n =

1, 2, 3, ... and m ≥ 3.Then

ISI[G] = m

[
9n2 + 359

30 + 37
6

]
.

SDD[G] = m

[
24n2 + 526

15 n+ 32
3

]
.

Proof. The graph G consists of m(n+1)(5n+4)
2 vertices and 3m

2 (n+1)(3n+

2) edges by definition R(G). Using Table 4.3 we obtain the results as



On the Sanskruti index of certain line graph of subdivision graphs 39

follows.

∴ ISI[G] = 2m(n+ 1)

[
2.4
2+4

]
+m

[
4.4
4+4

]
+ 3mn(n+ 1)

[
2.6
2+6

]
+ 2mn

[
4.6
4+6

]
+ mn

2 (3n+ 1)

[
6.6
6+6

]
= m

[
9n2 + 359

30 + 37
6

]
.

SDD[G] = 2m(n+ 1)

[
22+42

2+4

]
+m

[
42+42

4+4

]
+ 3mn(n+ 1)

[
22+62

2+6

]
+ 2mn

[
42+62

4+6

]
+ mn

2 (3n+ 1)

[
62+62

6+6

]
= m

[
24n2 + 526

15 n+ 32
3

]
.



Chapter 5

Operations Of

triglyceride via adriatic

indices

5.1 Introduction

Triglycerides are a kind of lipid found in human blood [37]. Level

of triglyceride increase the peril of cardinal disease, as reported by

American Heart Association.

40
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Figure 5.1: Moleculer and 2D structure of Triglyceride

5.2 Total graph of triglyceride

Table 5.1: The edge partition of total graph of triglyceride.

(du, dv),uv ∈ E(G) Number of edges

(2, 3) 3
(2, 4) 6
(2, 6) 3
(3, 4) 6
(4, 4) 159
(4, 5) 22
(4, 6) 12
(5, 5) 7
(5, 6) 9

Theorem 13. Let G be a total graph of triglyceride. Then

ISI[G] = 464.12.

AZI[G] = 31415.57547.

SDD[G] = 465.4.
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Proof. The graph G be a total graph of triglyceride which consists of

9 different type of edge sets from Table 5.1. Using from the Table 5.1

we computed respective index as follows.

∴ ISI[G] = 3

[
2.3

2 + 3

]
+ 6

[
2.4

2 + 4

]
+ 3

[
2.6

2 + 6

]
+ 6

[
3.4

3 + 4

]
+ 159

[
4.4

4 + 4

]
+ 22

[
4.5

4 + 5

]
+ 12

[
4.6

4 + 6

]
+ 7

[
5.5

5 + 5

]
+ 9

[
5.6

5 + 6

]
= 464.12.

AZI[G] = 3

[
2.3

2 + 3− 2

]3
+ 6

[
2.4

2 + 4− 2

]3
+ 3

[
2.6

2 + 6− 2

]3
+ 6

[
3.4

3 + 4− 2

]3
+ 159

[
4.4

4 + 4− 2

]3
+ 22

[
4.5

4 + 5− 2

]3
+ 12

[
4.6

4 + 6− 2

]3
+ 7

[
5.5

5 + 5− 2

]3
+ 9

[
5.6

5 + 6− 2

]3
= 31415.57547.

SDD[G] = 3

[
22 + 32

2.3

]
+ 6

[
22 + 42

2.4

]
+ 3

[
22 + 62

2.6

]
+ 6

[
32 + 42

3.4

]
+ 159

[
42 + 42

4.4

]
+ 22

[
42 + 52

4.5

]
+ 12

[
42 + 62

4.6

]
+ 7

[
52 + 52

5.5

]
+ 9

[
52 + 62

5.6

]
.

= 465.4.
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Theorem 14. Let G be a total graph of triglyceride. Then

H[G] = 55.7395.

SCI[G] = 79.3898.

MD[G] = 88.

Proof. The graph G be a total graph of triglyceride which consists of

9 different type of edge sets from Table 5.1. Using from the Table 5.1

we computed respective index as follows.

∴ H[G] = 3

[
2

2 + 3

]
+ 6

[
2

2 + 4

]
+ 3

[
2

2 + 6

]
+ 6

[
2

3 + 4

]
+ 159

[
2

4 + 4

]
+ 22

[
2

4 + 5

]
+ 12

[
2

4 + 6

]
+ 7

[
2

5 + 5

]
+ 9

[
2

5 + 6

]
= 55.7395.

SCI[G] = 3

[
1√

2 + 3

]
+ 6

[
1√

2 + 4

]
+ 3

[
1√

2 + 6

]
+ 6

[
1√

3 + 4

]
+ 159

[
1√

4 + 4

]
+ 22

[
1√

4 + 5

]
+ 12

[
1√

4 + 6

]
+ 7

[
1√

5 + 5

]
+ 9

[
1√

5 + 6

]



Operations Of Triglyceride via Adriatic Indices 44

= 79.3898.

MD[G] = 3|2− 3|+ 6|2− 4|+ 3|2− 6|

+ 6|3− 4|+ 159|4− 4|+ 22|4− 5|

+ 12|4− 6|+ 7|5− 5|+ 9|5− 6|

= 88.

Theorem 15. Let G be a total graph of triglyceride. Then

MRD[G] = 21.6899.

MIRD[G] = 5.6056.

MHD[G] = 3.9688.

Proof. The graph G be a total graph of triglyceride which consists of

9 different type of edge sets from Table 5.1. Using from the Table 5.1

we computed respective index as follows.

∴MRD[G] = 3|
√

2−
√

3|+ 6|
√

2−
√

4|+ 3|
√

2−
√

6|

+ 6|
√

3−
√

4|+ 159|
√

4−
√

4|+ 22|
√

4−
√

5|
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+ 12|
√

4−
√

6|+ 7|
√

5−
√

5|+ 9|
√

5−
√

6|

= 21.6899.

MIRD[G] = 3

∣∣∣∣ 1√
2
− 1√

3

∣∣∣∣+ 6

∣∣∣∣ 1√
2
− 1√

4

∣∣∣∣+ 3

∣∣∣∣ 1√
2
− 1√

6

∣∣∣∣
+ 6

∣∣∣∣ 1√
3
− 1√

4

∣∣∣∣+ 159

∣∣∣∣ 1√
4
− 1√

4

∣∣∣∣+ 22

∣∣∣∣ 1√
4
− 1√

5

∣∣∣∣
+ 12

∣∣∣∣ 1√
4
− 1√

6

∣∣∣∣+ 7

∣∣∣∣ 1√
5
− 1√

5

∣∣∣∣+ 9

∣∣∣∣ 1√
5
− 1√

6

∣∣∣∣
= 5.6056.

MHD[G] = 3|2−2 − 2−3|+ 6|2−2 − 2−4|+ 3|2−2 − 2−6|

+ 6|2−3 − 2−4|+ 159|2−4 − 2−4|+ 22|2−4 − 2−5|

+ 12|2−4 − 2−6|+ 7|2−5 − 2−5|+ 9|2−5 − 2−6|

= 3.9688.

5.3 Subdivision graph of triglyceride

Table 5.2: The edge partition of Subdivision graph of Triglyceride.

(du, dv),uv ∈ E(G) Number of edges

(1, 2) 6
(2, 2) 94
(2, 3) 12
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Theorem 16. Let G be a subdivision graph of triglyceride. Then

ISI[G] = 112.4.

AZI[G] = 840.5.

SDD[G] = 229.

Proof. The graph G be a subdivision graph of triglyceride which con-

sists of 3 different type of edge sets from Table 5.2. Using from the

Table 5.2 we computed respective index as follows.

∴ ISI[G] = 6

[
1.2

1 + 2

]
+ 94

[
2.2

2 + 2

]
+ 12

[
2.3

2 + 3

]
= 112.4.

AZI[G] = 6

[
1.2

1 + 2− 2

]3
+ 94

[
2.2

2 + 2− 2

]3
+ 12

[
1.3

1 + 3− 2

]3
= 840.5

SDD[G] = 6

[
12 + 22

1.2

]
+ 94

[
22 + 22

2.2

]
+ 12

[
22 + 32

2.3

]
= 229.

Theorem 17. Let G be a subdivision graph of triglyceride. Then

H[G] = 55.8.
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SCI[G] = 55.83066476.

MD[G] = 18.

Proof. The graph G be a subdivision graph of triglyceride which con-

sists of 3 different type of edge sets from Table 5.2. Using from the

Table 5.2 we computed respective index as follows.

∴ H[G] = 6

[
2

1 + 2

]
+ 94

[
2

2 + 2

]
+ 12

[
2

2 + 3

]
= 55.8.

SCI[G] = 6

[
1√

1 + 2

]
+ 94

[
1√

2 + 2

]
+ 12

[
1√

2 + 3

]
= 55.83066476.

MD[G] = 6|1− 2|+ 94|2− 2|+ 12|2− 3|

= 18.

Theorem 18. Let G be a subdivision graph of triglyceride. Then

MRD[G] = 6.299328317.

MIRD[G] = 3.314437457.
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MHD[G] = 3.

Proof. The graph G be a subdivision graph of triglyceride which con-

sists of 3 different type of edge sets from Table 5.2. Using from the

Table 5.2 we computed respective index as follows.

∴MRD[G] = 6|
√

2−
√

1|+ 94|
√

2−
√

2|+ 12|
√

3−
√

2|

= 6.299328317.

MIRD[G] = 6

∣∣∣∣ 1√
1
− 1√

2

∣∣∣∣+ 94

∣∣∣∣ 1√
2
− 1√

2

∣∣∣∣+ 12

∣∣∣∣ 1√
2
− 1√

3

∣∣∣∣
= 3.314437457.

MHD[G] = 6|2−1 − 2−2|+ 94|2−2 − 2−2|+ 12|2−2 − 2−3|

= 3.

5.4 Semi-total point graph of triglyceride

Table 5.3: The edge partition of additional subdivision graph R(G) of
triglyceride.

(du, dv),uv ∈ E(G) Number of edges

(2, 6) 15
(2, 2) 6
(2, 4) 97
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(du, dv),uv ∈ E(G) Number of edges

(4, 4) 41
(4, 6) 9

Theorem 19. Let G be a Semi-total point graph R(G) of triglyceride.

Then

ISI[G] = 261.4333333.

AZI[G] = 1964.481481.

SDD[G] = 406.

Proof. The graph G be semi-total point graph of triglyceride which

consists of 5 different type of edge sets from Table 5.3. Using from the

Table 5.3 we computed respective index as follows.

∴ ISI[G] = 6

[
2.2

2 + 2

]
+ 15

[
2.6

2 + 6

]
+ 97

[
2.4

2 + 4

]
+ 41

[
4.4

4 + 4

]
+ 9

[
4.6

4 + 6

]
= 261.4333333.

AZI[G] = 6

[
2.2

2 + 2− 2

]3
+ 15

[
2.6

2 + 6− 2

]3
+ 97

[
2.4

2 + 4− 2

]3
+ 41

[
4.4

4 + 4− 2

]3
+ 9

[
4.6

4 + 6− 2

]3
= 1964.481481.

SDD[G] = 6

[
22 + 22

2.2

]
+ 15

[
22 + 62

2.6

]
+ 97

[
22 + 42

2.4

]
+ 41

[
42 + 42

4.4

]
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+ 9

[
42 + 62

4.6

]
= 406.

Theorem 20. Let G be semi-total point graph R(G) of triglyceride.

Then

H[G] = 51.13333333.

SCI[G] = 65.24512394.

MD[G] = 272.

Proof. The graph G be semi-total point graph R(G) of triglyceride

which consists of 5 different type of edge sets from Table 5.3. Using

from the Table 5.3 we computed respective index as follows.

∴ H[G] = 6

[
2

2 + 2

]
+ 15

[
2

2 + 6

]
+ 97

[
2

2 + 4

]
+ 41

[
2

4 + 4

]
+ 9

[
2

4 + 6

]
= 51.13333333.

