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ABSTRACT 

In recent years the study of boundary layer flow and heat transfer over a 

stretching sheet has attracted numerous researchers due to their wide range of 

applications in various fields of technological industry and chemical engineering 

processes. To mention a few, manufacturing of plastic films and artificial fibers, wire 

drawing, annealing and tinning of copper wires, cooling and drying of copper wires, 

metal and polymer extrusion, electronic chips, paper production and so on. Keeping 

these industrial applications in view, the present thesis explores three types of 

problems, namely, 

 Flow and heat transfer of a non-Newtonian fluid with variable thickness  

 Flow and heat transfer of a Newtonian/non-Newtonian fluid over a Riga 

plate  with variable fluid properties 

  Unsteady fluid flow and heat transfer over a stretchable rotating disk with 

variable fluid properties. 

The first type of problem concerns with the effect of Cattanneo Christov heat fluid 

flow model for Williamson-nanofluid flow over a slender elastic sheet with variable 

thickness. Here, Cattanneo Christov heat flux model is used instead of Fourier law to 

explore the heat transfer characterstic. Further, the flow is induced by non-linearly 

stretching of an elastic sheet with variable thickness so that the sheet is sufficiently 

thin to avoid a measurable pressure gradient along the sheet.  The second type of 

problem concerns with the flow and heat transfer of a Newtonian/non-Newtonian 

fluid flow over a Riga plate under different physical constraints. This plate is used to 

generate simultaneous electric and magnetic fileds which can produce Lorentz force 

parallel to the wall in weakly conducting fluids. This plate consists of a span wise 

aligned array of alternating electrodes and permanent magnets mounted on a plane 

surface. This array generates a surface parallel Lorentz force with a neglected 

pressure gradient, which decreases exponentially in the direction normal to the plate.  

In addition to this, the author also investigates the fluid properties namely, the 

transport physical properties are sumed to be the functions of temperature. The third 

type of problem investigates the unsteady MHD flow and heat transfer of a fluid over 

stretchable rotating disk in the presence of mass suction/injection with varaible 
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thickness. Moreover the impact of viscous dissipation and variable fluid properties are 

also considered for investigation. The effects of the sundry parameters on the velocity, 

the temperature, the skin friction, the wall temperature gradient, the wall 

concentration gradient and other associated parameters are also discussed in this 

thesis.  The important aspect of the thesis is to study the effects of non-diemnsional 

parameters arising in the mathematical modeelling of the physical problem on the 

flow and heat transfer under different physical situation. This kind of physical 

situation occurs more frequently in the application of engineering technology.  A 

stretching sheet with variable thickness can be more close to the situation in practical 

applications. The analytical/semi analytical/numerical results are compared with the 

results of earlier literature and they are found to be in good agreement. With this 

inspiration, the thesis is organized into five chatpers and they are described briefly as 

follows:  

           Chapter-1 is of introductory in nature and exhibits the brief idea of the slender 

elastic sheet, nanofluids, basic equations, boundary conditions, dimensionless 

paramerers, method of numerical/semi-numerical solutions and Nomenclature.  

           In Chapter-2 we discuss the Williamson nanofluid flow over a slender elastic 

sheet with variable thickness using Cattaneo – Christov theory. To explore the heat 

transfer characteristics, Cattaneo-Christov heat flux model is used instead of classical 

Fourier’s law. The nonlinear governing equations with suitable boundary conditions 

are initially cast into dimensionless form by similarity transformations. The optimal 

homotopy analysis method is proposed for the development of analytical solutions. 

For increasing values of the wall thickness parameter the analysis reveals quite 

interesting flow and heat ransfer patterns. Special prominence is given to the non-

dimensional velocity, temperature; concentration and their graphical behavior for 

various parameters are analyzed and discussed. The impact of Cattanneo-Christov 

heat flux model is to reduce the temperature and concentration distribution. The 

obtained numerical results are compared with available results in the literature for 

some special cases and are found to be in excellent agreement.  The skin friction, the 

wall temperature gradient and the wall concentration gradient  are exhibited for 

various values of the non-dimensional parameters and the salient features are 

analysed. 
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           In Chapter-3, an analysis has been carried out to study the effects of variable 

viscosity and variable thermal conductivity on the heat transfer characteristics of a 

Casson nanofluid over a slender Riga plate with zero mass flux and melting heat 

transfer boundary conditions. The nonlinear governing equations with the suitable 

boundary conditions are initially cast into dimensionless form by similarity 

transformations. The resulting coupled highly nonlinear equations are solved 

numerically by an efficient second-order finite difference scheme known as Keller 

Box Method. The obtained numerical results are compared with the available results 

in the literature for some special cases and the results are found to be in very good 

agreement.  The effect of various physical parameters on velocity, temperature, and 

concentration profiles are illustrated through graphs and the numerical values are 

presented in tables. One of the critical findings of our study is that the effect of 

variable viscosity on velocity shows reducing nature, but there is an increasing nature 

in temperature and concentration.  

          Chapter-4 concentrates on the heat and mass transfer characteristics of a mixed 

convective flow of an electrically conducting nanofluid past a slender Riga plate in 

the presence of viscous dissipation and chemical reaction. The heat and mass transfer 

characteristics are analyzed by a zero nanoparticle mass flux and convective boundary 

conditions. The governing nonlinear PDEs are transformed into a system of coupled 

ODEs by using a suitable similarity transformation. The resulting coupled nonlinear 

equations with appropriate boundary conditions are solved by an efficient technique 

known as optimal homotopy analysis method. The impact of emerging parameters on 

the dimensionless velocity, temperature, and concentration distributions are presented 

through graphs. It is interesting to note that the contemporary results are in good 

agreement with the existing literature, which confirms the validity of the present 

work. It is observed that the temperature distribution improves for the 

Brownianmotion parameter and the thermopherosis parameter but the concentration 

distribution shows a dual characteristic.  

 Impact of suction/injection and heat transfer on unsteady MHD Flow over a 

stretchable rotating disk on heat and mass transfer is analyzed in Chapter -5. The 

unsteady magnetohydrodynamic two-dimensional boundary layer flow and heat 

transfer over a stretchable rotating disk with mass suction/injection is investigated. 

Temperature-dependent physical properties and convective boundary conditions are 
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taken into account. The governing coupled nonlinear partial differential equations are 

transformed into a system of ordinary differential equations by adopting the well-

known similarity transformations. Further, the solutions are obtained through the 

semi-analytical method called an Optimal Homotopy Analysis Method (OHAM). The 

obtained results are discussed graphically to predict the features of the involved key 

parameters which are monitoring the flow model. The skin friction coefficient and 

Nusselt number are also examined. The validation of the present work is verified with 

the earlier published results and is found to be in excellent agreement. It is noticed 

that an increase in the viscosity parameter leads to decay in momentum boundary 

layer thickness, and the inverse trend is observed in the case of the temperature 

profile.  
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1.1 Literature Survey 

1.1.1 Flow over a Stretching Sheet          

In recent years the study of boundary layer flow and heat transfer over a 

stretching sheet has attracted numerous researchers due to their wide range of 

applications in various fields of technological industry and chemical engineering 

processes. To mention a few, manufacturing of plastic films and artificial fibers, wire 

drawing, annealing and tinning of copper wires, cooling and drying of copper wires, 

metal and polymer extrusion, electronic chips, paper production and so on.  

Keeping these industrial applications in view, Blasius (1908) initiated the 

boundary layer flow on a flat plate with a uniform free stream. Sakiadis (1961) 

extended the work of Blasius (1908) by considering the boundary layer flow over a 

continuous solid surface moving with a constant velocity. Crane (1970) extended this 

work to the concept of stretching sheet by assuming the velocity at the plate is 

proportional to the distance from the origin. This pioneering work of Crane (1970), 

i.e., the stretching sheet concept has been further extended to different types of fluids, 

namely Newtonian and non-Newtonian fluids under different physical constraints. 

Gupta and Gupta (1977) investigated the heat and mass transfer in the flow over a 

stretching surface with suction or blowing. Bank (1983) examined a class of similarity 

solution of the boundary layer equations for the flow due to stretching surface. The 

ordinary differential equation that arises admits of a one parameter family of a 

solution, in the same way the parameter values and various results are presented. 

Analytical solution is also presented for a couple of values of the parameters and 

these, together with perturbation solutions, support the numerical results. Dutta et al., 

(1985) analyzed the temperature distribution in a flow over a stretching sheet with 

uniform heat flux. The governing differential equation transformed to a confluent 

hyper geometric differential equation and solution was obtained in terms of 

incomplete gamma function. It was shown that temperature at a point decreased with 

the increase of Prandtl number. Dutta and Gupta (1987) considered the coupled heat 

transfer problem for solving the stretching sheet. Variation of the sheet temperature 

with distance from the slit was found for several values of Prandtl number and 

stretching speeds. It was shown that for a fixed Prandtl number, the surface 

temperature decreases with an increase in stretching speed. Dutta (1988) presented an 

analytical solution of the heat transfer problem for cooling of a thin stretching sheet in 

a viscous flow in the presence of suction or blowing. The locality of the sheet material 
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was assumed to be proportional to the distance from the slit. The convergence criteria 

of the solution were also established. Chen and Char (1988) investigated the both 

power law surface temperature and power law heat flux variations on the heat transfer 

characteristics of a continuous, linearly stretching sheet subjected to suction or 

blowing.  Soewono et al., (1992) analyzed the existence of solutions of a nonlinear 

boundary value problem, arising in flow and heat transfer over a stretching sheet with 

variable thermal conductivity and temperature dependent heat source or sink. 