SCI[G] = 6

[
1√

2 + 2

]
+ 15

[
1√

2 + 6

]
+ 97

[
1√

2 + 4

]
+ 41

[
1√

4 + 4

]
+ 9

[
1√

4 + 6

]
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= 65.24512394.

MD[G] = 6|2− 2|+ 15|2− 6|+ 97|2− 4|+ 41|4− 4|+ 9|4− 6|

= 272.

Theorem 21. Let G be semi-total point graph R(G) of triglyceride.

Then

MRD[G] = 76.39583484.

MIRD[G] = 25.39800052.

MHD[G] = 22.125.

Proof. The graph G be semi-total point graph R(G) of triglyceride

which consists of 5 different type of edge sets from Table 5.3. Using

from the Table 5.3 we computed respective index as follows.

∴MRD[G] = 6|
√

2−
√

2|+ 15|
√

6−
√

2|+ 97|
√

4−
√

2|+ 41|
√

4−
√

4|

+ 9|
√

6−
√

4|

= 76.39583484.
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MIRD[G] = 6

∣∣∣∣ 1√
2
− 1√

2

∣∣∣∣+ 15

∣∣∣∣ 1√
2
− 1√

6

∣∣∣∣+ 97

∣∣∣∣ 1√
2
− 1√

4

∣∣∣∣+ 41

∣∣∣∣ 1√
4
− 1√

4

∣∣∣∣
+ 9

∣∣∣∣ 1√
4
− 1√

6

∣∣∣∣
= 25.39800052.

MHD[G] = 6|2−2 − 2−2|+ 15|2−2 − 2−6|+ 97|2−2 − 2−4|+ 41|2−4 − 2−4|

+ 9|2−4 − 2−6|

= 22.125.

5.5 Semi-total line graph of triglyceride

Table 5.4: The edge partition of additional subdivision graph Q(G) of
triglyceride.

(du, dv),uv ∈ E(G) Number of edges

(1, 3) 3
(1, 4) 3
(2, 3) 3
(2, 4) 84
(2, 5) 7
(3, 5) 7
(3, 4) 8
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(du, dv),uv ∈ E(G) Number of edges

(4, 4) 38
(4, 5) 13
(5, 5) 4

Theorem 22. Let G be a semi-total point graph Q(G) of triglyceride.

Then

ISI[G] = 279.4781746.

AZI[G] = 2135.073013.

SDD[G] = 402.7333333.

Proof. The graph G be semi-total point graph Q(G) of triglyceride

which consists of 10 different type of edge sets from Table 5.4. Using

from the Table 5.4 we computed respective index as follows.

∴ ISI[G] = 3

[
1.3

1 + 3

]
+ 3

[
1.4

1 + 4

]
+ 3

[
2.3

2 + 3

]
+ 84

[
2.4

2 + 4

]
+ 7

[
2.5

2 + 5

]
+ 7

[
3.5

3 + 5

]
+ 8

[
3.4

3 + 4

]
+ 38

[
4.4

4 + 4

]
+ 13

[
4.5

4 + 5

]
+ 4

[
5.5

5 + 5

]
= 279.4781746.

AZI[G] = 3

[
1.3

1 + 3− 2

]3
+ 3

[
1.4

1 + 4− 2

]3
+ 3

[
2.3

2 + 3− 2

]3
+ 84

[
2.4

2 + 4− 2

]3
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+ 7

[
2.5

2 + 5− 2

]3
+ 7

[
3.5

3 + 5− 2

]3
+ 8

[
3.4

3 + 4− 2

]3
+ 38

[
4.4

4 + 4− 2

]3
+ 13

[
4.5

4 + 5− 2

]3
+ 4

[
5.5

5 + 5− 2

]3
= 2135.073013.

SDD[G] = 3

[
12 + 32

1.3

]
+ 3

[
12 + 42

1.4

]
+ 3

[
22 + 32

2.3

]
+ 84

[
22 + 42

2.4

]
+ 7

[
22 + 52

2.5

]
+ 7

[
32 + 52

3.5

]
+ 8

[
32 + 42

3.4

]
+ 38

[
42 + 42

4.4

]
+ 13

[
42 + 52

4.5

]
+ 4

[
52 + 52

5.5

]
= 402.733333.

Theorem 23. Let G be semi-total point graph Q(G) of triglyceride.

Then

H[G] = 51.12460317.

SCI[G] = 65.65375204.

MD[G] = 242.

Proof. The graph G be semi-total point graph Q(G) of triglyceride
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which consists of 10 different type of edge sets from Table 5.4. Using

from the Table 5.4 we computed respective index as follows.

∴ H[G] = 3

[
2

1 + 3

]
+ 3

[
2

1 + 4

]
+ 3

[
2

2 + 3

]
+ 84

[
2

2 + 4

]
+ 7

[
2

2 + 5

]
+ 7

[
2

3 + 5

]
+ 8

[
2

3 + 4

]
+ 38

[
2

4 + 4

]
+ 13

[
2

4 + 5

]
+ 4

[
2

5 + 5

]
= 51.12460317.

SCI[G] = 3

[
1√

1 + 3

]
+ 3

[
1√

1 + 4

]
+ 3

[
1√

2 + 3

]
+ 84

[
1√

2 + 4

]
+ 7

[
1√

2 + 5

]
+ 7

[
1√

3 + 5

]
+ 8

[
1√

3 + 4

]
+ 38

[
1√

4 + 4

]
+ 13

[
1√

4 + 5

]
+ 4

[
1√

5 + 5

]
= 65.65375204.

MD[G] = 3|1− 3|+ 3|1− 4|+ 3|2− 3|+ 84|2− 4|+ 7|2− 5|+ 7|3− 5|

+ 8|3− 4|+ 38|4− 4|+ 13|4− 5|+ 4|5− 5|

= 242.

Theorem 24. Let G be semi-total point graph Q(G) of triglyceride.

Then

MRD[G] = 69.84930326.

MIRD[G] = 24.58942278.
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MHD[G] = 21.65625.

Proof. The graph G be semi-total point graph Q(G) of triglyceride

which consists of 10 different type of edge sets from Table 5.4. Using

from the Table 5.4 we computed respective index as follows.

∴MRD[G] = 3|
√

1−
√

3|+ 3|
√

1−
√

4|+ 3|
√

2−
√

3|+ 84|
√

2−
√

4|

+ 7|
√

2−
√

5|+ 7|
√

3−
√

5|+ 8|
√

3−
√

4|+ 38|
√

4−
√

4|

+ 13|
√

4−
√

5|+ 4|
√

5−
√

5|

= 69.84930326.

MIRD[G] = 3

∣∣∣∣ 1√
1
− 1√

3

∣∣∣∣+ 3

∣∣∣∣ 1√
1
− 1√

4

∣∣∣∣+ 3

∣∣∣∣ 1√
2
− 1√

3

∣∣∣∣+ 84

∣∣∣∣ 1√
2
− 1√

4

∣∣∣∣
+ 7

∣∣∣∣ 1√
2
− 1√

5

∣∣∣∣+ 7

∣∣∣∣ 1√
3
− 1√

5

∣∣∣∣+ 8

∣∣∣∣ 1√
3
− 1√

4

∣∣∣∣+ 38

∣∣∣∣ 1√
4
− 1√

4

∣∣∣∣
+ 13

∣∣∣∣ 1√
4
− 1√

5

∣∣∣∣+ 4

∣∣∣∣ 1√
5
− 1√

5

∣∣∣∣
= 24.58942278

MHD[G] = 3|2−1 − 2−3|+ 3|2−1 − 2−4|+ 3|2−2 − 2−3|+ 84|2−2 − 2−4|

+ 7|2−2 − 2−5|+ 7|2−3 − 2−5|+ 8|2−3 − 2−4|+ 13|2−4 − 2−5|

+ 38|2−4 − 2−4|+ 4|2−5 − 2−5|

= 21.65625.
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Figure 5.2: Comparison of general and total graph of triglyceride
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Figure 5.3: Comparison of general and semi-total point graph of triglyc-
eride
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Figure 5.4: Comparison of general and subdivision graph of triglyceride
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Figure 5.5: Comparison of general and semi-total line graph of triglyc-
eride



Chapter 6

Investigation on splice

graphs by exploiting

certain topological

indices

6.1 Preliminaries

Let G and H be two simple connected graphs with disjoint vertex sets

V (G) and V (H), and edge sets E(G) and E(H) respectively. Let b1 ∈

V (G) and y1 ∈ V (H). Then the splice graph G • H of G and H by

vertices b1 and y1 respectively, is defined by identifying the vertices b1

61
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and y1 in the union of G and H (see, for instance, [3,13,41]). It is known

that, for splice graphs, the total number of vertices is nG+nH−1 while

the total number of edges is eG + eH (see below Figure 6.1).

b1 b2

b3b4

y1 y2

b1
y1

G •HG

H

Figure 6.1: Splice of G and H by the vertices b1 and y1

6.2 Subdivision-vertex splice graph

Let G and H be two vertex disjoint graphs, and let b1 ∈ V (G) and

y1 ∈ V (H). The subdivision vertex splice G and H is denoted by

G•vH and obtained from S(G) and one copy of H which is identifying

the vertices b1 and y1 in the union of S(G) and H (see below Figure

6.2).

b1 b2

b3b4

y1 y2

b1
y1

G •v HS(G)

H

Figure 6.2: Subdivision-vertex splice
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Theorem 25. Let G and H are two simple connected graphs, then the

bounds for the inverse sum indeg index of G •v H are given by

ISI[G •v H] ≤ 2∆G[2m1 −∆G]

∆G + 2
+

∆H [m2 −∆H ]

2
+

2∆G(∆G + ∆H)

∆G + ∆H + 2

+
∆2
H(∆G + ∆H)

∆G + 2∆H
.

ISI[G •v H] ≥ 2δG[2m1 − δG]

δG + 2
+
δH [m2 − δH ]

2
+

2δG(δG + δH)

δG + δH + 2
+
δ2H(δG + δH)

δG + 2∆H
.

Proof. Consider,

ISI[G •v H] =
∑

uv∈E[G•vH]
u∈V [G],v∈I[G]

[
dG(u).2

dG(u) + 2

]
+

∑
uv∈E[G•vH]
u,v∈V [H]

[
dH(u).dH(v)

dH(u) + dH(v)

]

+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈I[G]

[
(dG(u) + dH(v)).2

dG(u) + dH(v) + 2

]

+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈V [H]

[
(dG(u) + dH(v)).dH(w)

dG(u) + dH(v) + dH(w)

]

= [2m1 − dG(S(u))]

[
2dG(u)

dG(u) + 2

]
+ [m2 − dH(S(u))]

[
dH(u).dH(v)

dH(u) + dH(v)

]
+ dG(S(u))

[
2(dG(u) + dH(v))

dG(u) + dH(v) + 2

]
+ dH(S(u))

[
(dG(u) + dH(v)).dH(w)

dG(u) + dH(v) + dH(w)

]
≤ [2m1 −∆G]

[
2∆G

∆G + 2

]
+ [m2 −∆H ]

[
∆2
H

2∆H

]
+ ∆G

[
2(∆G + ∆H)

∆G + ∆H + 2

]
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+ ∆H

[
(∆G + ∆H).∆H

∆G + ∆H + ∆H

]
ISI[G •v H] ≤ 2∆G[2m1 −∆G]

∆G + 2
+

∆H [m2 −∆H ]

2
+

2∆G(∆G + ∆H)

∆G + ∆H + 2

+
∆2
H(∆G + ∆H)

∆G + 2∆H
.

One can analogously compute the following

ISI[G •v H] ≥ 2δG[2m1 − δG]

δG + 2
+
δH [m2 − δH ]

2
+

2δG(δG + δH)

δG + δH + 2
+
δ2H(δG + δH)

δG + 2∆H
.

Theorem 26. Let G and H are two simple connected graphs, then the

bounds for the EM1 index of G •v H are given by

EM1[G •v H] ≤ ∆2
G[2m1 −∆G] + 4[m2 −∆H ][∆H − 1]2 + ∆G[∆G + ∆H ]2

+ ∆H [∆G + 2∆H − 2]2.

EM1[G •v H] ≥ δ2G[2m1 − δG] + 4[m2 − δH ][δH − 1]2 + δG[δG + δH ]2

+ δH [δG + 2δH − 2]2.

Proof. Consider,

EM1[G •v H] =
∑

uv∈E[G•vH]
u∈V [G],v∈I[G]

[dG(u) + 2− 2]2 +
∑

uv∈E[G•vH]
u,v∈V [H]

[dH(u) + dH(v)− 2]2
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+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈I[G]

[dG(u) + dH(v)) + 2− 2]2

+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈V [H]

[dG(u) + dH(v) + dH(w)− 2]2

= [2m1 − dG(S(u))][dG(u)]2 + [m2 − dH(S(u))][dH(u) + dH(v)− 2]2

+ dH(S(u))[dG(u) + dH(v) + dH(w)− 2]2

+ dG(S(u))[dG(u) + dH(v)]2

≤ ∆2
G[2m1 −∆G] + [m2 −∆H ][∆H + ∆H − 2]2 + ∆G[∆G + ∆H ]2

+ ∆H [∆G + ∆H + ∆H − 2]2

EM1[G •v H] ≤ ∆2
G[2m1 −∆G] + 4[m2 −∆H ][∆H − 1]2 + ∆G[∆G + ∆H ]2

+ ∆H [∆G + 2∆H − 2]2.

One can analogously compute the following

EM1[G •v H] ≥ δ2G[2m1 − δG] + 4[m2 − δH ][δH − 1]2 + δG[δG + δH ]2

+ δH [δG + 2δH − 2]2.
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Theorem 27. Let G and H are two simple connected graphs, then the

bounds for the atom-bond connectivite index of G •v H are given by

ABC[G •v H] ≤ [2m1 −∆G]√
2

+ [m2 −∆H ]

√
2(∆H − 1)

∆2
H

+
∆G√

2

+ ∆H

√
∆G + 2∆H − 2

(∆G + ∆H).∆H

ABC[G •v H] ≥ [2m1 − δG]√
2

+ [m2 − δH ]

√
2(δH − 1)

δ2H
+
δG√

2

+ δH

√
δG + 2δH − 2

(δG + δH).δH

Proof. Consider,

ABC[G •v H] =
∑

uv∈E[G•vH]
u∈V [G],v∈I[G]

[√
dG(u) + 2− 2

dG(u).2

]

+
∑

uv∈E[G•vH]
u,v∈V [H]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈I[G]

[√
(dG(u) + dH(v)) + 2− 2

(dG(u) + dH(v)).2

]

+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈V [H]

[√
(dG(u) + dH(v)) + dH(w)− 2

(dG(u) + dH(v)).dH(w)

]
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= [2m1 − dG(S(u))]

[√
dG(u)

2dG(u)

]

+ [m2 − dH(S(u))]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+ dG(S(u))

[√
(dG(u) + dH(v))

2(dG(u) + dH(v))

]

+ dH(S(u))

[√
(dG(u) + dH(v)) + dH(w)− 2

(dG(u) + dH(v)).dH(w)

]
≤ [2m1 −∆G]√

2
+ [m2 −∆H ]

√
∆H + ∆H − 2

∆H .∆H
+

∆G√
2

+ ∆H

√
∆G + ∆H + ∆H − 2

(∆G + ∆H).∆H

ABC[G •v H] ≤ [2m1 −∆G]√
2

+ [m2 −∆H ]

√
2(∆H − 1)

∆2
H

+
∆G√

2

+ ∆H

√
∆G + 2∆H − 2

(∆G + ∆H).∆H
.

One can analogously compute the following

ABC[G •v H] ≥ [2m1 − δG]√
2

+ [m2 − δH ]

√
2(δH − 1)

δ2H
+
δG√

2

+ δH

√
δG + 2δH − 2

(δG + δH).δH
.
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Theorem 28. Let G and H are two simple connected graphs, then the

bounds for the SK1 index of G •v H are given by

SK1[G •v H] ≤ [2m1 −∆G]

[
∆G + 2

2

]
+ [m2 −∆H ]∆H + ∆G

[
∆G + ∆H + 2

2

]
+ ∆H

[
∆G + 2∆H

2

]
.

SK1[G •v H] ≥ [2m1 − δG]

[
δG + 2

2

]
+ [m2 − δH ]δH + δG

[
δG + δH + 2

2

]
+ δH

[
δG + 2δH

2

]
.

Proof. Consider,

SK1[G •v H] =
∑

uv∈E[G•vH]
u∈V [G],v∈I[G]

[
dG(u) + 2

2

]
+

∑
uv∈E[G•vH]
u,v∈V [H]

[
dH(u) + dH(v)

2

]

+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈I[G]

[
(dG(u) + dH(v)) + 2

2

]

+
∑

uv∈E[G•vH]
u∈M [G•vH],v∈V [H]

[
(dG(u) + dH(v)) + dH(w)

2

]

= [2m1 − dG(S(u))]

[
dG(u) + 2

2

]
+ [m2 − dH(S(u))]

[
dH(u) + dH(v)

2

]
+ dG(S(u))

[
dG(u) + dH(v) + 2

2

]
+ dH(S(u))

[
dG(u) + dH(v) + dH(w)

2

]
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≤ [2m1 −∆G]

[
∆G + 2

2

]
+ [m2 −∆H ]

[
∆H + ∆H

2

]
+ ∆G

[
∆G + ∆H + 2

2

]
+ ∆H

[
∆G + ∆H + ∆H

2

]
≤ [2m1 −∆G]

[
∆G + 2

2

]
+ [m2 −∆H ]

[
2∆H

2

]
+ ∆G

[
∆G + ∆H + 2

2

]
+ ∆H

[
∆G + 2∆H

2

]
SK1[G •v H] ≤ [2m1 −∆G]

[
∆G + 2

2

]
+ [m2 −∆H ]∆H + ∆G

[
∆G + ∆H + 2

2

]
+ ∆H

[
∆G + 2∆H

2

]
.

One can analogously compute the following

SK1[G •v H] ≥ [2m1 − δG]

[
δG + 2

2

]
+ [m2 − δH ]δH + δG

[
δG + δH + 2

2

]
+ δH

[
δG + 2δH

2

]
.

6.3 Subdivision-edge splice graph

Let p2 ∈ I(G) be the inserted vertex of S(G), and let y1 ∈ V (H). Then

the S-edge splice of G and H is denoted by G •e H that is obtained

from S(G) and one copy of H identifying the vertices p2 and y1 in the

union of S(G) and H (see below Figure 6.3).
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y1 y2

G •e H
S(G)

H

p1

p2

p3

p4 p2 y1

Figure 6.3: Subdivision-edge splice graph

Theorem 29. Let G and H are two simple connected graphs, then the

bounds for the inverse sum indeg index of G •e H are given by

ISI[G •e H] ≤ 4∆G[m1 − 1]

∆G + 2
+

∆H [m2 −∆H ]

2
+ 2

[
∆G(∆H + 2)

∆G + ∆H + 2

]
+

[
∆2
H(∆H + 2)

2(∆H + 1)

]
.

ISI[G •e H] ≤ 4δG[m1 − 1]

δG + 2
+
δH [m2 − δH ]

2
+ 2

[
δG(δH + 2)

δG + δH + 2

]
+

[
δ2H(δH + 2)

2(δH + 1)

]
.

Proof. Consider,

ISI[G •e H] =
∑

uv∈E[G•eH]
u∈V [G],v∈I[G]

[
dG(u).2

dG(u) + 2

]
+

∑
uv∈E[G•eH]
u,v∈V [H]

[
dH(u).dH(v)

dH(u) + dH(v)

]

+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [G]

[
(dH(v) + 2).dG(u)

(dH(v) + 2) + dG(u)

]
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+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [H]

[
(dH(u) + 2).dH(v)

(dH(v) + 2) + dH(v)

]

= [2m1 − 2]

[
dG(u).2

dG(u) + 2

]
+ [m2 − dH(S(u))]

[
dH(u).dH(v)

dH(u) + dH(v)

]
+ 2

[
(dH(v) + 2).dG(u)

(dH(v) + 2) + dG(u)

]
+ dH(S(u))

[
(dH(u) + 2).dH(v)

(dH(v) + 2) + dH(v)

]
≤ [2m1 − 2]

[
2∆G

∆G + 2

]
+ [m2 −∆H ]

[
∆H .∆H

∆H + ∆H

]
+ 2

[
(∆H + 2).∆G

∆H + ∆G + 2

]
+ ∆H

[
∆H(∆H + 2)

∆H + ∆H + 2

]
≤ 2[m1 − 1]

[
2∆G

∆G + 2

]
+ [m2 −∆H ]

[
∆2
H

2∆H

]
+ 2

[
(∆H + 2).∆G

∆H + ∆G + 2

]
+ ∆H

[
∆H(∆H + 2)

2∆H + 2

]
ISI[G •e H] ≤ 4∆G[m1 − 1]

∆G + 2
+

∆H [m2 −∆H ]

2
+ 2

[
∆G(∆H + 2)

∆G + ∆H + 2

]
+

[
∆2
H(∆H + 2)

2(∆H + 1)

]
.

One can analogously compute the following

ISI[G •e H] ≤ 4δG[m1 − 1]

δG + 2
+
δH [m2 − δH ]

2
+ 2

[
δG(δH + 2)

δG + δH + 2

]
+

[
δ2H(δH + 2)

2(δH + 1)

]
.
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Theorem 30. Let G and H are two simple connected graphs, then the

bounds for the EM1 index of G •e H are given by

EM1[G •e H] ≤ 2∆2
G[m1 − 1] + 4[m2 −∆H ][∆H − 1]2 + 2[∆G + ∆H ]2 + 4∆3

H .

EM1[G •e H] ≥ 2δ2G[m1 − 1] + 4[m2 − δH ][δH − 1]2 + 2[δG + δH ]2 + 4δ3H .

Proof. Consider,

EM1[G •e H] =
∑

uv∈E[G•eH]
u∈V [G],v∈I[G]

[dG(u) + 2− 2]2 +
∑

uv∈E[G•eH]
u,v∈V [H]

[dH(u) + dH(v)− 2]2

+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [G]

[(dH(v) + 2) + dG(v)− 2]2

+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [H]

[(dH(u) + 2) + dH(v)− 2]2

= [2m1 − 2][dG(u)]2 + [m2 − dH(S(u))][dH(u) + dH(v)− 2]2

+ 2[dH(u) + 2 + dG(v)− 2]2 + dH(S(u))[dH(u) + 2 + dH(v)− 2]2

≤ 2∆2
G[m1 − 1] + [m2 −∆H ][∆H + ∆H − 2]2 + 2[∆G + ∆H ]2

+ ∆H [∆H + ∆H ]2

≤ 2∆2
G[m1 − 1] + [m2 −∆H ][2∆H − 2]2 + 2[∆G + ∆H ]2 + ∆H [2∆H ]2

EM1[G •e H] ≤ 2∆2
G[m1 − 1] + 4[m2 −∆H ][∆H − 1]2 + 2[∆G + ∆H ]2 + 4∆3

H .
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One can analogously compute the following

EM1[G •e H] ≥ 2δ2G[m1 − 1] + 4[m2 − δH ][δH − 1]2 + 2[δG + δH ]2 + 4δ3H .

Theorem 31. Let G and H are two simple connected graphs, then the

bounds for the atom-bond connectivite index of G •e H are given by

ABC[G •e H] ≤
√

2[m1 − 1] + [m2 −∆H ]

√
2(∆H − 1)

∆H
+ 2

√
∆H + ∆G

∆G.(∆H + 2)

+ ∆H

√
2

∆H + 2
.

ABC[G •e H] ≥
√

2[m1 − 1] + [m2 − δH ]

√
2(δH − 1)

δH
+ 2

√
δH + δG

δG.(δH + 2)

+ δH

√
2

δH + 2
.