Vajravelu (1994) carried out an analysis of convective flow and heat transfer in a 

viscous heat generating liquid near an infinite vertical stretching surface. Mahapatra 

and Gupta (2003) examined an exact similarity solution of the Navier – Stokes 

equation. The solution represents steady asymmetric stagnation point flow towards a 

stretching surface. It is shown that flow displays a boundary layer structure when the 

stretching velocity of the surface is less than the free stream velocity. Partha et al., 

(2005) have studied the mixed convection flow and heat transfer from an 

exponentially stretching vertical surface in a quiescent liquid using similarity solution. 

In these studies the fluid was assumed to be Newtonian. However, many industrial 

fluids are non-Newtonian or rheological in their flow characteristics (such as molten 

plastics, polymers, suspension, foods, slurries, paints, glues, printing inks, blood). 

That is, they might exhibit dynamic deviation from Newtonian behaviour depending 

upon the flow configuration and/or the rate of deformation. These fluids often obey 

non-linear constitutive equations and the complexity in the equations is the main 

culprit for the lack of exact analytical solutions. Examples of non-Newtonian fluids 

are viscoelastic fluids, Maxwell fluids, Rivlin – Erickson fluids, Oldroyd-B fluid, 

Jeffery fluid, couple stress fluids, micro-polar fluids, power law fluids and etc. 

Further, visco-elastic and Walters’ models considered are simple which are known to 

be accurate only for weakly elastic fluids subject to slowly varying flows. These two 

models are known to violate certain rules of thermodynamics. Therefore the 

significance of the results reported in the above works is limited as far as the polymer 

industry is concerned. Obviously for the theoretical results to become of any 

industrial importance, more general visco-elastic fluid models such as upper 

convected Maxwell model (UCM fluid) or Oldroyd B model should be invoked. 

Indeed these two fluid models are being used recently to study the visco-elastic fluid 

flow above stretching and non-stretching sheets with or without heat transfer. Fox et 

al., (1969) studied the flow of power law fluid past an inextensible flat surface 
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moving with constant velocity in its own plane, this model, however, doesn’t exhibits 

certain non-Newtonian liquid properties like normal stress difference. Rajagopal et 

al., (1984) analyzed the flow of a second order liquid over a stretching sheet without 

heat transfer and presented a perturbation solution for the velocity distribution. 

Siddappa and Abel (1986) examined Walter’s liquid B flow past a stretching sheet 

with suction and obtained the exact solution for the flow and energy equations. 

Bujurke et al., (1987) discussed the heat transfer in the flow of a second order liquid, 

obeying Coleman and Noll’s constitutive equation, over a stretching sheet. Dandapat 

and Gupta (1989) studied the flow of second order liquid and heat transfer affected by 

a stretching sheet. The influence of viscoelasticity on flow behaviour and heat transfer 

characteristics was examined. Rollins and Vajravelu (1991) discussed the heat 

transfer in a second order liquid over a continuous stretching surface with power law 

surface temperature and power law heat flux including the effects of internal heat 

generation. Usually, the stretching may not be necessarily linear; but it may be 

quadratic or power law function or exponential function. Keeping such assumptions in 

mind, Kumaran and Ramanaiah (1996) investigated the viscous boundary layer flow 

over a quadratically stretching sheet. Magyari and Keller (2000) examined steady 

boundary layer flow induced by permeable stretching surfaces with variable 

temperature distribution under Reynolds analogy. This makes use of the advantages of 

all the exact analytic solutions of the momentum and energy equations. Chen (2003) 

investigated the thermal behaviour of a power law fluid film over a flat sheet under 

unsteady stretching. Cortell (2005a) studied the magnetohydrodynamic flow over a 

stretching of an incompressible fluid obeying the power law fluid using numerical 

solutions by means of Runge – Kutta algorithm for n
th

 order initial value problems. 

Anjali Devi and Thiyagarajan (2006) demonstrated the steady nonlinear 

hydromagnetic flow of an incompressible, viscous and electrically conducting fluid 

with heat transfer over a surface of variable temperature with power velocity in the 

presence of variable transverse magnetic field. Cortell (2007) described the numerical 

solution of the nonlinear problem over a viscous flow of a nonlinear stretching sheet 

on heat transfer characteristics when the dissipative heat is enclosed in the energy 

equation. Kandasamy et al., (2008) analyzed the effects of heat and mass transfer on 

MHD boundary layer flow over a shrinking sheet in the presence of suction. Later, the 

nonlinear stretching 1 1 2. . at 0mi e u cx x  for positive odd values of m was described 
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by Akyildiz et al., (2010). Further, Van Gorder and Vajravelu (2010) examined this 

work for any value of 1m  . 

1.1.2 Flow over a variable thickness of the sheet 

All the above mentioned researchers focused their study on linear or nonlinear 

stretching sheet. Moreover, there is a special form of non-linear stretching, namely, 

variable thickness or coagulated sheet or slender elastic sheet is defined as 

1 1 0 1( ) ( )m

wu x U x b   at
(1 )/2

2 1( ) , 1mx A x b m    for different values of m  in a 

thermally stratified environment. In this case the minimum value of 2x  is not starting 

point of the slot. This implies that all the conditions are not imposed at
2 0x   hence 

substituting
1 /2

2 1( ) , 1mx A x b m    is the starting point of the flow at the slot. This 

special form of stretching sheet is known as variable thickness of the sheet, which 

seems more realistic than the flat stretching surface. The use of variable thickness 

helps to reduce the weight of structural elements and improves the utilization of 

material. The variable thickness has many applications in vibration of orthotropic 

plates, machine designs, automobile and aeronautical engineering, acoustical 

components, and nuclear reactor technology etc. In view of these applications, Dawe 

(1966) considered the effect of variable thickness on rectangular plates and explained 

the importance of non-uniform thickness of the plates. Lee (1967) introduced 

theoretically the concept of variable thickness by considering a needle whose 

thickness is comparable with the boundary layer. Venkateshwara Rao and Raju (1974) 

studied the comparison of variable and constant thickness of vibrating plates. Keeping 

in view of the above work, Fang et al., (2012) extended this work by considering the 

boundary layer flow over a stretching sheet with variable thickness and explained the 

significant effects of non-flatness of the sheet. Pop et al., (2013) studied the thermal 

diffusivity flow over a stretching sheet with variable thickness. Khader and Megahed 

(2015) described the numerical solution for the slip velocity effect on the flow of a 

Newtonian fluid over a stretching sheet with variable thickness. Farooq et al., (2015) 

demonstrated the rheological characteristics of Upper Convected Maxwell fluid and 

Cattanneo – Christov heat flux model in flow over a stretching sheet with variable 

thickness. Khader (2016) devoted to introduce a numerical simulation with theoretical 

study for flow of a Newtonian fluid over an impermeable stretching sheet which 

embedded in a porous medium with a power law velocity surface and variable 

thickness in the presence of thermal radiation. Salahuddin et al., (2016) examined the 
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MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a 

stretching sheet with variable thickness. Some other important investigations related 

to variable thickness of the sheet were studied by (Anjali Devi and Prakash (2016), 

Prasad et al., (2016a), Salahuddin et al., (2017a, 2017b)).  

        It has been noticed that aforementioned investigators studied the impact of a 

stretching sheet with variable thickness by neglecting the effect of nanofluid. 

Practically, convectional heat transfer fluids, including oil, water, grease, ethylene 

glycol and engine oil contain low thermal conductivity in comparison with solids. To 

lead this difficult situation by adding small quantity of solid particles to the base 

fluids as a result thermophysical properties gradually increases and hence these are 

known as nanofluids. Choi (1995) was the first person who proposed the term as 

“nanofluid”. These are made up of minute particles namely, metals (Cu, Ag, Au), 

oxides 2 3(Al O , CuO) , carbide ceramics (Sic, Tic/carbon nanotubes/fullerene) having 

size between 10nm -50nm. In modern days which grabbed more attention of various 

researchers due to their vast applications in science and engineering problems, such as 

microelectronic cooling, air conditioning, transpiration and ventilation etc. The 

Brownian motion and thermophoresis effects on heat and mass transfer analysis were 

examined by Buongirno (2006). Makinde and Aziz (2011) examined the impact of 

Brownian motion and thermophoresis on transport equations numerically. 

Sheikholeslami et al., (2016) studied the effect of viscous dissipation and thermal 

radiation on MHD nanofluid flow and heat transfer in an enclosure with constant 

element. Qayyum et al., (2016) analyzed the melting heat transfer in stagnation point 

flow of nanofluid towards a stretching surface with nonlinear thermal radiation. 

Vajravelu et al., (2017) studied the mixed convective flow and heat transfer with 

variable thickness in the presence of magnetic field. Qayyum et al., (2017a) examined 

the double diffusion heat and mass fluxes in mixed convection flow of Maxwell fluid 

bounded by variable stretchable sheet. Waqas et al., (2017a, 2017b) reported the 

characteristics of viscous dissipation and nonlinear radiation in the magneto slip flow 

of viscous liquid and also explained the characteristics of magneto nanofluid in flow 

of hyperbolic tangent fluid. Hussain et al., (2017) disclose the analysis for 

homogeneous heterogeneous reactions for Tiwari- Das nanofluid model.  Ellahi et al., 

(2017) address the effects of melting heat and mixed convection in stagnation point 

flow of second grade nanofluid towards a nonlinear stretching sheet with variable 
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thickness.  Qayyum et al., (2017b) focuses on the modelling and analysis of MHD 

nonlinear convective flow of Jeffery nanofluid bounded by nonlinear stretching sheet 

with variable thickness. Ajayi et al., (2017) demonstrated the motion of two 

dimensional Casson nanofluid flows with temperature dependent plastic dynamic 

viscosity together with double stratification in the presence of Lorentz force. Zubair et 

al., (2018) studied nonlinear mixed convection characteristics in stagnation point flow 

of third grade fluid over a stretching sheet with variable thickness. Aziz et al., (2018) 

considered the combined effects of thermal stratification, applied electric and 

magnetic fields, thermal radiation and viscous dissipation on a boundary layer flow of 

electrically conducting nanofluid over a nonlinear stretching sheet with variable 

thickness. Ullah et al., (2018) explored the behaviour of double stratification and 

nanoparticles on MHD flow of second grade liquid bounded by nonlinear stretching 

of sheet having variable thickness. Lin and Lin (2018) implemented the boundary 

layer flow over a sheet with variable thickness with the time fractional Maxwell fluid. 