Proof. Consider,

ABC[G •e H] =
∑

uv∈E[G•eH]
u∈V [G],v∈I[G]

[√
dG(u) + 2− 2

dG(u).2

]

+
∑

uv∈E[G•eH]
u,v∈V [H]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [G]

[√
(dH(u) + 2) + dG(v)− 2

(dH(u) + 2).dG(v)

]
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+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [H]

[√
(dH(u) + 2) + dH(v)− 2

(dH(u) + 2).dH(v)

]
.

= [2m1 − 2]

[√
dG(u)

2dG(u)

]
+ [m2 − dH(S(u))]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+ 2

[√
dH(u) + 2 + dG(v)− 2

dG(u).(dH(v) + 2)

]

+ dH(S(u))

[√
dH(u) + 2 + dH(v)− 2

dH(v)(dH(u) + 2)

]
≤ 2[m1 − 1]√

2
+ [m2 −∆H ]

√
∆H + ∆H − 2

∆H .∆H

+ 2

√
∆H + ∆G

∆G.(∆H + 2)
+ ∆H

√
∆H + ∆H

∆H .(∆H + 2)

≤
√

2[m1 − 1] + [m2 −∆H ]

√
(2∆H − 2)

∆2
H

+ 2

√
∆H + ∆G

∆G.(∆H + 2)
+ ∆H

√
2∆H

∆H .(∆H + 2)

ABC[G •e H] ≤
√

2[m1 − 1] + [m2 −∆H ]

√
2(∆H − 1)

∆H

+ 2

√
∆H + ∆G

∆G.(∆H + 2)
+ ∆H

√
2

∆H + 2
.

One can analogously compute the following

ABC[G •e H] ≥
√

2[m1 − 1] + [m2 − δH ]

√
2(δH − 1)

δH
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+ 2

√
δH + δG

δG.(δH + 2)
+ δH

√
2

δH + 2
.

Theorem 32. Let G and H are two simple connected graphs, then the

bounds for the SK1 index of G •e H are given by

SK1[G •e H] ≤ [m1 − 1][∆G + 2] + ∆H [m2 −∆H ] + [∆G + ∆H + 2]

+ ∆H [∆H + 1].

SK1[G •e H] ≥ [m1 − 1][δG + 2] + δH [m2 − δH ] + [δG + δH + 2] + δH [δH + 1].

Proof. Consider,

SK1[G •e H] =
∑

uv∈E[G•eH]
u∈V [G],v∈I[G]

[
dG(u) + 2

2

]
+

∑
uv∈E[G•eH]
u,v∈V [H]

[
dH(u) + dH(v)

2

]

+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [G]

[
(dH(u) + 2) + dG(v)

2

]

+
∑

uv∈E[G•eH]
u∈M [G•eH],v∈V [H]

[
(dH(u) + 2) + dH(v)

2

]

= [2m1 − 2]

[
dG(u) + 2

2

]
+ [m2 − dH(S(u))]

[
2dH(u)

2

]
+ 2

[
dH(u) + dG(v) + 2

2

]
+ dH(S(u))

[
dH(u) + 2 + dH(v)

2

]
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≤ 2[m1 − 1]

[
∆G + 2

2

]
+ [m2 −∆H ]∆H

+ 2

[
∆G + ∆H + 2

2

]
+ ∆H

[
∆H + ∆H + 2

2

]
≤ [m1 − 1][∆G + 2] + ∆H [m2 −∆H ]

+ [∆G + ∆H + 2] + ∆H

[
2(∆H + 1)

2

]
SK[G •e H] ≤ [m1 − 1][∆G + 2] + ∆H [m2 −∆H ] + [∆G + ∆H + 2]

+ ∆H [∆H + 1].

One can analogously compute the following

SK[G •e H] ≥ [m1 − 1][δG + 2] + δH [m2 − δH ] + [δG + δH + 2] + δH [δH + 1].

6.4 Subdivision-vertex neighbourhood splice

Graph

Let b1 ∈ V (G) and y1 ∈ V (H). The S-vertex neighbourhood splice of G

and H is denoted by G•nvH and obtained from S(G) and d(b1) copies of
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H and identifying the neighbourhood vertices of b1. For y1 ∈ V (H), the

union of the corresponding neighbourhood separated vertices b1 ∈ V (G)

of S(G) (see below Figure 6.4).

y1 y2

G •nv HS(G)

H

b4 b1

b2b3

Figure 6.4: Subdivision- vertex neighbourhood splice

Theorem 33. Let G and H are two simple connected graphs, then the

bounds for the inverse sum indeg index of G •nv H are given by

ISI[G •nv H] ≤ 2[m1 −∆G]

[
2∆G

∆G + 2

]
+

∆G∆H

2
[m2 −∆H ] + 2∆G

[
∆G(2 + ∆H)

∆G + ∆H + 2

]
+ ∆G∆H

[
∆H(2 + ∆H)

2(1 + ∆H)

]
.

ISI[G •nv H] ≥ 2[m1 − δG]

[
2δG
δG + 2

]
+
δGδH

2
[m2 − δH ] + 2δG

[
δG(2 + δH)

δG + δH + 2

]
+ δGδH

[
δH(2 + δH)

2(1 + δH)

]
.

Proof. Consider,

ISI[G •nv H] =
∑

uv∈E[G•nvH]
u∈V [G],v∈I[G]

[
dG(u).2

dG(u) + 2

]
+

∑
uv∈E[G•nvH]
u,v∈V [H]

[
dH(u).dH(v)

dH(u) + dH(v)

]
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+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [G]

[
dG(u).(2 + dH(v))

dG(u)(2 + dH(v))

]

+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [H]

[
(2 + dH(u)).dH(v)

(2 + dH(u)) + dH(v)

]

= 2[m1 − dG(S(u))]

[
2dG(u)

dG(u) + 2

]
+ dG(S(u))[m2 − dH(S(u))]

[
dH(u).dH(v)

dH(u) + dH(v)

]
+ 2dG(S(u))

[
dG(u)(2 + dH(v))

dG(u) + dH(v) + 2

]
+ dG(S(u))dH(S(u))

[
dH(v)(2 + dH(u))

2 + dH(u) + dH(v)

]
= 2[m1 − dG(S(u))]

[
2dG(u)

dG(u) + 2

]
+ dG(S(u))[m2 − dH(S(u))]

[
dH(u)2

2dH(u)

]
+ 2dG(S(u))

[
dG(u)(2 + dH(v))

dG(u) + dH(v) + 2

]
+ dG(S(u))dH(S(u))

[
dH(v)(2 + dH(u))

2(1 + dH(u))

]
ISI[G •nv H] ≤ 2[m1 −∆G]

[
2∆G

∆G + 2

]
+

∆G∆H

2
[m2 −∆H ]

+ 2∆G

[
∆G(2 + ∆H)

∆G + ∆H + 2

]
+ ∆G∆H

[
∆H(2 + ∆H)

2(1 + ∆H)

]
.
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One can analogously compute the following

ISI[G •nv H] ≥ 2[m1 − δG]

[
2δG
δG + 2

]
+
δGδH

2
[m2 − δH ]

+ 2δG

[
δG(2 + δH)

δG + δH + 2

]
+ δGδH

[
δH(2 + δH)

2(1 + δH)

]
.

Theorem 34. Let G and H are two simple connected graphs, then the

bounds for the EM1 index of G •nv H are given by

EM1[G •nv H] ≤ 2∆2
G[m1 −∆G] + 4∆G[m2 −∆H ][∆H − 1]2

+ 2∆G[∆G + ∆H ]2 + 4∆G∆3
H .

EM1[G •nv H] ≥ 2δ2G[m1 − δG] + 4δG[m2 − δH ][δH − 1]2

+ 2δG[δG + δH ]2 + 4δGδ
3
H .

Proof. Consider,

EM1[G •nv H] =
∑

uv∈E[G•nvH]
u∈V [G],v∈I[G]

[dG(u) + 2− 2]2 +
∑

uv∈E[G•nvH]
u,v∈V [H]

[dH(u) + dH(v)− 2]2

+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [G]

[dG(u) + dH(v)) + 2− 2]2
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+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [H]

[2 + dH(u) + dH(v)− 2]2

= 2[m1 − dG(S(u))][dG(u)]2

+ dG(S(u))[m2 − dH(S(u))][dH(u) + dH(v)− 2]2

+ 2dG(S(u))[dG(u) + dH(v)]2

+ dG(S(u))dH(S(u))[dH(u) + dH(v)]2

≤ 2∆2
G[m1 −∆G] + ∆G[m2 −∆H ][∆H + ∆H − 2]2

+ 2∆G[∆G + ∆H ]2 + ∆G∆H [∆H + ∆H ]2

EM1[G •nv H] ≤ 2∆2
G[m1 −∆G] + 4∆G[m2 −∆H ][∆H − 1]2

+ 2∆G[∆G + ∆H ]2 + 4∆G∆3
H .

One can analogously compute the following

EM1[G •nv H] ≥ 2δ2G[m1 − δG] + 4δG[m2 − δH ][δH − 1]2

+ 2δG[δG + δH ]2 + 4δGδ
3
H .
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Theorem 35. Let G and H are two simple connected graphs, then the

bounds for the atom-bond connectivite index of G •nv H are given by

ABC[G •nv H] ≤
√

2[m1 −∆G] +
∆G

∆H
[m2 −∆H ]

√
2(∆H − 1)

+ 2∆G

√
∆G + ∆H

∆G(2 + ∆H)
+ ∆G∆H

√
2

2 + ∆H

ABC[G •nv H] ≥
√

2[m1 − δG] +
δG
δH

[m2 − δH ]
√

2(δH − 1)

+ 2δG

√
δG + δH
δG(2 + δH)

+ δGδH

√
2

2 + δH
.

Proof. Consider,

ABC[G •nv H] =
∑

uv∈E[G•nvH]
u∈V [G],v∈I[G]

[√
dG(u) + 2− 2

dG(u).2

]

+
∑

uv∈E[G•nvH]
u,v∈V [H]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [G]

[√
dG(u) + 2 + dH(v)− 2

dG(u)(2 + dH(v))

]

+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [H]

[√
2 + dH(u) + dH(v)− 2

(2 + dH(u)).dH(v)

]

= 2[m1 − dG(S(u))]

[√
dG(u)

2dG(u)

]
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+ dG(S(u))[m2 − dH(S(u))]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+ 2dG(S(u))

[√
dG(u) + dH(v)

dG(u)(2 + dH(v))

]

+ dG(S(u))dH(S(u))

[√
dH(u) + dH(v)

(2 + dH(u)).dH(v)

]
≤
√

2[m1 −∆G] + ∆G[m2 −∆H ]

√
∆H + ∆H − 2

∆H .∆H

+ 2∆G

√
∆G + ∆H

∆G(2 + ∆H)
+ ∆G∆H

√
∆H + ∆H

∆H(2 + ∆H)

≤
√

2[m1 −∆G] + ∆G[m2 −∆H ]

√
(2∆H − 2

∆2
H

+ 2∆G

√
∆G + ∆H

∆G(2 + ∆H)
+ ∆G∆H

√
2∆H

∆H(2 + ∆H)

ABC[G •nv H] ≤
√

2[m1 −∆G] +
∆G

∆H
[m2 −∆H ]

√
2(∆H − 1)

+ 2∆G

√
∆G + ∆H

∆G(2 + ∆H)

+ ∆G∆H

√
2

2 + ∆H
.

One can analogously compute the following

ABC[G •nv H] ≥
√

2[m1 − δG] +
δG
δH

[m2 − δH ]
√

2(δH − 1)

+ 2δG

√
δG + δH
δG(2 + δH)

+ δGδH

√
2

2 + δH
.
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Theorem 36. Let G and H are two simple connected graphs, then the

bounds for the SK1 indeg index of G •nv H are given by

SK1[G •nv H] ≤ [m1 −∆G][∆G + 2] + ∆G∆H [m2 −∆H ]

+ ∆G[∆G + ∆H + 2] + ∆G∆H [∆H + 1].

SK1[G •nv H] ≥ [m1 − δG][δG + 2] + δGδH [m2 − δH ]

+ δG[δG + δH + 2] + δGδH [δH + 1].