Hayat et al., (2018a) examined two dimensional stagnation point flow of third grade 

fluid towards a stretching surface. Daniel et al., (2018) explained the nonlinear 

stretching sheet with variable thickness for electrical magnetohydrodynamic boundary 

layer flow of nanofluid with combined influence of thermal radiation, viscous 

dissipation and joule heating. Recently, Farooq et al., (2019) investigated zero mass 

flux characteristics in Jeffery nanomaterial flow over a nonlinear stretchable sheet. 

Sugunamma et al., (2019) described a theoretical analysis on MHD flow of non-

Newtonian nanofluid past a nonlinear variable thickness surface in the presence of 

nonlinear radiation and nonlinear convection. Hayat et al., (2019) predicted stagnation 

point flow of thixotropic nanofluid towards a variable thicked surface.  

            At present, the controlling flow of electrically conducting fluids such as liquid 

metals, plasma, electrolytes etc., is one of the major tasks to the scientists and 

engineers. These fluids can be significantly controlled by applying an external 

magnetic field, this mechanism is known as classical electro magneto hydrodynamic 

(EMHD) fluid flow which plays a vital role in science and industrial applications, few 

of them mentioned as engineering, geophysics, astrophysics, earth quakes, and 

sensors. Due to these applications, Gailitis and Lielausis (1961) of the physics 

institute in Riga, capital city of the Latvia country framed one of the devices known as 

Riga plate to generate simultaneous electric and magnetic fields which can produce 

Lorentz force parallel to the wall in weakly conducting fluids. This plate consists of 
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span wise arranged array of alternating electrodes and permanent magnets mounted 

on the plane surface. Tsinober and Shtern (1961) observed the substantial 

improvement in the strength of the Blasius flow towards a Riga plate which is due to 

the greater influence of wall parallel Lorentz force. Further, Pantakratoras and 

Magyari (2009) extended the work of Gailitis and Lielausis (1961) to the boundary 

layer flow of low electrical conducting fluids over a Riga plate. Again Pantakratoras 

(2011) extended this work to the Blasius and Sakiadis flow. Bhatti et al., (2016) 

examined the boundary layer flow of nanofluid flow over an electrically conducting 

Riga plate. Anjum et al., (2016) considered the phenomenon of melting heat transfer 

in the stagnation point flow of viscous fluid towards a variable thicked Riga plate. 

Rashidi et al., (2017) analyzed the effects of thermal radiation and EMHD on viscous 

nanofluid over a horizontal Riga plate. Khan et al., (2017) described the convective 

heat transfer of electro-magnetohydrodynomic squeezed flow past a Riga plate. 

Ramzan et al., (2018) investigated the effects of a slip boundary condition over a 

convectively heated Riga plate in the flow of Williamson nanofluid.  Recently, 

Hammouch et al., (2018) considered the two dimensional stagnation point flow of 

Walter B fluid over a Riga plate. Javed et al., (2018) discussed the variation of 

physical aspects of Cattanneo – Christov heat flux model on a Riga plate.  

            Keeping all the above industrial oriented mathematical modelling of the 

physical problem  in mind, in the present thesis  the author envisage  to analyze the 

study of Newtonian/non-Newtonian fluid flow, heat, and mass transfer characteristics 

over a special form stretching sheet called slender elastic sheet with different physical 

situations, namely,    

1. Analytical study of Cattaneo-Christov Heat Flux Model for Williamson-

Nanofluid Flow    Over a Slender Elastic Sheet with Variable Thickness 

2. Influence of Variable Transport Properties on Casson Nanofluid Flow over a 

Slender    Riga Plate: Keller Box Scheme 

3. Mixed Convective Nanofluid Flow over a Coagulated Riga Plate in the 

Presence of Viscous Dissipation and Chemical Reaction. 

4. Impact of Suction/Injection and Heat Transfer on Unsteady MHD Flow over a 

Stretchable Rotating Disk.   
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1.2 Basic Equations  

In the present thesis, the following mathematical modelling of the equations have 

been used under different physical constraints. The main task in fluid dynamics is to 

find the velocity field describing the flow in a given domain. The following heat and 

mass transfer, mathematical modelling equations have been used to derive the 

governing equations under different physical constraints.   

Continuity equation:   1 2

1 2

0,
u u

x x

 
 

   

Momentum equation:  
2

1 1 1 1
1 2 2

1 2 2

,
u u u u

u u
t x x x


   

  
   

         

Heat transfer equation: 
2

1 2 2

1 2 2

,
T T T T

u u K
t x x x

   
  

   
 

Mass transfer equation: 

2

1 2 2

1 2 2

.B

C C C C
u u D

t x x x

   
  

   
  

 

Where, 
1 2andu u  are the velocity components in 

1 2andx x  direction respectively, T  

is the temperature of the fluid and C is the concentration of the fluid. The parameters 

, and BK D  are respectively called the kinematic viscosity, thermal conductivity 

and Brownian diffusivity coefficient. 

 

1.3 Boundary conditions 

            Boundary conditions are necessary for the solution of a boundary value 

problem. A boundary value problem is a differential (partial/ordinary) equation or 

system of differential equations to be solved in a domain or whose boundary a set of 

conditions is known. They rise naturally in every problem based on a differential 

equation. In any flow domain the flow equations must be subjected to a set of 

conditions that act at the domain of the boundary. The choice of boundary condition is 

fundamental for the resolution of the computational problem. These boundary 

conditions are classified as velocity boundary conditions, thermal boundary 

conditions and concentration boundary conditions.     

      

Velocity boundary conditions 

 The velocity boundary conditions depend on the nature of the fluid flow and 

geometry of the boundary surface. Here, in this thesis, we consider a steady, 
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incompressible flow of Newtonian/non-Newtonian fluid past a permeable/ 

impermeable stretching sheet with/ without convective. In this thesis the variable 

thickness of the sheet is considered, therefore the resulting velocity boundary 

conditions are, 

 

 

   

1 /2

1 1 2 0 1 2 1

w 1 /2

2 1 2 2 1

1 1 2 1 1 2 1 1 2

, ( ) at ( )

±V , for permeable
, at ( )

0, for impermeable

, 0 or , ( ) ( ) as

m m

w

m

m

e

u x x U U x b x A x b

u x x x A x b

u x x u x x U x U x b x







    


  


    
 

here 0, andw eU U U are velocities at the wall, stretching sheet and free stream, m  is 

the velocity power index, andA b are small constants related to variable thickness of 

the sheet.  

 

Thermal boundary conditions 

 Thermal boundary conditions depend on the type of the heating process under 

consideration. Here, we have considered prescribed power-law surface temperature 

(PST); melting heat transfer boundary condition and convective boundary condition 

(CBC), which are defined as fallow. 

 

Prescribed power-law surface temperature (PST) 

Here, the temperature boundary surface is prescribed a power law temperature 

of general degree. Mathematical representation of such a temperature boundary 

condition is defined below. 

     

 

1 2

1 1 1 2 1

1 2 2

at ( )

, as .

r m

wT T x A x b x A x b

T x x T x





    

 
 

Here,  T is the temperature, wT  is the temperature field of the fluid at the wall, T  is 

the temperature field of the fluid far away from the sheet, r is the temperature 

exponent parameter, A, A1 and b are physical parameters related to variable thickness 

of the sheet, r is the temperature exponent parameter. 

 

Melting heat transfer boundary condition 

Here, heat transfer characteristics are studied by melting point heat transfer 

boundary condition, this is defined as below,
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     1 2

2 1 0 2 1 2 2 1( ) u ( , ), at ( )
m

s M MK T x c T T x x T T x A x b 


         where K is 

the thermal conductivity,   is the temper of density fluid, 1  is the latent heat 

transfer, sc is the characteristics heat at solid surface, MT  is the temperature at melting 

surface.  

 

Convective boundary condition (CBC) 

In this case the thermal boundary condition is defined in convective heat 

transfer form; mathematical expression of this condition is given below,  

     1 2

2 2 1at ( )
m

sK T x h T T x A x b


        where K is the thermal 

conductivity, sc  is the characteristics heat at solid surface, sh  is the convective heat 

transfer coefficient. 

 

Concentration boundary conditions 

          The boundary conditions defined on the surface of the concentration is given by  

     

 

1 2

1 2 1 2 1

1 2 2

at ( )

, as .

s m

wC C x A x b x A x b

C x x C x





    

 
                                                        

Where C is the concentration, s is the concentration exponent parameter, A, A2 and b are 

physical parameters related to variable thickness of the sheet.

   

Zero mass flux nanoparticle boundary condition 

Here, heat and mass transfer characteristics are analyzed by a zero mass flux 

nanoparticle boundary condition, which is defined by 

 1 2

2 1

2 2

0, at ( )
mT

B

DC T
D x A x b

x T x





 
   

 
, here BD is the Brownian diffusion 

parameter, TD  is the thermophoresis diffusion parameter, C is the concentration, T is the 

Temperature, A and b are physical parameters related to variable thickness of the sheet.     

 

1.4 Method of Solution  

 The mathematical problems are used in the present research work are 

governed by the usual mathematical equations, namely, continuity equation, 

momentum equation, energy equation and concentration equation. These governing 

equations are transformed into dimensionless form by using suitable similarity 
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transformations. Obtained dimensionless equations are highly nonlinear coupled 

higher order differential equations which are very difficult to solve through known 

analytical methods. Therefore, in the present thesis, the following methods are used to 

solve the intricate boundary value problems and are described as below with suitable 

example.  

 

1.4.1 Optimal Homotopy Analysis Method (OHAM) 

 Optimal Homotopy Analysis Method (OHAM) is a semi-analytical method 

which has been used to solve the coupled highly nonlinear differential equations. The 

system of OHAM gives great freedom to choose the auxiliary linear operators, initial 

guesses and base functions of the problem and which is always valid no matter 

whether there exist small or large parameters or not. This is achieved by inserting the 

non-zero auxiliary parameter known as “convergence control parameter”. This is the 

main advantageous over other iterative techniques where convergence is largely tied 

to a good initial approximation of the solution. The OHAM has been successfully 

applied to a wide variety of nonlinear problems (for more details see, Liao (2010) and 

Van Gorder (2019)). Let us consider the non-linear differential equation of the form, 

 ( ) 0N u  
                                                                                                       

(1.4.1.1) 

where, N is the non-linear differential operator which acting on an unknown function 

( )u  is the dependent variable and   is the independent variable. Consider auxiliary 

linear differential operator .L  Now, construct a linear homotopy H  between linear 

operator L   and nonlinear operator N  i.e.
  

   0(1 ) ( , ) ( ) ( ) ( , ) ,q L q u qhH N q       
                          

(1.4.1.2) 
                        

such that ( , ;0) and ( , ;1) ,H N L L H N L N  where [0,1]q  is the embedding parameter and 

h  is convergence control parameter. Here the function defined as   0
0

lim , ( )
q

q u  




and  
1

lim , ( ),
q

q u  


 0 ( )u  is the initial guess which satisfies the given initial and 

boundary conditions, as q varies from initial guess 0 ( )u   to the solution ( )u   of the 

non-linear differential Eq. (1.4.1.1). We have a great freedom to choose initial guess

0 ( )u  , auxiliary linear operator L , convergence control parameter h and these are 

properly chosen so that the solution  ,q   exists for  0,1q . Now, assume the 

solution of ( )   will take the Taylor’s series method,  
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  0
1

, ( ) ( ) ,n

n
n

q u u q   




   where     
0

( ) 1 ! ,n n

n
q

u n q q  


            (1.4.1.3) 

Define the vector  0 1( ), ( ),....., ( )n nu u u u   . Differentiating equation (1.4.1.2) n  

times with respect to embedding parameter q and then setting 0q  and dividing by 

!n  we get so called 
thn order deformation equation as              

 1 1( ) ( ) ( ) ( )n n n n nL u u h H R u                                                                     (1.4.1.4) 

where,
 1

1 1

0

,1
( )

( 1)!

n

n n n

q

N q
R u

n q

 

 



  


 
and

0, 1

1, 1
n

n

n










  

 This is called 
thn order deformation equation for 1n  and ( ) 1H    is linear 

ordinary differential equation with boundary conditions which are present in original 

problem and hence which can be solved easily by the computational software such as 

Mathematica. To get the optimal value of convergence control parameter h , about 

which the series in equation (1.4.1.3) converges fastest, we evaluate squared residual 

error which is defined as, 

2

0

( ) ( )
n

k

k

E h N du 


  
   

  
                                                                                     (1.4.1.5) 

where 
0

( )
n

k

k

u 


  is the
thk order approximation of OHAM. Hence convergence control 

parameter h  corresponds to the minimum of ( )h .  

 

The above OHAM solution is explained through the following example 

Consider the nonlinear differential equations, 

2'''( ) ( ) ''( ) ' ( ) '( ) 0,

''( ) Pr( ( ) '( ) '( ) ( )) 0.

f f f f Mnf

f f

    

       

   

  
                                                                 (1.4.1.6) 

Respective boundary conditions are,  

(0) 0, '(0) 1, '( ) 0,

(0) 1, ( ) 0.

f f f

 

   

  
  

In order to obtain Optimal Homotopy Analysis Method solutions of above equation, 

choosing the following initial guesses and linear operators 

0 0

3 2

3 2

( ) 1 , ( ) ,

, 1,f

f e e

d d d
L L

d d d

 



  

  

   

   
                                                                                         (1.4.1.7) 
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assuming ( )and ( )f     not only a function of   but also a function of embedding 

parameter [0,1]q , and denoting these as ˆ ˆ( , )and ( , )f q q   , we have the zeroth order 

deformation equation for equation (1.4.1.6) as 

0

0

ˆ ˆ(1 ) [ ( , ) ( )] [ ( , )],

ˆ ˆ(1 ) [ ( , ) ( )] [ ( , )],

f f fq L f q f q N f q

q L q q N q  

  

     

  

  
                                                                (1.4.1.8)                                                    

with the respective boundary conditions, 

(0, ) 0, '(0, ) 1, '( , ) 0,

(0, ) 1, ( , ) 0.

f q f q f q

q q 

   

  
                                                                           

Where 0 is the convergence control parameter and ˆ ˆ[ ( , )]and [ ( , )]fN f q N q    

are non-linear operators defined as,  

3 2 2

3 2

2

2

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )ˆ ˆ[ ( , )] ( , ) ,

ˆˆ ˆ( , ) ( , ) ( , )ˆˆ ˆ[ ( , )] Pr ( , ) Pr ( , ).

f

d f q d f q df q df q
N f q f q Mn

d d d d

d q d q df q
N q f q q

d d d


   
 

   

    
    

  

   

  

                     

From equation (1.4.1.8)  

0

0

0

0

ˆ0 implies [ ( ,0) ( )] 0,

ˆ[ ( ,0) ( )] 0,

ˆimplies ( ,0) ( )

ˆ( ,0) ( )

ˆ1 implies [ ( ,1)] 0,

ˆ[ ( ,1)] 0,

ˆimplies ( ,1) ( ),

ˆ( ,1) ( ),

f

f

q L f f

L

f f

q N f

N

f f





 

   

 

   



 

 

   

  

 



 









                          

so as the embedding parameter [0,1]q  increases from 0 to 1, the solutions  

ˆ ˆ( , )and ( , )f q q   varies continuously from 0 0( ) to ( ) and ( ) to ( )f f       

respectively.  

Hence, by definition, 

0

0

1 ( , )
( ) ,

!

1 ( , )
( ) ,

!

m

m m

q

m

m m

q

d f q
f

m d

d q

m d






 
 










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we expand ˆ ˆ( , )and ( , )f q q   by means of Taylor’s series as   

0

1

0

1

ˆ ( , ) ( ) ( ) ,

ˆ( , ) ( ) ( ) ,

m

m

m

m

m

m

f q f f q

q q

  

     









 

 





                                                                            (1.4.1.9) 

if the series (1.4.1.9) converges at 1q  we get the homotopy series solution as 

0

1

0

1

( ) ( ) ( ),

( ) ( ) ( ),

m

m

m

m

f f f  

     









 

 





                                                                                                   (1.4.1.10)  

in the above equation (1.4.1.10), ( )and ( )f    contains an unknown convergence 

control parameter 0.  

 mth  order deformation equations and the conditions is given by 

 

 

1

1

( ) ( ) ( ),

( ) ( ) ( ),

f

f m m m f m

m m m m

L f f R

L R 

 

   

     





 

 
                                                                              (1.4.1.11) 

with boundary conditions,    

(0) 0, '(0) 0, '( ) 0,

(0) 1, ( ) 0.

m m m

m m

f f f

 

   

  
                       

Where,  

1 1

1 1 1 1

0 0

1 1

1 1 1

0 0

( ) ( ),

'' ( ) Pr ' Pr ( ),

m m
f

m m m k k m k k m

k k

m m

m m m k k m k k

k k

R f f f f f Mn f

R f f

 

    

 

     

 

 

    

 

       

  

 

 

                                    (1.4.1.12) 

and
0, 1

.
1, 1

m

m

m



 


                                     

The equations (1.4.1.11) is a linear ordinary differential equations that can be easily 

solved. Now in order to obtain the optimal value of , we evaluate the error and 

minimize it over .  

 

Error Analysis 

For the thm order deformation equation, the exact residual error is given by   

2

00

ˆ ( ) ( ) ,
m

f

m f n

n

E N f d 




  
   

  
  
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2

0 00

ˆ ( ) ( ), ( ) ,
m m

m n n

n n

E N f d

    


 

  
   

  
   

Average residual error is defined as:               

2

0 0

2

0 0 0

1
( ) ( ) ,

1

1
( ) ( ) , ( ) ,

1

M m
f

m f n k

k n

M m m

m f n k n k

k n n

E N f
M

E N f N
M







  

 

  

  
      

    
          

 

  

          

where, , 0,1,2,....k

k
k k M

M
             

Now the error function ( )mE  is minimized over  and optimal value of  is obtained, 

substituting this optimal value in equation (1.4.1.10) we get the approximate solution of 

(1.4.1.6) with B.C’s. 