Proof. Consider,

SK1[G •nv H] =
∑

uv∈E[G•nvH]
u∈V [G],v∈I[G]

[
dG(u) + 2

2

]
+

∑
uv∈E[G•nvH]
u,v∈V [H]

[
dH(u) + dH(v)

2

]

+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [G]

[
dG(u) + (2 + dH(v))

2

]

+
∑

uv∈E[G•nvH]
u∈M [G•nvH],v∈V [H]

[
(2 + dH(u)) + dH(v)

2

]

= 2[m1 − dG(S(u))]

[
dG(u) + 2

2

]
+ dG(S(u))[m2 − dH(S(u))]

[
dH(u) + dH(v)

2

]
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+ 2dG(S(u))

[
dG(u) + dH(v) + 2

2

]
+ dG(S(u))dH(S(u))

[
2 + dH(u) + dH(v)

2

]
≤ [m1 −∆G][∆G + 2] + ∆G[m2 −∆H ]

[
2∆H

2

]
+ ∆G[∆G + ∆H + 2] + ∆G∆H

[
2(∆H + 1)

2

]
SK1[G •nv H] ≤ [m1 −∆G][∆G + 2] + ∆G∆H [m2 −∆H ]

+ ∆G[∆G + ∆H + 2] + ∆G∆H [∆H + 1]

One can analogously compute the following

SK1[G •nv H] ≥ [m1 − δG][δG + 2] + δGδH [m2 − δH ]

+ δG[δG + δH + 2] + δGδH [δH + 1]

6.5 Subdivision-edge neighbourhood splice

graph

Let p1 ∈ I(G) be the inserted vertex of S(G) and let y1 ∈ V (H). Then

the S-edge neighbourhood splice of G and H is denoted by G •ne H

that is obtained from S(G) and two copies of H identifying the vertices
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p1. For y1 ∈ V (H), the union of the corresponding neighbourhood

separated vertices p1 of S(G) (see below Figure 6.5).

y1 y2

G •ne HS(G)

H

p1

p2

p3

p4

Figure 6.5: Subdivision-edge neighbourhood splice

Theorem 37. Let G and H are two simple connected graphs, then the

bounds for the inverse sum indeg index of G •ne H are given by

ISI[G •ne H] ≤ 4∆G[m1 − 2(∆G − 1)]

∆G + 2
+ ∆H [m2 −∆H ]

+
8(∆G + ∆H)(∆G − 1)

∆G + ∆H + 2
+

2∆2
H(∆G + ∆H)

∆G + 2∆H
.

ISI[G •ne H] ≥ 4δG[m1 − 2(δG − 1)]

δG + 2
+ δH [m2 − δH ]

+
8(δG + δH)(δG − 1)

δG + δH + 2
+

2δ2H(δG + δH)

δG + 2δH
.
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Proof. Consider,

ISI[G •ne H] =
∑

uv∈E[G•neH]
u∈V [G],v∈I[G]

[
dG(u).2

dG(u) + 2

]
+

∑
uv∈E[G•neH]
u,v∈V [H]

[
dH(u).dH(v)

dH(u) + dH(v)

]

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈I[G]

[
(dG(u) + dH(v)).2

(dG(u) + dH(v)) + 2

]

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈V [H]

[
(dG(u) + dH(w)).dH(v)

(dG(u) + dH(w)) + dH(v)

]

= 2[m1 − dG(S(e))]

[
2dG(u)

dG(u) + 2

]
+ 2[m2 − dH(S(u))]

[
dH(u).dH(v)

dH(u) + dH(v)

]
+ 2dG(S(e))

[
2(dG(u) + dH(v))

dG(u) + dH(v) + 2

]
+ 2dH(S(u))

[
(dG(u) + dH(w)).dH(v)

dG(u) + dH(w) + dH(v)

]
.

ISI[G •ne H] ≤ 4∆G[m1 − 2(∆G − 1)]

∆G + 2
+ ∆H [m2 −∆H ]

+
8(∆G + ∆H)(∆G − 1)

∆G + ∆H + 2
+

2∆2
H(∆G + ∆H)

∆G + 2∆H
.

One can analogously compute the following

ISI[G •ne H] ≥ 4δG[m1 − 2(δG − 1)]

δG + 2
+ δH [m2 − δH ]
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+
8(δG + δH)(δG − 1)

δG + δH + 2
+

2δ2H(δG + δH)

δG + 2δH
.

Theorem 38. Let G and H are two simple connected graphs, then the

bounds for the EM1 index of G •ne H are given by

EM1[G •ne H] ≤ 2∆2
G[m1 − 2(∆G − 1)] + 8[m2 −∆H ][∆H − 1]2

+ 4[∆G − 1][∆G + ∆H ]2 + 2∆H [∆G + 2(∆H − 1)]2.

EM1[G •ne H] ≥ 2δ2G[m1 − 2(δG − 1)] + 8[m2 − δH ][δH − 1]2

+ 4[δG − 1][δG + δH ]2 + 2δH [δG + 2(δH − 1)]2.

Proof. Consider,

EM1[G •ne H] =
∑

uv∈E[G•neH]
u∈V [G],v∈I[G]

[dG(u) + 2− 2]2 +
∑

uv∈E[G•neH]
u,v∈V [H]

[dH(u) + dH(v)− 2]2

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈I[G]

[(dG(u) + dH(v) + 2− 2]2

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈V [H]

[(dG(u) + dH(w)) + dH(v)− 2]2.
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= 2[m1 − dG(S(e))][dG(u)]2

+ 2[m2 − dH(S(u))][dH(u) + dH(v)− 2]2

+ 2dG(S(e))[dG(u) + dH(v)]2

+ 2dH(S(u))[dG(u) + dH(w) + dH(v)− 2]2

≤ 2∆2
G[m1 − 1] + 2[m2 −∆H ][∆H + ∆H − 2]2

+ 2[∆G + ∆H ]2 + 2∆H [∆G + ∆H + ∆H − 2]2

≤ 2∆2
G[m1 − 1] + 2[m2 −∆H ][2∆H − 2]2

+ 2[∆G + ∆H ]2 + 2∆H [∆G + 2∆H − 2]2

EM1[G •ne H] ≤ 2∆2
G[m1 − 2(∆G − 1)] + 8[m2 −∆H ][∆H − 1]2

+ 4[∆G − 1][∆G + ∆H ]2 + 2∆H [∆G + 2(∆H − 1)]2.

One can analogously compute the following

EM1[G •ne H] ≥ 2δ2G[m1 − 2(δG − 1)] + 8[m2 − δH ][δH − 1]2

+ 4[δG − 1][δG + δH ]2 + 2δH [δG + 2(δH − 1)]2.
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Theorem 39. Let G and H are two simple connected graphs, then the

bounds for the atom-bond connectivite index of G •ne H are given by

ABC[G •ne H] ≤
√

2[m1 − 2[∆G − 1]] + 2
√

2[m2 −∆H ]

[√
∆H − 1

∆H

]
+ 2
√

2(∆G − 1) + 2
√

∆H

√
∆G + 2∆H

∆G + ∆H
.

ABC[G •ne H] ≥
√

2[m1 − 2[δG − 1]] + 2
√

2[m2 − δH ]

[√
δH − 1

δH

]
+ 2
√

2(δG − 1) + 2
√
δH

√
δG + 2δH
δG + δH

.

Proof. Consider,

ABC[G •ne H] =
∑

uv∈E[G•neH]
u∈V [G],v∈I[G]

[√
dG(u) + 2− 2

dG(u).2

]

+
∑

uv∈E[G•neH]
u,v∈V [H]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈I[G]

[√
(dG(u) + dH(v)) + 2− 2

(dG(u) + dH(v)).2

]

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈V [H]

[√
(dG(u) + dH(w)) + dH(v)− 2

(dG(u) + dH(w)).dH(v)

]

= 2[m1 − dG(S(e))]

[√
dG(u)

2dG(u)

]
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+ 2[m2 − dH(S(u))]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]

+ 2dG(S(e))

[√
(dG(u) + dH(v))

2(dG(u) + dH(v))

]

+ 2dH(S(u))

[√
dG(u) + dH(w) + dH(v)− 2

dH(v)(dG(u) + dH(w))

]
.

=
2√
2

[m1 − dG(S(e))] + 2[m2 − dH(S(u))]

[√
dH(u) + dH(v)− 2

dH(u).dH(v)

]
+

2√
2

+ 2dH(S(u))

[√
dG(u) + dH(w) + dH(v)− 2

dH(v)(dG(u) + dH(w))

]
≤
√

2[m1 − 1] + 2[m2 −∆H ]

√
∆H + ∆H − 2

∆H .∆H
+
√

2

+ 2∆H

√
∆G + ∆H + ∆H − 2

∆H .(∆G + ∆H)

≤
√

2[m1 − 1] + 2[m2 −∆H ]

√
2∆H − 2

∆2
H

+
√

2

+ 2∆H

√
∆G + 2∆H − 2

∆H .(∆G + ∆H)

ABC[G •ne H] ≤
√

2[m1 − 2[∆G − 1]] + 2
√

2[m2 −∆H ]

[√
∆H − 1

∆H

]
+ 2
√

2(∆G − 1) + 2
√

∆H

√
∆G + 2∆H

∆G + ∆H
.

One can analogously compute the following

ABC[G •ne H] ≥
√

2[m1 − 2[δG − 1]] + 2
√

2[m2 − δH ]

[√
δH − 1

δH

]
+ 2
√

2(δG − 1) + 2
√
δH

√
δG + 2δH
δG + δH

.
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Theorem 40. Let G and H are two simple connected graphs, then the

bounds for the SK index of G •ne H are given by

SK1[G•neH] ≤ [m1−1][2+∆G]+2∆H [m2−∆H ]+[∆G+∆H+2]+∆H [∆G+2∆H ]

and

SK1[G•neH] ≥ [m1−1][δG+2]+2δH [m2−δH ]+[δG+δH+2]+δH [δG+2δH ]

Proof. Consider,

SK1[G •ne H] =
∑

uv∈E[G•neH]
u∈V [G],v∈I[G]

[
dG(u) + 2

2

]
+

∑
uv∈E[G•neH]
u,v∈V [H]

[
dH(u) + dH(v)

2

]

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈I[G]

[
(dG(u) + dH(v)) + 2

2

]

+
∑

uv∈E[G•neH]
u∈M [G•neH],v∈V [H]

[
(dG(u) + dH(w)) + dH(v)

2

]

= 2[m1 − dG(S(e))]

[
dG(u) + 2

2

]
+ 2[m2 − dH(S(u))]

[
dH(u) + dH(v)

2

]
+ 2dG(S(e))

[
dG(u) + dH(v) + 2

2

]
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+ 2dH(S(u))

[
dG(u) + dH(w) + dH(v)

2

]
≤ [m1 − 1][∆G + 2] + [m2 −∆H ][∆H + ∆H ]

+ [∆G + ∆H + 2] + ∆H [∆G + ∆H + ∆H ]

SK1[G •ne H] ≤ [m1 − 1][2 + ∆G] + 2∆H [m2 −∆H ] + [∆G + ∆H + 2]

+ ∆H [∆G + 2∆H ].

One can analogously compute the following

SK1[G •ne H] ≥ [m1 − 1][δG + 2] + 2δH [m2 − δH ] + [δG + δH + 2] + δH [δG + 2δH ].



Chapter 7

S- Corona operations of

standard graphs in

terms of degree

sequences

7.1 Introduction and preliminaries

The degree sequences (DS)s of G is DS(G) = {λξ11 , λ
ξ2
2 , λ

ξ3
3 , ..., λ

ξn
n } can

be obtained by degree of vi of G in ascending or descending order [48].

In 1981, Bollobas [8] started the study DSs and Tyshkevich et.al., es-

tablished a correspondence between DSs of graph and some structural

93
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properties of this graph in same year [47].

Definition 7.1.1. S- vertex corona: Consider two graphs G and H

with vertex sets p1 and p2 and edge sets q1 and q2 respectively. The

S- vertex corona of graphs G and H with disjoint vertex sets V (G)

and V (H) and edge sets E(G) and E(H) is obtained one S(G) and

|V (G)| number of copies H, by joining ith vertex in V (G) to each ver-

tex of ith copy H [ [9], [20]]. Then, |V (G�S H)| = p1(1 + p2) + q1 and

|E(G�S H)| = 2q1 + p1(q2 + p2).

Figure 7.1: Subdivision-vertex corona of S4 and S4
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Definition 7.1.2. The S- edge corona of graphs G and H with disjoint

vertex sets V (G) and V (H) and edge sets E(G) and E(H) is obtained

from S(G) (Subdivision graph of G) and |E(G)| copies of H, by joining

the ith vertex of I(G) (I(G) is the inserted vertices in S(G) ) to each

vertex in the ith copy of H. Then, |V (G	S H)| = p1 + q1(1 + p2) and

|E(G	S H)| = q1(2 + q2 + p2).

Figure 7.2: Subdivision-edge corona of S4 and S4

Definition 7.1.3. The S- edge neighbourhood corona of graphs

G and H with disjoint vertex sets V (G) and V (H) and edge sets E(G)

and E(H) is obtained from S(G) and |E(G)| number of copies H, by
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joining neighbours of ith vertex in I(G) (I(G) is the inserted vertices in

G ) to each vertex of ith copy H. Then, |V (G	nSH)| = p1 + q1(1 + p2)

and |E(G	nS H)| = q1(2 + q2 + 2p2).

Figure 7.3: Subdivision-edge neighbourhood corona of S4 and S4

7.2 Main Results

In this section, the DSs of the S- vertex(edge) corona and S- edge

neighbourhood corona of graphs G1 and G2 chosen from Pn, Kn, Cn,

Sn, Kn,m and r-regular graphs are obtained.
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Theorem 41. The DSs of all possible S-vertex corona of the path,

complete, cycle, star, complete bipartite and r-regular graphs.

Proof. First, the proof of Sn�SSm is observing. LetDS(Sn) = {1n−1, (n−

1)1} and DS(Sm) = {1m−1, (m−1)1}. To understand situation see Fig-

ure 7.1.

There are two types of vertices in each of Sn and Sm. Therefore

there are 2 + 2 + 1 = 5 types of vertices in Sn �S Sm. The first type

is the centre vertex (blue) of Sn which are connected with the (n− 1)

vertices (pink) in I(Sn) and mn-vertices in n-copies of Sm. Each of

these (n− 1) vertices add (1 +m) to the DSs of Sn �S Sm. Therefore

they add (1 +m)n−1.

The second type of vertices (green) of Sn which are connected with

the vertex (pink) of I(Sn) and nm-vertices in n-copies of Sm. Each of

these one vertex add (n + m − 1) to the DSs of Sn �S Sm. Therefore
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they add (n+m− 1)1.

The third type of centre vertices (red) of nth-copies of Sm which are

connected with the (m−1) end vertices (orange) in nth copy of Sm and

nth vertex in Sn. Each of these (m− 1)n vertices add 2 to the DSs of

Sn �S Sm. Therefore they add 2(m−1)n.

The fourth type of end vertices (orange) of nth-copy of Sm which

are connected with the centre vertex (red) of nth-copy of Sm and nth

vertex in Sn. Each of these n vertices add m to the DSs of Sn �S Sm.

Therefore they add mn.

The fifth type of vertices (pink) in I(Sn) (Inserted vertices) which

are connected with the centre vertex (blue) and (n − 1) end vertices

(green) in Sn. Each of these (n − 1) vertices add 2 to the DSs of

Sn �S Sm. Therefore they add 2n−1. Thus,
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DS(Sn �S Sm) = {(1 +m)n−1, (n+m− 1)1, 2(m−1)n,mn, 2n−1}.

Table 7.1: Degree Sequences of S-vertex corona for path, Complete,
Cycle, Star, Complete Bipartite and r-regular graphs.

G H DS(G�S H)

Pn Pm
{

(1 +m)2, (2 +m)n−2, 2n−1, 22n, 3n(m−2)
}

Pn Km

{
(1 +m)2, (2 +m)n−2, 2n−1,mmn

}
Pn Cm

{
(1 +m)2, (2 +m)n−2, 2n−1, 3mn

}
Pn Sm

{
(1 +m)2, (2 +m)n−2, 2n−1, 2n(m−1),mn

}
Pn Km,o

{
(1 +m+ o)2, (2 +m+ o)n−2, 2n−1, (m+ 1)no,

(o+1)nm}

Pn
r-regular

with m-vertices

{
(1 +m)2, (2 +m)n−2, 2n−1, (r + 1)nm

}
Kn Pm

{
(n+m− 1)n, 2n(n−1)/2, 22n, 3n(m−2)

}
Kn Km

{
(n+m− 1)n, 2n(n−1)/2,mnm

}
Kn Cm

{
(n+m− 1)n, 2n(n−1)/2, 3nm

}
Kn Sm

{
(n+m− 1)n, 2n(n−1)/2, 2n(m−1),mn

}
Kn Km,o

{
(n+m+ o− 1)n, 2n(n−1)/2, (m+ 1)no, (o+ 1)nm

}
Kn

r-regular
with m-vertices

{
(n+m− 1)n, 2n(n−1)/2, (r + 1)nm

}
Cn Pm

{
(2 +m)n, 2n, 22n, 3n(m−2)

}
Cn Km {(2 +m)n, 2n,mnm}
Cn Cm {(2 +m)n, 2n, 3nm}
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Cn Sm
{

(2 +m)n, 2n, 2n(m−1),mn
}

Cn Km,o {(2 +m+ o)n, 2n, (m+ 1)no, (o+ 1)nm}

Cn
r-regular

with m-vertices

{(2 +m)n, 2n, (r + 1)nm}

Sn Pm
{

(1 +m)n−1, 2n−1, (n+m− 1), 3n(m−2), 22n
}

Sn Km

{
(1 +m)n−1, (n+m− 1), 2n−1,mmn

}
Sn Cm

{
(1 +m)n−1, (n+m− 1), 2n−1, 3nm

}
Sn Sm

{
(1 +m)n−1, (n+m− 1), 2n−1, 2n(m−1),mn

}
Sn Km,o

{
(1 +m+ o)n−1, (n+m+ o− 1), 2n−1,

(m+1)on, (o+ 1)mn}

Sn
r-regular

with m-vertices

{
(1 +m)n−1, (n+m− 1), 2n−1, (r + 1)nm

}
Km,n Po

{
(n+ o)m, 2mn, 22(m+n), (m+ o)n, 3(o−2)(n+m)

}
Km,n Ko

{
(m+ o)n, (n+ o)m, 2mn, oo(m+n)

}
Km,n Co

{
(m+ o)n, (n+ o)m, 2mn, 3o(m+n)

}
Km,n So

{
(m+ o)n, (n+ o)m, 2mn, 2(o−1)(m+n), o(m+n)

}
Km,n Kr,s

{(m+ r + s)n, (n+ r + s)m, 2mn,

(r+1)s(m+n), (s+ 1)r(m+n)}
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Km,n

r-regular

with o-vertices

{
(m+ o)n, (n+ o)m, 2mn, (r + 1)o(m+n)

}
r-regular

with n-vertices

Pm
{

(r +m)n, 2nr/2, 22n, 3(m−2)
}

r-regular

with n-vertices

Km

{
(r +m)n, 2nr/2,mmn

}
r-regular

with n-vertices

Cm
{

(r +m)n, 2nr/2, 3mn
}

r-regular

with n-vertices

Sm
{

(r +m)n, 2nr/2, 2n(m−1),mn
}

r-regular

with n-vertices

Km,o

{
(r +m+ o)n, 2nr/2, (m+ 1)no, (o+ 1)nm

}
r1-regular

with n-vertices

r2-regular

with m-vertices

{
(r1 +m)n, 2nr1/2, (r2 + 1)mn

}
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Theorem 42. The DSs of all possible S-edge corona of the path, com-

plete, cycle, star, complete bipartite and r-regular graphs.

Proof. First, the proof of Sn	SSm is observing. LetDS(Sn) = {1n−1, (n−

1)1} and DS(Sm) = {1m−1, (m−1)1}. To understand situation see Fig-

ure 7.2.

There are two types of vertices in each of Sn and Sm. Therefore

there are 2 + 2 + 1 = 5 types of vertices in Sn 	S Sm. The first type

is the centre vertex (blue) of Sn which are connected with the (n− 1)

vertices (pink) in I(Sn). Each of these (n − 1) vertices add 1 to the

DSs of Sn 	S Sm. Therefore they add 1n−1.

The second type of vertices (green) of Sn which are connected with

the vertex (pink) of I(Sn). Each of these one vertex add (n− 1) to the

DSs of Sn 	S Sm. Therefore they add (n− 1)1.
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The third type of centre vertices (red) of (n−1)th-copies of Sm which

are connected with the (m− 1) end vertices (orange) in (n− 1)th copy

of Sm and vertex in I(Sn). Each of these (m− 1)(n− 1) vertices add 2

to the DSs of Sn 	S Sm. Therefore they add 2(m−1)(n−1).

The fourth type of end vertices (orange) of (n − 1)th-copy of Sm

which are connected with the centre vertex (red) in (n − 1)th-copy of

Sm and (n− 1)th vertex in I(Sn). Each of these (n− 1) vertices add m

to the DSs of Sn 	S Sm. Therefore they add mn−1.

The fifth type of vertices (pink) in I(Sn) (Inserted vertices) which

are connected with the centre vertex (blue) and (n − 1) end vertices

(green) in Sn and each vertex of (n − 1)th copy of Sm. Each of these

(n − 1) vertices add (2 + m) to the DSs of Sn 	S Sm. Therefore they

add (2 +m)n−1. Thus,

DS(Sn 	S Sm) = {1n−1, (n− 1), 2(m−1)(n−1),mn−1, (2 +m)n−1}.
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Table 7.2: Degree Sequences of S-edge corona for path, Complete, Cy-
cle, Star, Complete Bipartite and r-regular graphs.
G H DS(G	S H)

Pn Pm
{

12, 2n−2, (2 +m)n−1, 22(n−1), 3(n−1)(m−2)
}

Pn Km

{
12, (2 +m)n−1, 2n−2,mm(n−1)}

Pn Cm
{

12, 2n−2, (2 +m)n−1, 3m(n−1)}
Pn Sm

{
12, 2n−2, (2 +m)n−1, 2(n−1)(m−1),mn−1}

Pn Km,o

{
12, 2n−2, (2 +m+ o)n−1, (m+ 1)o(n−1), (o+ 1)m(n−1)}

Pn
r-regular

with m-vertices

{
12, (r + 1)m(n−1), 2n−2, (2 +m)n−1

}
Kn Pm

{
(n− 1)n, (2 +m)n(n−1)/2, 2n(n−1), 3n(n−1)(m−2)/2

}
Kn Km

{
(n− 1)n, (2 +m)n(n−1)/2,mmn(n−1)/2}

Kn Cm
{

(n− 1)n, (2 +m)n(n−1)/2, 3mn(n−1)/2
}

Kn Sm
{

(n− 1)n, (2 +m)n(n−1)/2, 2n(n−1)(m−1)/2,mn(n−1)/2}
Kn Km,o

{(n-1)n, (2 +m+ o)n(n−1)/2,
(m+1)on(n−1)/2, (o+ 1)mn(n−1)/2}

Kn
r-regular

with m-vertices

{
(n− 1)n, (2 +m)n(n−1)/2, (r + 1)mn(n−1)/2

}
Cn Pm

{
2n, 3n(m−2), (2 +m)n, 22n

}
Cn Km {2n,mmn, (2 +m)n}
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Cn Cm {2n, (2 +m)n, 3mn}