 

1.4.2 Keller box method 

The systems of highly nonlinear coupled differential equations along with respective 

boundary conditions are solved by finite difference scheme known as Keller box 

method (see, Vajravelu and Prasad (2014)). This system is not conditionally stable 

and has a second order accuracy with arbitrary spacing. For solving this system first 

write the differential equations and respective boundary conditions in terms of first 

order system, which is then, converted into a set of finite difference equations using 

central difference scheme. Since the equations are highly nonlinear and cannot be 

solved analytically, therefore these equations are solved numerically using the 

symbolic software known as Fedora. Further nonlinear equations are linearized by 

Newton’s method and resulting linear system of equations is solved by block tri-

diagonal elimination method. For the sake of brevity, the details of the solution 

process are not presented here. For numerical calculations, a uniform step size is 

taken which gives satisfactory results and the solutions are obtained with an error 

tolerance of 610  in all the cases. To demonstrate the accuracy of the present method, 

the results for the dimensionless Skin friction, Nusselt number and Sherwood number 

are compared with the previous results. The main features of this method are 

 Only slightly more arithmetic to solve than the Crank-Nicolson method. 

 Second order accuracy with arbitrary (non-uniform) x and y spacing. 

 Allow very rapid x variations. 
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 Allow easy programming of the solution of large numbers of coupled 

equations. 

The solution of an equation by this method can be obtained by the following four 

steps. 

1. Reduce the equation or equations to a first order system. 

2. Write difference equations using central difference scheme. 

3. Linearize the algebraic equations (if they are nonlinear), and write them in 

matrix vector form. 

4. Solve the linear system by the block- tridiagonal-elimination method.     

 

The above Keller box method can be illustrated through the following example 

Consider the equation
2

2Pr

T T
u

xy

  



.   

To solve the above equation by numerically, first express it in terms of a system of 

two first-order equations by letting  T p     and  
Pr

.
T

p u
x


 


                 (1.4.2.1) 

Here the primes denote differentiation with respect to y. The finite difference form of 

the ordinary differential equation (1.4.2.1) is written for the midpoint  1 2,n jx y   of 

the segment 1 2p p  shown in Fig 1.1, and the finite difference form of the partial 

differential equation (1.4.2.1) is written for the midpoint  1 2 1 2,n jx y  of the rectangle

1 2 3 4p p p p . This gives  

1 1

1 2
2

n n n n

j j j j n

j

j

T T p p
p

h

 



 
  ,

11 1

1 2 1 21 1 1 2

1 2

1 Pr
.

2

n nn n n n

j jj j j j n

j

j j n

T Tp p p p
u

h h k

 

   



   
  

 
 

        (1.4.2.2) 

Rearranging both expressions in the form 

 1 1 0
2

jn n n n

j j j j

h
T T p p     ,         1

1 2 1 3 1 1 2

n n n n n

j j j j jj j j
S p S p S T T R 

              (1.4.2.3) 

Here      1 2 31, 1, 2jj j j
S S S      , 1 1 1 1

1 2 1 2 1

n n n n

j j j j jR T p p   

           (1.4.2.4) 

1 2

1 2

2Pr
.

jn

j j

n

h
u

k








 

As before, the superscript on 1 2ju   is not necessary but is included for generality. 

Equations (1.4.2.3) are imposed for 1,2,..., 1.j J  0jA  and for J, we have  



 

18 
 

0 ,w J eT T T T                                                                     (1.4.2.5) 

respectively. Since equation(1.4.2.3) is linear as are the corresponding boundary 

conditions given by equation (1.4.2.5), the system may be written at once in matrix

 
 

 

Fig.1.1. Finite difference grid for the Box method. 

Note that both h and k can be non-uniform. Here  1 2 1 21 2n n nx x x  
 

and 

 1 2 11 2j j jy y y   . 

The system of linear equations with the boundary conditions may be written once in 

matrix vector form as shown below without the linearization needed in the case of the 

finite difference equations for the velocity field.  

       

       

 

 
 

 

  

 

  

 

  

1 0
0

2 00

1

2

1

2

1 1

3 2 3
1

11

133 2

1 0 0 0

1 1
2 2

0 0
.

0 0 1 1 22

010 0

j j

j j

J
J

J
J

r
T

rp

j j j rTj

p r

jj
T r
p

r

JJJ J

h h

S S S S

hh

SSS S



 
 
 

  
                               

 
 
 
 
 

                   (1.4.2.6) 

       1

1 1 1 2 2 20
, , 1 0, 1 1, .n

w j ej j J
r T r R j J r j J r T

                       (1.4.2.7) 

The system of equations given by equation (1.4.2.6) can be written as  

,A r                                                                                 (1.4.2.8) 
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Where 

0 0

1 10 0

1 1 1

11 1

. .
, ,

. .

j j jJ j

JJ J

JJ J J

r

rA C

B A C
r

C rB A

CB A

AB r










 

    
    
    
    

     
    
    
    
         

                  (1.4.2.9) 

 

 

1

2

,
jj

j j

j j

rT
r

p r


  
   
    

                                                                           (1.4.2.10) 

and , ,j j jA B C  are 2×2 matrices defined as follows 

   3 1

0 1 1

1 0

, ,1 1
1 1

2 2

j j

j
j

S S

A A j Jh h 

  
               

 

       3 1 3 2

1

0 0

, , 1 , , 1 1
11 0 0 0

2

J J J J
J J j j

S S S S
A B j J C j Jh 

 
                          

         (1.4.2.11) 

Note that, as in the Crank-Nicolson method, the implicit nature of the method has 

again generated a tridiagonal matrix, but the entries are 2×2 blocks rather than scalars. 

The solution of equation (1.4.2.8) by the block-elimination method consists of two 

sweeps. In the forward sweep we compute j, ,andj j w  from the recursion formulas 

given by 

0 0 1 1, , 1j j j j j j jA B A C j J           ,                                      (1.4.2.12) 

0 0 1, 1 .j j j jw r w r w j J                                             (1.4.2.13) 

Here j has the same structure as jB , that is, 
   11 12

,
0 0

j j

j

  
   

  

 and although 

the second row of j has the same structure as the second row of jA ,     

   11 12

1
.

1
2

j j

j
jh

 



 
 

   
 

 
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For generality, we write it as
   

   

11 12

21 22

j j

j

j j

 

 

 
  
  

. In the backward sweep, j is 

computed from the following recursion formulas: 1, ,J J J j j j j jw w C         

1, 2,...,0.j J J    

 

1.5 Dimensionless parameters 

 To know the relative importance of each term in the equation, we make the 

equations dimensionless. Dimensional analysis provides information on the 

qualitative behaviour of the physical problem. The dimensionless parameters help us 

to understand the physical significance of a particular phenomenon associated with 

the problem. Generally there are two methods are used for obtaining the 

dimensionless parameters namely, 

 The inspectional analysis   

 The dimensionless analysis.  

In the inspection analysis, the fundamental equations are reduced to a non-

dimensional form and non-dimensional parameters are obtained from the resulting 

equations. In dimensional analysis, non-dimensional parameters are obtained from the 

physical quantities occurring in the problem, even when the knowledge of the 

governing equations is missing. In this research work the second method has been 

used. The dimensionless parameters used in the thesis are as given below; 

 

Biot number 

 The Biot number is dimensionless quantity used in heat transfer calculations. 

It gives a simple index of the ratio of the heat transfer resistance inside and at the 

surface of body. In mathematical form it can be expressed as  s c bBi h L K , where sh  

is heat transfer coefficient or convective heat transfer coefficient, cL  is the 

characteristic length, bK  thermal conductivity of the body, 

 

Brownian motion parameter 

 The random motion of nanoparticles within the base fluid is called Brownian 

motion and results from continuous collisions between the nanoparticles and the 

molecules of the base fluid. The nanoparticles themselves can be viewed effectively 

as large molecules with an average kinetic energy equal to that of the fluid molecules
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 2Bk T and thus with a considerable lower velocity. Brownian motion is described by 

the Brownian diffusion coefficient BD , which is given by the Einstein-Stokes’s 

equation as 3 .B B pD K T d Here BK  is the Boltzmann’s constant, 
pd is the 

nanoparticle diameter and T  is the nanofluid temperature. Brownian motion 

parameter is defined as  B wNb D C C   . 

 

Chemical reaction parameter 

It is a dimensional parameter which is defined as the ratio of reaction rate to 

the reference velocity and mathematically expressed as 1 0cK K U . Where is 1K  the 

reaction rate and 0U reference velocity. Physically, 0cK   gives a destructive chemical 

reaction and for 0cK   yields constructive chemical reaction, whereas 0cK  shows 

the absence of chemical reaction.   

 

Concentration buoyancy parameter   
 

 The dimensionless quantity ( ) ( ),C C w T wC C T T      which characteristics 

the mass diffusion species, is known as concentration buoyancy parameter, where g  

is the acceleration due to gravity, C  is the coefficient of species expansion, wC  and 

C are two species concentration at the wall and free stream. 

 

Eckert number    

Eckert number 2 / ( ),p wEc U c T T  is a dimensionless number used to study the 

energy dissipation of the fluid flow. Here , andp wU c T T  are called velocity of the 

fluid, specific heat at constant pressure, temperature at the wall and free stream 

respectively; it is introduced by German scientist, E.R.G. Eckert. 

 

Fluid viscosity parameter 

 It is a dimensionless number which describes the internal friction of a moving 

fluid. A fluid with large viscosity resists motion because its molecular makeup gives it 

a lot of internal friction. It is defined as  1r wT T  
    , where wT  is the sheet 

temperature and T  is the temperature far away from the sheet. 
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Hartman number/ Magnetic parameter 

 It is defined as the ratio of electromagnetic force to the viscous force and it 

was introduced by Hartman to describe his experiments with viscous MHD flow. The 

magnitude of Hartman number indicates the relative effects of magnetic and viscous 

drag force. For the lower value of Mn  the Lorentz force is very small and it implies 

the low or moderate conductivities of the fluid. Mathematically, it can be expressed as

2

0 0 ,Mn B c  where  is the electrical conductivity and 0B is the electric field 

strength,   is the density of the fluid, 
0c is a constant.  