Cn Sm
{

2n, (2 +m)n, 2n(m−1),mn
}

Cn Km,o {2n, (2 +m+ o)n, (m+ 1)no, (o+ 1)mn}

Cn
r-regular

with m-vertices

{2n, (2 +m)n, (r + 1)mn}

Sn Pm
{

1n−1, (n− 1), (2 +m)n−1, 22(n−1), 3(n−1)(m−2)
}

Sn Km

{
1n−1,mm(n−1), (n− 1), (2 +m)n−1

}
Sn Cm

{
1n−1, 3m(n−1), (n− 1), (2 +m)n−1

}
Sn Sm

{
1n−1, (2 +m)n−1, (n− 1), 2(m−1)(n−1),mn−1}

Sn Km,o

{1n−1, (n− 1), (2 +m+ o)n−1,

(m+1)o(n−1), (o+ 1)m(n−1)}

Sn
r-regular

with m-vertices

{
1n−1, (n− 1), (2 +m)n−1, (r + 1)m(n−1)}
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Km,n Po

{
nm,mn, (2 + o)mn, 22mn, 3mn(o−2)

}
Km,n Ko {nm,mn, (2 + o)mn, oomn}

Km,n Co {nm,mn, (2 + o)mn, 3omn}

Km,n So

{
nm,mn, (2 + o)mn, 2(o−1)mn, omn

}
Km,n Kr,s {nm,mn, (2 + r + s)mn, (r + 1)mns, (s+ 1)mnr}

Km,n

r-regular

with o-vertices

{nm,mn, (2 + o)mn, (r + 1)mno}

r-regular

with n-vertices

Pm

{
rn, (2 +m)nr/2, 2nr, 3nr(m−2)/2

}
r-regular

with n-vertices

Km

{
rn, (2 +m)nr/2,mmnr/2

}
r-regular

with n-vertices

Cm

{
rn, (2 +m)nr/2, 3mnr/2

}
r-regular

with n-vertices

Sm

{
rn, (2 +m)nr/2, 2nr(m−1)/2,mnr/2

}
r-regular

with n-vertices

Km,o

{
rn, (2 +m+ o)nr/2, (m+ 1)onr/2, (o+ 1)nmr/2

}
r1-regular

with n-vertices

r2-regular

with m-vertices

{
rn1 , (2 +m)nr1/2, (r2 + 1)mnr1/2

}
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Theorem 43. The DSs of all possible S-edge neighbourhood corona of

the path, complete, cycle, star, complete bipartite and r-regular graphs.

Proof. First, the proof of Sn 	nS Sm is observing. Let DS(Sn) =

{1n−1, (n− 1)1} and DS(Sm) = {1m−1, (m− 1)1}. To understand situ-

ation see Figure 7.3.

There are two types of vertices in each of Sn and Sm. Therefore

there are 2 + 2 + 1 = 5 types of vertices in Sn 	nS Sm. The first type

is the centre vertex (blue) of Sn which are connected with the (n− 1)

vertices (pink) in I(Sn) and each vertex in (n − 1) copies of Sn. Each

of these one vertices add (n− 1 + (n− 1)m) to the DSs of Sn 	nS Sm.

Therefore they add (n− 1 + (n− 1)m).

The second type of vertices (green) of Sn which are connected with

the vertex (pink) of I(Sn) and each vertex in one copy of Sn. Each of

these (n− 1) vertices add (1 +m) to the DSs of Sn	nS Sm. Therefore
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they add (1 +m)n−1.

The third type of centre vertices (red) of (n−1)th-copies of Sm which

are connected with the (m− 1) end vertices (orange) in corresponding

(n − 1)th copies of Sm and vertex (blue and green) in Sn which are

neighbourhood of (n−1) vertex of I(Sn). Each of these (n−1) vertices

add (m+ 1) to the DSs of Sn	nS Sm. Therefore they add (m+ 1)(n−1).

The fourth type of end vertices (orange) of (n − 1)th-copies of Sm

which are connected with the centre vertex (red) in corresponding

(n − 1)th-copies of Sm and vertices (blue and green) of Sn which are

neighbourhood of (n−1)th vertex of I(Sn). Each of these (m−1)(n−1)

vertices add 3 to the DSs of Sn	nS Sm. Therefore they add 3(m−1)(n−1).

The fifth type of vertices (pink) in I(Sn) (Inserted vertices) which

are connected with the centre vertex (blue) and one end vertices (green)

in Sn. Each of these (n − 1) vertices add 2 to the DSs of Sn 	nS Sm.
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Therefore they add 2n−1. Thus,

DS(Sn 	nS Sm) = {(n− 1 + (n− 1)m), (1 +m)n−1, (m+ 1)(n−1),

3(m−1)(n−1), 2n−1}.

Table 7.3: Degree Sequences of S-edge neighbourhood corona for path,
Complete, Cycle, Star, Complete Bipartite and r-regular graphs.

G H DS(G	nS H)

Pn Pm
{

(1 +m)2, (2 + 2m)n−2, 2n−1, 32(n−1), 4(n−1)(m−2)
}

Pn Km

{
(1 +m)2, (2 + 2m)n−2, 2n−1, (m+ 1)m(n−1)}

Pn Cm
{

(1 +m)2, (2 + 2m)n−2, 2n−1, 4m(n−1)}
Pn Sm

{(1+m)2, (2 + 2m)n−2, 2n−1,
3(n−1)(m−1), (m+ 1)n−1}

Pn Km,o
{(1+(m+o))2, (2 + 2(m+ o))n−2, 2n−1,

(m+2)on, (o+ 2)mo}

Pn
r-regular

with m-vertices

{
(1 +m)2, (2 + 2m)n−2, 2n−1, (r + 2)(n−1)m

}
Kn Pm

{
(n− 1 + (n− 1)m)n, 2n(n−1)/2, 3n(n−1), 4n(n−1)(m−2)/2

}
Kn Km

{
(n− 1 + (n− 1)m)n, 2n(n−1)/2, (m+ 1)mn(n−1)/2

}
Kn Cm

{
(n− 1 + (n− 1)m)n, 2n(n−1)/2, 4mn(n−1)/2

}
Kn Sm

{(n-1+(n-1)m)n, 2n(n−1)/2,
3n(n−1)(m−1)/2, (m+ 1)n(n−1)/2}
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Kn Km,o

{(n-1+(n-1)m)n, 2n(n−1)/2,

(m+2)on(n−1)/2, (o+ 2)mn(n−1)/2}

Kn

r-regular

with m-vertices

{
(n− 1 + (n− 1)m)n, 2n(n−1)/2, (r + 2)mn(n−1)/2

}
Cn Pm

{
(2 + 2m)n, 2n, 32n, 4n(m−2)

}
Cn Km {(2 + 2m)n, 2n, (m+ 1)mn}

Cn Cm {(2 + 2m)n, 2n, 4mn}

Cn Sm
{

(2 + 2m)n, 2n, 3n(m−1), (m+ 1)n
}

Cn Km,o {(2 + 2(m+ o))n, 2n, (m+ 2)no, (o+ 2)mn}

Cn
r-regular

with m-vertices

{(2 + 2m)n, 2n, (r + 2)mn}

Sn Pm
{(1+m)n−1, 2n−1, (n− 1 + (n− 1)m),

4(n−1)(m−2), 32(n−1)}

Sn Km

{(n-1+(n-1)m),(1+m)n−1,

2n−1, (m+ 1)m(n−1)}

Sn Cm
{(n-1+(n-1)m),(1+m)n−1,

4m(n−1), 2n−1}
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Sn Sm
{(1+m)n−1, 2n−1, (n− 1 + (n− 1)m),

(m+1)n−1, 3(m−1)(n−1)}

Sn Km,o

{(1+m+o)n−1, (n− 1 + (m+ o)(n− 1)), 2n−1,

(m+2)o(n−1), (o+ 2)m(n−1)}

Sn
r-regular

with m-vertices

{(m+1)n−1, (n− 1 +m(n− 1)),

2n−1, (r + 2)m(n−1)}

Km,n Po
{

(n(o+ 1))m, (m(o+ 1))n, 2mn, 32mn, 4mn(o−2)
}

Km,n Ko {(n(o+ 1))m, (m(o+ 1))n, 2mn, ((o+ 1))omn}

Km,n Co {(n(o+ 1))m, (m(o+ 1))n, 2mn, 4omn}

Km,n So
{(n(o+1))m, (m(o+ 1))n, 2mn,

3(o−1)mn, (o+ 1)mno}

Km,n Kr,s

{(n+(r+s)n)m, (m+ (r + s)m)n, 2nm,

(r+2)mns, (s+ 2)mnr}

Km,n

r-regular

with o-vertices

{(n(o+ 1))m, ((o+ 1)m)n, 2nm, (r + 2)mno}
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r-regular

with n-vertices

Pm

{
(r + rm)n, 2nr/2, 3nr, 4nr(m−2)/2

}
r-regular

with n-vertices

Km

{
(r + rm)n, 2nr/2, (m+ 1)mnr/2

}
r-regular

with n-vertices

Cm

{
(r + rm)n, 2nr/2, 4mnr/2

}
r-regular

with n-vertices

Sm

{
(r + rm)n, 2nr/2, 3nr(m−1)/2, (m+ 1)nr/2

}
r-regular

with n-vertices

Km,o

{
(r + r(m+ o))n, 2nr/2, (m+ 2)onr/2, (o+ 2)nmr/2

}
r1-regular

with n-vertices

r2-regular

with m-vertices

{
(r1 + r1m)n, 2nr1/2, (r2 + 2)mnr1/2

}



Chapter 8

The Degree sequences of

S-corona graphs

8.1 Preliminaries

In this chapter, we obtain the DS of the S- vertex corona, S- edge

corona, S- vertex neighbourhood corona and S- edge neighbourhood

corona of any given number of simple connected graphs. First we start

with graphs G H, obtain the DS(G�SH), DS(G	SH) and DS(G	nS
H) and using mathematical induction, we obtain the general formula

for G1�SG2�S ...�SGk, G1	SG2	S ...	SGk, G1�nSG2�nS ...�nSGk

and G1	nS G2	nS ...	nS Gk in terms of the number of vertices of Gis.

113
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8.2 Generalization for the DSs of the S-

vertex corona

Theorem 44. Let G and H be two simple connected graphs with DSs

DS(G) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
}

and

DS(H)={λξ2121 , λ
ξ22
22 , ..., λ

ξ2k2
2k2
}

respectively.

Proof. The DS of the S- vertex corona of the two graphs G and H is

DS(G�S H) = {(λ11 + r2)
ξ11, (λ12 + r2)

ξ12, ..., (λ1k1 + r2)
ξ1k1 , 2s1,

(λ21 + 1)r1ξ21, (λ22 + 1)r1ξ22, ..., (λ2k2 + 1)r1ξ2k2}.

Note that to obtain DS(G �S H), we add r2 to each λ1x where

1 ≤ x ≤ k1, without changing the powers ξ1x , add number 1 to each

λ2x, where 1 ≤ x ≤ k2 , with changing the powers as r1ξ2x and 2s1.
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Let us consider DS(Pl) = {12, 2l−2} and DS(Pm) = {12, 2m−2}, we

will find the DS of Pl �S Pm. Let r1 and r2 be the vertices of Pl and

Pm respectively.

Figure 8.1: Subdivision-vertex corona of P3 and P2

As λ11 = 1, ξ11 = 2, λ12 = 2, ξ12 = 1, λ21 = 1, ξ21 = 2 by the defini-

tion of S- vertex corona.

We have,

DS(P3 �S P2) = {12, 21} �S {12}

= {(1 + 2)2, (2 + 2)1, 22, (1 + 1)3×2}

= {28, 32, 41}.
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8.3 Generalization for the DSs of the S-

edge corona

Theorem 45. Let G and H be two simple connected graphs with DSs

DS(G) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
}

and

DS(H)={λξ2121 , λ
ξ22
22 , ..., λ

ξ2k2
2k2
}

respectively.

Proof. The DS of the S- edge corona of the two graphs G and H is

DS(G	S H) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
, (2 + r2)

s1, (λ21 + 1)s1ξ21,

(λ22 + 1)s1ξ22, ..., (λ2k2 + 1)s1ξ2k2}.

Note that to obtainDS(G	SH), we writeDS(G) without changing,

add number 1 to each λ2x where 1 ≤ x ≤ k2 , with changing the powers

as s1ξ2x and (2 + r2)
s1.
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Let us consider DS(Pl) = {12, 2l−2} and DS(Pm) = {12, 2m−2}, we

will find the DS of Pl 	S Pm. Let r1 and r2 be the vertices of Pl and

Pm respectively.