 

Heat Source/Sink Parameter 

 It is defined as the ratio of volumetric heat to the density of the fluid at 

specific gravity and constant pressure. It is a system of units designed to supply heat 

consistently and safely over a wide range of extreme conditions.  A heat sink is an 

object that transfers thermal energy from a higher temperature to a lower temperature 

fluid medium. It is defined as the ratio of volumetric heat to the density of the fluid at 

specific gravity and constant pressure. 0 0pQ c U  , where 0Q  represents the 

temperature – dependent volumetric rate of heat source when 0 0Q   and heat sink 

when
0 0Q  . These deal with the situation of exothermic and endothermic chemical 

reactions respectively. 

 

Lewis number  

 Lewis number is a dimensionless number which the ratio of thermal 

diffusivity and mass diffusivity. This is used to characterize the flows in which there 

is simultaneous heat and mass transfer (convection). Which is mathemtically 

expressed as BLe D  where   is the kinematic viscosity and BD  is the species 

diffusivity respectively. If 1Le   gives predominance of constructive boundary layer. 

If 1Le   gives the presence of velocity boundary layer which hinders the transport of 

heat and mass.             

 

Modified Hartman number  

 The modified Hartman number is a dimensionless parameter which is defined 

as fallow 
2

0 0 1 / 8 wQ j M x U  , where 
0j is the applied current density in the electrodes,
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0M  is the magnetization of the permanent magnets mounted on the surface of the 

Riga plate, b is constant related to variable thickness,   is the density of the fluid, 

wU is the velocity of the sheet.  

 

Nusselt number 

 The Nusselt number is a dimensionless parameter associated with heat transfer 

problems and it is defined as the ratio of actual heat transfer rate to the rate which heat 

would be transported by the conduction alone for given temperature difference 

between the plates. It is used to study the heat transfer characteristics of the fluid; it is 

named after German engineer Ernst Wilhelm Nusselt. It can be mathematically 

expressed as 1( ) ( ),w wNu q x b T T    where 
(1 )/2

2 2 1/ at ( ) m

wq T x x A x b     
 

is the 

convective heat transfer coefficient. 

 

Prandtl number  

 The ratio of the kinematic viscosity to the thermal diffusivity of the fluid i.e.

1Pr / /pv c K   is called as the Prandtl number named after the German scientist 

Ludwig Prandtl. Here   is the kinematic viscosity, 1  is the thermal diffusivity,   is 

the dynamic viscosity, pc  is the specific heat at constant pressure and K  is the 

thermal conductivity. It is a measure of the relative importance of heat conduction and 

viscosity of the fluid. The Prandtl number varies from fluid to fluid. For air Pr 0.7

(approx) and for water at 60 ,F Pr 7.0 (approx), for liquid metals Prandtl number is 

very small and it may be very large for viscous fluids. 

 

Reynolds Number 

 The dimensionless quantity Re  is defined as the ratio of inertial forces to 

viscous forces i.e. Re / / ,UL UL     where , , , , andU L     are velocity, length, 

density and dynamic viscosity/ kinematic viscosity respectively, is known as the 

Reynolds number in honour of the British scientist Osborne Reynolds, who in 1883 

demonstrated the importance of Re  in the dynamic of the viscous fluid. If Re  is very 

small, then the viscous forces will predominant and the effect of viscosity will be felt 

in the whole flow field. On the other hand, if Re
 
is large, the inertial forces will be 

predominant and in such a case, the effect of viscosity can be considered to be 

http://en.wikipedia.org/wiki/Kinematic_viscosity
http://en.wikipedia.org/wiki/Dynamic_viscosity
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confined in a thin layer known as boundary layer adjacent to a solid boundary. 

However, if Re
 
is very large the flow ceases to be laminar and becomes turbulent.  

The Reynolds number at which the transition, from laminar to turbulent, occurs is 

known as critical Reynolds number. 

 

Schmidt number 

Schmidt number is a dimensionless number defined as the ratio of momentum 

diffusivity to the mass diffusivity, and is used to characterized fluid flows in which 

there are simultaneous momentum and mass diffusion convection processes. It was 

named after the German engineer Ernst Heinrich Wilhelm Schmidt (1892-1975). 

Mathematically Schmidt number is given as ,
B

Sc D  where   is the kinematic 

viscosity and BD is the species diffusivity respectively.                

 

Sherwood number  
 The Sherwood number (or the mass transfer Nusselt number) is a 

dimensionless number used in mass transfer mechanism. It is defined as the ratio of 

convective mass transfer to the conductive mass transfer, and is named in honour of 

Thomas Kilgore Sherwood. It is defined as 2( ) ( )w wSh j x b C C   , where 

(1 )/2

2 2 1/ at ( ) m

wj C x x A x b       is the mass transfer coefficient, CD  is the mass 

diffusion. 

 

Skin friction  

 The dimensionless shearing stress on the surface of the body, due to a fluid 

motion is known as skin friction coefficient and defined as 2/ ,f w wC U where 

2/ at 0w u x      is surface shearing stress.  

 

Suction or injection parameter  

 Suction or injection parameter fw is defined as    1 1v 2 1 Re m

w sf U m m    , 

where vs  is the suction/ blowing velocity across the stretching sheet.                                        

( Here, 0wf  corresponds to suction whereas 0wf   corresponds to injection). 
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Thermal buoyancy parameter    

 The dimensionless quantity
2 2 1

0 1( ) ( ) ,m

T T wg T T U x b  

     which 

characteristics the free convection, is known as Thermal buoyancy parameter,  where 

g  in the acceleration due to gravity,  T  the co-efficient of thermal expansion, b is 

the constant related to variable thickness, wT and T are temperatures at the wall and 

free stream. 

 

Thermophoresis parameter 

 Thermophoresis is a mechanism in which the hot particle move from hot 

region to a cold region and consequently temperature rises, it is mathematically 

expressed as   .T wNt D T T T   
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1.6 Nomenclature 

 

1a
 

Width of magnets between electrodes 

2a
 

Constant 

*A  Stretching rate ratio parameter  

,A b  Physical parameters related to stretching sheet 

0,B B  Magnetic field and magnetic field strength ( )tesla  

Bi
 Biot number 

C  Concentration of the stretching sheet 

fC  Skin friction coefficient 

MC  Concentration at melting surface 

wC  Concentration at the wall 

pc  Specific heat at constant pressure 1 1( )J kg K   

sc  Surface heat capacity parameter 

C  Ambient concentration/ concentration far away from the sheet  

BD  Brownian diffusion  coefficient 1( )kgm s  

TD
 

Thermophoresis diffusion coefficient 1( )kgm s K

  

ije
 

The rate of deformation at ( , )thi j  components  

E
 

Electrical field 1( )NC  

Ec
 

Eckert number 

,F f  Dimensionless velocities 1( )ms  

wf  
Mass suction/injection parameter 

1F
 

Force ( )N   

g
 

Dimensionless velocities 1( )ms   

sh
 

Heat transfer coefficient/ wall heat transfer 

0j  
Applied current density in the electrodes 2( )Am

  

K
 

The thermal conductivity of the fluid 1 1( )Wm K 

  

1K
 Chemical reaction rate 

cK
 Chemical reaction parameter 

Le
 

Lewis number 
m

 
Velocity power index parameter 

M
 

Dimensionless melting point parameter 

0M
 

Magnetization parameter ( )tesla   

Mn
 

Hartman number/Magnetic parameter ( )tesla   

Nb  Brownian motion parameter  

Nt
 

Thermophoresis parameter 

Pr  Prandtl number 
q  Heat flux per unit area 2( )Wm

  

Q  Modified Hartmann number 

0Q  Heat generation/absorption parameter  3 1( )Wm K 
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T  Temperature ( )K  

S  Unsteady parameter 

Sc  Schmidt number 

0T  Solid temperature ( )K  

MT  Temperature at melting surface ( )K   

wT  Temperature at the wall ( )K  

T  Ambient temperature/temperature far away from the sheet ( )K  

1 2,u u  Velocity components in 1 2andx x directions 1( )ms  

, ,r zu u u

 

Velocity components in direction of cylindrical coordinate system  

r, θ*,z 1( )ms  

0U  Reference velocity 1( )ms   

eU  Free stream velocity 1( )ms  

wU  Stretching velocity 1( )ms   

V  Velocity vector  

1 2,x x  Cartesian coordinates 

We  Weissenberg number 

 

 

Greek Symbols 

  Wall thickness parameter/stretching parameter ( )m  

1  Thermal diffusivity 

   Casson parameter 

1   Dimensionless parameter 

C  Concentration expansion coefficient 

T   Thermal expansion coefficient 

  Thermal relaxation parameter 2 1( )m s  

  Williamson parameter 
  Dimensional constant 

1  Variable thermal conductivity parameter 

2  Variable species diffusivity parameter 

   Similarity variables 

  Heat source/sink parameter  

2  Thermal relaxation time 

C  Concentration buoyancy parameter 

T  Thermal buoyancy parameter 

     Dynamic viscosity 2( )Ns m

 
 

B     Plastic dynamic viscosity 

  Ambient viscosity parameter 

    
 

Kinematic viscosity 2 1( )m s   

  Angular velocity 2 1( )m s  

π     
 

Product of deformation rate 
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cπ    
 

Critical value of product of deformation rate 

     
 

Dimensionless concentration 

   
Fluid  density 3( )kgm

  

    
 Stream function 2 1( )m s   


 

Electrical conductivity 1( )Sm

  


 

Dimensionless temperature ( )K   

r  
Fluid viscosity parameter ( )Pa s   

  
Effective heat capacity of nanoparticle 1( )J K 

 
 

zr
 Radial shear stress 

r  Tangential shear stress 

Subscripts 

  Condition at infinity 
w  Condition at the wall 

'  Differentiation with respect to   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 

 

 

 

 

 

 

 

CHAPTER - 2 

 

ANALYTICAL STUDY OF CATTANNEO CHRISTOV HEAT 

FLUX MODEL FOR WILLIAMSON – NANOFLUID FLOW 

OVER A SLENDER ELASTIC SHEET WITH VARIABLE 

THICKNESS 

 

 

 

 

 

 

 

 

 

 Part of this work was published in the “Journal of Nanofluids”, 

American Scientific Publication (ASP), Vol.7 (3), 583-594, 2018. 
 