Figure 8.2: Subdivision-edge corona of P3 and P2

As λ11 = 1, ξ11 = 2, λ12 = 2, ξ12 = 1, λ21 = 1, ξ21 = 2 by the

definition of S- edge corona.

We have,

DS(P3 	S P2) = {12, 21} 	S {12}

= {12, 21, (2 + 2)2, (1 + 1)2×2}

= {12, 25, 42}.
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8.4 Generalization for the DSs of the S-

vertex neighbourhood corona

Theorem 46. Let G and H be two simple connected graphs with DSs

DS(G) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
}

and

DS(H)={λξ2121 , λ
ξ22
22 , ..., λ

ξ2k2
2k2
}

respectively.

Proof. The DS of the S- vertex neighbourhood corona of the two

graphs G and H is

DS(G�nS H) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
, (2 + 2r2)

s1,

(λ21 + λ11)
ξ21ξ11, (λ22 + λ11)

ξ22ξ11, ..., (λ2k2 + λ11)
ξ2k2ξ11,
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(λ21 + λ12)
ξ21ξ12, (λ22 + λ12)

ξ22ξ12, ..., (λ2k2 + λ12)
ξ2k2ξ12,

................................................................................

(λ21 + λ1k1)
ξ21ξ1k1 , (λ22 + λ1k1)

ξ22ξ1k1 , ..., (λ2k2 + λ1k1)
ξ1k1ξ2k2}.

Note that to obtain DS(G�nS H), we write DS(G) without changing,

add each λ1x to λ2y where 1 ≤ x ≤ k1 and 1 ≤ y ≤ k2 , with changing

the powers r1ξ2y and (2 + 2r2)
s1.

Let us consider DS(Pl) = {12, 2l−2} and DS(Pm) = {12, 2m−2}, we

will find the DS of Pl �nS Pm. Let r1 and r2 be the vertices of Pl and

Pm respectively.

Figure 8.3: Subdivision-vertex neighbourhood corona of P3 and P2

As λ11 = 1, ξ11 = 2, λ12 = 2, ξ12 = 1, λ21 = 1, ξ21 = 2 by the

definition of S- vertex neighbourhood corona.
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We have,

DS(P3 �nS P2) = {12, 21} �nS {12}

= {12, 21, (2 + 4)2, (1 + 1)2×2, (1 + 2)2×1}

= {12, 25, 32, 62}.

8.5 Generalization for the DSs of the S-

edge neighbourhood corona

Theorem 47. Let G and H be two simple connected graphs with DSs

DS(G) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
}

and

DS(H)={λξ2121 , λ
ξ22
22 , ..., λ

ξ2k2
2k2
}

respectively.

Proof. The DS of the S- edge neighbourhood corona of the two graphs
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G and H is

DS(G	nS H) = {(λ11 + λ11r2)
ξ11, (λ12 + λ12r2)

ξ12, ..., (λ1k1 + λ1k1r2)
ξ1k1 , 2s1,

(λ21 + 2)s1ξ21, (λ22 + 2)s1ξ22, ..., (λ2k2 + 2)s1ξ2k2}.

Note that to obtain DS(G	nS H), we add λ1xr2 to each λ1x where

1 ≤ x ≤ k1, without changing the powers ξ1x , add number 2 to each

λ2x where 1 ≤ x ≤ k2 , with changing the powers as s1ξ2x and 2s1.

Let us consider DS(Pl) = {12, 2l−2} and DS(Pm) = {12, 2m−2}, we

will find the DS of Pl 	nS Pm. Let r1 and r2 be the vertices of Pl and

Pm respectively.

Figure 8.4: Subdivision-edge neighbourhood corona of P3 and P2
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As λ11 = 1, ξ11 = 2, λ12 = 2, ξ12 = 1, λ21 = 1, ξ21 = 2 by the

definition of S- edge neighbourhood corona.

We have,

DS(P3 	nS P2) = {12, 21} 	nS {12}

= {(1 + 1(2))2, (2 + 2(2))1, 22, (1 + 2)2×2}

= {22, 36, 61}.

Now we take the S- vertex corona, S- edge corona, S- vertex neigh-

bourhood corona and S- edge neighbourhood corona of l simple con-

nected graphs G1, G2, G3, ..., Gl, where l ≥ 2 is a finite integer. The DS

of G1�SG2�S ...�SGl, G1	SG2	S ...	SGl, G1�nSG2�nS ...�nSGl

and G1 	nS G2 	nS ...	nS Gl is given as follows.

Theorem 48. Let G1, G2, G3, ..., Gl be l simple connected graphs. Let

Gi have ni vertices for i = 1, 2, ..., l. Also let the DS of Gi be

DS(G) = {λξi1i1 , λ
ξi2
i2 , ..., λ

ξik1
ik1
}
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Proof. The DS of the S-vertex corona of G1, G2, G3, ..., Gl is

DS(G1 �S G2 �S ...�S Gl) = {(λ11 + r2 + r3 + ...+ rl)
ξ11, ...,

(λ1k1 + r2 + r3 + ...+ rl)
ξ1k1 ,

(λ21 + 1 + r3 + r4 + ...+ rl)
r1ξ21, ...,

(λ2k2 + 1 + r3 + r4 + ...+ rl)
r1ξ2k2 ,

(λ31 + 1 + r4 + r5 + ...+ rl)
|V (G1�SG2)|ξ31, ...,

(λ3k3 + 1 + r4 + r5 + ...+ rl)
|V (G1�SG2)|ξ3k3 ,

...........................................................,

(λ(l−1)1 + 1 + rl)
|V (G1�SG2�S ...�SG(l−2))|ξ(l−1)1, ...,

(λ(l−1)k(l−1)
+ 1 + rl)

|V (G1�SG2�S ...�SG(l−2))|ξ(l−1)k(l−1) ,

(λl1 + 1)|V (G1�SG2�S ...�SG(l−1))|ξl1, ...,

(λlkl + 1)|V (G1�SG2�S ...�SG(l−1))|ξlkl ,

(2 + r3 + r4 + ...+ rl)
s1,
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(2 + r4 + r5 + ...+ rl)
|E(G1�SG2)|,

..., (2)|E(G1�SG2�S ...�SG(l−1))|}.

Theorem 49. Let G1, G2, G3,..., Gl be l simple connected graphs. Let

Gi have ni vertices for i = 1, 2,..., l. Also let the DS of Gi be

DS(Gi) = {λξi1i1 , λ
ξi2
i2 , ..., λ

ξiki
iki
}.

Proof. The DS of the S-edge corona of G1, G2, G3, ..., Gl is

DS(G1 	S G2 	S ...	S Gl) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
, (λ21 + 1)s1ξ21, ..., (λ2k2 + 1)s1ξ2k2

(λ31 + 1)|E(G1	SG2)|ξ31, ..., (λ3k3 + 1)|E(G1	SG2)|ξ3k3

...........................................................,
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(λ(l−1)1 + 1)|E(G1	SG2	S ...	SG(l−2))|ξ(l−1)1, ...,

(λ(l−1)k(l−1)
+ 1)

|E(G1	SG2	S ...	SG(l−2))|ξ(l−1)k(l−1) ,

(λl1 + 1)|E(G1	SG2	S ...	SG(l−1))|ξl1, ...,

(λlkl+1)
|E(G1	SG2	S ...	SG(l−1))|ξlkl ,

(2 + r2)
s1, (2 + r3)

|E(G1	SG2)|, ...,

(2 + rl)
|E(G1	SG2	S ...	SG(l−1))|}.

Theorem 50. Let G1, G2, G3,..., Gl be l simple connected graphs. Let

Gi have ni vertices for i = 1, 2,..., l. Also let the DS of Gi be

DS(Gi) = {λξi1i1 , λ
ξi2
i2 , ..., λ

ξiki
iki
}.

Proof. TheDS of the S-vertex neighbourhood corona ofG1, G2, G3, ..., Gl

is



The Degree Sequences of S-Corona graphs 126

DS(G1 �nS G2 �nS ...�nS Gl) = {λξ1111 , λ
ξ12
12 , ..., λ

ξ1k1
1k1
, (λ21 + λ11)

ξ21ξ11, ...,

(λ2k2 + λ11)
ξ2k2ξ11

....................................................,

(λ21 + λ1k1)
ξ21ξ1k1 , ..., (λ2k2 + λ1k1)

ξ2k2ξ1k1

....................................................,

(λl1 + λ11)
ξl1ξ11, ..., (λlkl + λ11)

ξlklξ11,

...................................................,

(λl1 + λ1k1 + λ2k2 + ...+ λ(l−1)k(l−1)
)
ξl1ξ1k1ξ2k2 ...ξ(l−1)k(l−1) ,

..., (λlkl + λ1k1 + λ2k2 + ...

+ λ(l−1)k(l−1)
)
ξlklξ1k1ξ2k2 ...ξ(l−1)k(l−1) ,

(2 + 2r2)
s1, (2 + 2r3)

|E(G1�nSG2)|, ...,

(2 + 2rl)
|E(G1�nSG2�nS ...�nSG(l−1))|}.



The Degree Sequences of S-Corona graphs 127

Theorem 51. Let G1, G2, G3,..., Gl be l simple connected graphs. Let

Gi have ni vertices for i = 1, 2,..., l. Also let the DS of Gi be

DS(Gi)={λξi1i1 , λ
ξi2
i2 , ..., λ

ξiki
iki
}.

Proof. TheDS of the S-edge neighbourhood corona ofG1, G2, G3, ..., Gl

is

DS(G1 	nS G2 	nS ...	nS Gl) = {(..((λ11 + r2λ11) + (λ11 + r2λ11)r3)r4 + ..)ξ11

, ..., (..((λ1k1 + r2λ1k1) + (λ1k1 + r2λ1k1)r3)r4 + ..)ξ1k1

.....................................................,

(λl1 + 2)|E(G1	nSG2	nS ...	nSG(l−1))|ξl1, ...,

(λlkl + 2)|E(G1	nSG2	nS ...	nSG(l−1))|ξlkl ,

((2 + 2r2) + (2 + 2r2)r3)

+ ((2 + 2r2) + (2 + 2r2)r3)r4
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+ ...)|E(G1	nSG2	nS ...	nSG(l−1))|}.



Chapter 9

Conclusions and Scope

for Future Work

• The first Chapter is of introductory nature. The first part of

the Chapter-1 is loyal to a study of the basic terminology and

notations in the graph theory.

• In chapter 2, the Gourava index of four operation on graphs in

terms of first and second Zagreb index are obtained.

• In chapter 3, we computed adriatic indices for subdivision, line

and derived graph Dutch windmill graph.

129
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• In chapter 4, established the general expression for some adriatic

indices and Sanskruti index of carbon nanocones [CNCn
m]. It is

clear that, these results have benefits to forecast physical proper-

ties of elemental chemical compounds and useful for determining

the Physio-chemical properties of alkanes.

• In chapter 5, certain degree based adriatic indices of graph oper-

ators of triglyceride are computed without using computers.

• In chapter 6, we have study the lower and upper bounds for the

topological indices in terms of the graph size and maximum or

minimum degree of splice graph are obtained.

• In chapter 7, we determine the S- vertex(edge) and S-edge neigh-

bourhood corona of standard graphs(Path, Complete, Cycle, Star,

Complete bipartite and r-regular graphs).

• In chapter 8, we study the S-vertex corona, S-edge corona, S-

vertex neighbourhood corona and S-edge neighbourhood corona
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of number of simple graphs. From these results we get infor-

mation about graph that are useful to understand the problems

corresponding to the graphs.

9.1 Future Work

For confines work, we pose the following problems for continuation work

which were interesting:

• Analysing the general graphs for different graph operators.

• The upper and lower bounds on topological indices.

• The general formula for graph operators of degree sequences on

simple connected graphs .

• The molecular structures such as carbon graphite, crystal cubic

carbon structures and benzin ring respectively with most useful

indices.
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