 



30 
 

2.1. Introduction 

 The technological industry has embraced several methodologies to improve the 

efficiency of the heat transfer, namely, utilization of extended surfaces, application of 

vibration to the heat transfer surfaces, and usage of microchannels. The thermal 

conductivity of a fluid plays a vital role in the process of improving the efficiency of 

the heat transfer. Most commonly used heat transfer fluids are water, ethylene glycol, 

and engine oil which are with relatively low thermal conductivities in comparison 

with solids. The addition of small quantity of solid particles with high thermal 

conductivity to the base fluid (ethylene glycol + water, water + propylene glycol etc.,) 

results in an increase in the thermal conductivity of a fluid. The Argonne National 

Laboratory revisited the concept of enhancement of thermal conductivity of a fluid by 

considering suspensions like nano scale metallic particle and carbon nanotube 

suspensions and several things remain intangible about this nanostructured material 

suspension, which has been coined as “nanofluids” by Choi (1995). However, Masuda 

et al., (1993) have observed the similar kind of results earlier to Choi (1995). The 

term nanofluid attracted numerous researchers, which is a new kind of heat transfer 

medium with nanoparticles (1–100 nm) which are uniformly disseminated in the base 

fluid. Choi and Eastman (1995) documented that nanofluids exhibit high thermal 

conductivities compared to other heat transfer fluids and concluded by establishing a 

dramatic reduction in the heat exchanger pumping power. Moreover, the temperature 

is one more impartment aspect in the enhancement of thermal conductivity of 

nanofluids. Das et al., (2003), Chon and Kihm (2005), Li and Peterson (2006) have 

conducted experimental studies on the determination of the thermal conductivity of 

nanofluids at room temperature and Murshed et al., (2008) has reported an 

experimental and theoretical study on the thermal conductivity and viscosity of 

nanofluids and concluded that the thermal conductivity of nanofluids depends 

strongly on temperature. Literature survey reveals that the behavioral study of 

nanofluids was mainly done by numerous researcher using two models, that is, the 

Tiwari and Das model (2007) and Buongiorno model. Buongiorno (2006) model 

explains the effects of thermophysical properties of the nanofluid and also focus on 

the heat transfer enhancement observed in convective situations. Further, Zahmatkesh 

(2008) invoked hybrid Eulerian – Lagrangian procedure to evaluate the air flow and 

temperature distribution and analyzed the importance of thermophoresis as well as 

Brownian diffusion in the process of particle deposition. The model used by Rana and 
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Bhargava (2012) for the nanofluid incorporates the effects of Brownian motion and 

thermophoresis. Rashidi et al., (2014a) examined the model used by Rana and 

Bhargava (2012) by considering the effects of suction or injection. Many researchers 

have focused on the behaviour of nanofluid using Buongiorno model with different 

geometry (Khan and Aziz (2011), Makinde and Aziz (2011), Bachok et al., (2012), 

Prasad et al., (2015, 2016a)). 

 Heat transfer mechanism in several significant situations was classically explained 

by Fourier’s law of heat conduction by Fourier in (1822). In spite of being the most 

successful model for the description of heat transfer mechanism, it has a major 

limitation such as this law leads to parabolic energy equation for the temperature field 

which contradicts with the principle of causality. The pioneering work of Cattaneo 

(1948) has managed to provide a successful alternative to the Fourier’s law of heat 

conduction with the vital characteristic of thermal relaxation time to present “thermal 

inertia”, which is popularly known as Maxwell-Cattaneo law. Moreover, Cattaneo-

Christov heat flux model is the improved version of Maxwell Cattaneo's model in 

which Christov (2009) replaced the time derivative with the Oldroyd’s Upper-

Convected derivative to preserve the material-invariant formulation. Several 

researchers used Cattaneo-Christov heat flux model on Newtonian/non-Newtonian 

fluids with different physical constraints (Liu et al., (2016), Hayat et al., (2016a), 

Tanveer et al., (2016), Nadeem and Muhammad (2016) and Hayat et al., (2017a)). 

 All the above-mentioned researchers restricted their analyses to study the 

boundary layer flow over a linear or nonlinear stretching sheet in a thermally stratified 

environment which has several engineering applications. However, not much work 

has been carried out for a special type of nonlinear stretching (that is, stretching sheets 

with variable thickness; for details, see Fang et al., (2012)). The stretching sheet 

variable thickness has applications to the vibration of orthotropic plates and is 

observed in many engineering applications more frequently than a flat surface such as 

machine design, architecture, nuclear reactor technology, naval structures, and 

acoustical components. Ishak et al., (2007) examined the boundary layer flow over a 

horizontal thin needle and Ahmed et al., (2008) analyzed mixed convection flow over 

a vertically moving thin needle. Recently, Khader and Megahed (2015), Salahuddin et 

al., (2016), Prasad et al., (2017a, 2017b) analyzed the effects of various physical 

parameters on the flow and heat transfer by considering this special form of nonlinear 

stretching sheet. In the present analysis, Optimal Homotopy Analysis Method 
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(OHAM) (Liao (2003, 2007), Fan and You (2013)) is applied for obtaining the 

solutions of nonlinear BVPs. We carry out an analytical study to observe the impact 

of Cattaneo – Christov heat flux model on the flow of Williamson fluid over a slender 

elastic sheet with variable thickness. The obtained results are analyzed graphically for 

different sundry variables and analysis reveals that the fluid flow is appreciably 

influenced by the physical parameters. It is expected that the results presented here 

will not only complement the existing literature but also provide useful information 

for industrial applications. 

 

2. 2. Mathematical Formulation of the Williamson -Nanofluid Model 

 

 Consider a steady two-dimensional boundary layer flow, heat and mass transfer of 

a viscous incompressible and electrically conducting non-Newtonian Williamson fluid 

with nanoparticles, in the presence of a transverse magnetic field 1( )B x , past an 

impermeable stretching sheet ( 2  =  0wu , see Liao (2007)) with variable thickness. The 

origin is located at the slit, through which the sheet is drawn in the fluid (see Fig. 

2.2.1 for details). The 1x -axis is chosen in the direction of the motion and the 2x -axis 

is perpendicular to it. The stretching velocity of the surface is  

 1 0 1 0( ) =     where 
m

wU x U x b U  is constant, b is the physical parameter related to 

stretching sheet, and m is the velocity exponent parameter. Here w wT andC are 

respectively the constant surface temperature and the constant nanoparticle species 

diffusion. Cattaneo – Christov heat flux model is used instead of Fourier’s law to 

explore the heat transfer characteristic. We assume that the sheet is not flat but rather 

is defined as  
 1 2

2 1 = A
m

x x b


 . The coefficient A is chosen as a small constant so 

that the sheet is sufficiently thin to avoid a measurable pressure gradient along the 

sheet 1( p/ x  = 0)  . For different applications, due to the acceleration or deceleration 

of the sheet, the thickness of the stretched sheet may decrease or increase with 

distance from the slot, which is dependent on the value of the velocity power index m. 

The problem is valid for 1m  , since 1m  refers to the flat sheet case. Viscous and 

Joule dissipation were neglected. The physical model of the Williamson nanofluid is 

shown in Fig2.2.1. 
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Under such assumptions, and by using the usual boundary layer approximation, the 

governing equations for basic steady conservation of mass, momentum, thermal 

energy and nanoparticles equations for the non-Newtonian Williamson fluid with 

nanoparticles can be written in Cartesian coordinates 1 2andx x  as (see, Salahuddin et 

al., (2016),  Prasad et al., (2017b)) 

1 2

1 2

0
u u

x x

 
 

   

 (2.2.1) 

 
22 2

01 2 1 1 1
1 2 1 12 2

1 2 2 2 2

2 
Bu u u u u

u u x u
x x x x x






     
     

     
 (2.2.2) 

. .pc T   v q
 

 (2.2.3) 

2 2

1 2 2 2

1 2 2 2

T
B

DC C C T
u u D

x x x T x

   
  

   
 

(2.2.4) 

Where,  1 2 3, ,u u uv = is the velocity vector, 1u and 2u are the fluid velocity 

components measured along the 1x and 2x  directions, respectively, ρ  is the constant 

fluid density, pc  is the specific heat at constant pressure,   is kinematic viscosity, BD  

is the Brownian diffusion coefficient, TD  is the thermophoresis   coefficient, q is 

normal heat flux vector, T is the temperature,  T   is the constant values of the 

temperature. Also, σ is the electrical conductivity,    
 3 1 /2

1 1

m
x x b


    is the 

Williamson parameter, and    
12 2

0 1 0 1

m
B x B x b


  is the variable magnetic field, This 

forms of    2

0 1 1andB x x  has also been considered by several researchers to study 

MHD non-Newtonian  flow problems and to obtain similarity solution (see Prasad et 

al., (2016), Salahuddin et al., (2016) for details) over a moving or fixed flat plate.

( ) / ( )p p p fc c    is the ratio between the effective heat capacity of the nanoparticle 

material and heat capacity of the fluid, p  is the density of the nanoparticle, 
fpc is 

the specific heat of the fluid, and 
ppc  the specific heat of the nanoparticle. 
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Fig.2.2.1: Schematic diagram of the Williamson nanofluid  

 model with a variable  stretching sheet. 
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The boundary conditions for the physical problem under consideration are given by  

   
1 2

1 0 1 2 2 1

1 2

, 0, , , at ,

0, , as .

m m

w w wu U U x b u T T C C x A x b

u T T C C x



 

       

   
  

(2.2.5) 

The positive and negative values of m represent two different cases, namely, 

stretching and shrinking sheets, respectively.  The new flux model is known as 

Cattaneo - Christov heat flux model (see Cattaneo (1948), Christov (2009)) which is 

the generalized form of Fourier’s law and is given by 

2

2

2 2 2

. . . ( . ) T
B

Dq C T T
q K T D

t x x T x
 



      
               

        

V q q V V q

 

(2.2.6)  

where V  is the velocity vector, 2  is the thermal relaxation time, K  is the thermal 

conductivity of the fluid. It is noted that for 2 0   ,   Eq. (2.2.6) reduces to 

classical Fourier’s law. As it is assumed that fluid is incompressible therefore Eq. 

(2.2.6) takes the form 

2

2

2 2 2

. . T
B

Dq C T T
q K T D

t x x T x
 



      
             

        

V q q V

 

 (2.2.7)  

eliminating q  from Eqns. (2.2.3) and (2.2.7) we get 

1 2 2 1
1 2 1 2

1 1 2 2 1 2 2 1

1 2 2 2 2 2
2 21 2

1 2 1 22 2

1 2 2

2
2

2

2 2 2 2

2

T
B

p

u u u uT T T T
u u u u

x x x x x x x xT T
u u

x x T T T
u u u u

x x x x

Dk T C T T
D

c x x x T x




 

       
               

     
  

    

     
     

      

 

 (2.2.8) 

The dimensionless stream function 
1 2( , )x x  is given by

   1 2 2 1, ,u u x x      , which satisfies (2.2.1) automatically. We transform the 

system of Eqns. (2.2.2), (2.2.4) and (2.2.8) into a dimensionless form. The suitable 

similarity transformations for the problem are 

       

 

1

2
0 1

1
0 2

2 1

2
,   , ,   

1

1
.

2

m

w w

m

T T C C
F U x b

m T T C C

Um
x x b

    





 

 



 
     

  


 

  

(2.2.9)        

with Eq. (2.2.9), the velocity components can be written as  
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1

2
1 2 0 1

1 1
( ) and  ( )  ( ) ( ) .

2 1

m

w

m m
u U F u U x b F F

m
    


   

        
    

(2.2.10) 

 Here prime denotes differentiation with respect to . In the present work, it is 

assumed 1m    for the validity of the similarity variable. With the use of (2.2.9) and 

(2.2.10), Eqns. (2.2.2), (2.2.4), (2.2.8) and (2.2.5) reduces to 

  22
1 ' 0

1

m
We F F FF F Mn F

m
       


  

(2.2.11) 

 2 2( 1) ( 3)
1 Pr Pr Pr 1 0

2 2

m m
F Nb Nt F F

     
                 

      

(2.2.12) 

'' '' ' 0
Nt

Le F
Nb

 
      

    

(2.2.13) 

1
( ) , ( ) 1, ( ) 1, ( ) 1,

1

( ) 0, ( ) 0, ( ) 0.

m
F F

m

F

    
 

      
 

           

(2.2.14) 

The nondimensional parameters , , ,Pr, Le, ,  ,  and  Mn We Nb Nt  , denoting magnetic 

parameter, Weissenberg number, thermal relaxation parameter, Prandtl number, 

Lewis number, Brownian motion parameter, thermophoresis parameter, and wall 

thickness parameter, respectively, are given by  

 

   

2
30 0 0
02

0

0 0 1

2
, We ( 1), ,Pr = , ,

1 Re

( )1
, ,  = , Re= .

2

pw

B

B w T w

cB U U U v
Mn U m Le

U m k D

D C C D T T U U x bm
Nb Nt A

T

 


  

 


   

 



     


  
 

 

(2.2.15) 

Here    indicates the plate surface. For the purpose of computation, we define 

 ( ) =  , ( )  =  ( ),  and ( ) =  ( ) f F        where    . Now the Eqns. 

(2.2.11) to (2.2.13) becomes, 

  22
1 ''' '' ' 0

1

m
we f f f f f Mn f

m
     

  

(2.2.16) 

 2 2( 1) ( 3)
1 Pr Pr Pr 1 0

2 2

m m
f Nb Nt f f      

    
             

     

(2.2.17) 

0
Nt

Le f
Nb

  
 

     
    

(2.2.18) 

and the corresponding boundary conditions (2.2.14) for 1m    are 
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       

     

1
0 , 0 1,  0 1,  0 1,

1

 lim lim lim 0,

m
f f

m

f
  

  

    
  


   



       
(2.2.19) 

where the prime denotes the differentiation with respect to . With reference to 

variable transformation, the integration domain will be fixed from 0 to ∞. When we 

observe the boundary condition  0 (1 ) / (1 )f m m    and for 0   or   1m  , the 

boundary condition reduces to  0 0f   which indicates an impermeable surface. The 

important physical quantities of interest, the skin friction coefficient 
fC  the local 

Nusselt number Nu , and the local Sherwood number Sh  are defined as, 

 
 

   
1

22 1
2 1 2

2

2
Re 2( 1) 0

m

x A x b

f

w

u x
C m f

U

 

 
 

   ,

  
 

    
1

22 1
1 2 1 2

1 2 Re 0

m

x A x b

w

x b T x
Nu m

T T




 



  
   


,   (2.2.20) 

  
 

    
1

22 1
1 2 1 2

1 2 Re 0

m

x A x b

w

x b C x
Sh m

C C




 



  
   


,  

where 0 1Re= ( )U x b  is the local Reynolds number. 

2.3. Exact solutions for some special cases 

 Here we present exact solutions for certain special cases and these solutions serve 

as a baseline for computing general solutions through numerical schemes. We notice 

that in the absence of Weissenberg number, thermal relaxation parameter, magnetic 

field, nanoparticle volume fraction parameter and heat transfer reduces to those of 

Fang et al., (2012).In the limiting case of r  and 1m   the boundary layer flow 

and heat transfer equations degenerate. The solution for the velocity in the presence of 

magnetic field out to be   f e      where   1 .Mn     

In the absence of variable Weissenberg number, thermal relaxation parameter, 

magnetic field, nanoparticle volume fraction parameter, heat and mass transfer; 

but in the presence of variable thickness, i.e.,  We = Mn = γ = Nt = Le = Pr = 0, m 1
 

Case (i): When 1 3,m    Eq. (2.2.16) becomes 

2 0f ff f                 (2.3.1)  

with the boundary conditions      0 2 , 0 1 , 0f f f     
  

(2.3.2) 
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On integrating (2.3.1) twice yields to
2 22 ( 2 ) (2 1),  f f        

 
(2.3.3)  

where (0).f   To obtain finite solution it is essential to consider 2 .    

Thus (2.3.1) reduces to
2 22 (2 1).f f   

       
(2.3.4) 

The solution is  2 2 -1 2( ) 2 4 tanh 2 4 2 tanh 2 2 4  .f           
  

  

(2.3.5) 

and  2 2 2 1 2( ) 1 2 Sech 2 4 2 tanh 2 2 4  .f            
  

   (2.3.6)  

Case (ii): When 1 2,m    Eq. (2.2.16) becomes 

22 0f ff f       (2.3.7) 

with the boundary conditions      0 3 , 0 1 , 0.f f f    
  

(2.3.8) 

Eq. (2.3.7) is equivalent to  3 2 1 2 3 21 2 3 0.f d d f d d f f f     
 

 

   (2.3.9) 

Integrating (2.3.9) once reduces to the following form  

   2 2 21 2 1 2 3 9f ff f f          
  

(2.3.10) 

Appling for free boundary condition we obtain 

3 1 6 .    
                                            

(2.3.11) 

An integration of (2.3.10) leads to  
3 2 3 21 2 2 3 2 3 3 1 3 .f f f      

 

(2.3.12)                  

The final solution is 

   
2

2 2 2 11 2 ln 3 tan 2 3D d f d f d d f d f d d        
  

 

(2.3.13) 

     

  

1 3 23 2 2 2

2 1

where 3 3 2 3 and 1 2 ln 3 3 3

3 tan 2 3 3 .

d D d d d d

d d d

    



           

 

 

(2.3.14) 

Since the system of equations (2.2.16) to (2.2.18) with conditions (2.2.19) has no 

exact analytical solutions, the equations are solved analytically via Optimal 

Homotopy Analysis Method.   

 

2.4. Semi-analytical solution: Optimal Homotopy Analysis Method (OHAM) 

 Optimal homotopy analysis method has been employed to solve the nonlinear, 

coupled system of equations (2.2.16) - (2.2.18) with boundary conditions (2.2.19). 

The OHAM scheme breaks down a nonlinear differential equation into infinitely 

many linear ordinary differential equations whose solutions are found analytically. In 
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the framework of the OHAM, the nonlinear equations are decomposed into their 

linear and nonlinear parts as follows:  

 In accordance with the boundary conditions (2.2.19), consider the base functions 

as{ 0}ne for n  then, the dimensionless velocity ( )f  ,temperature ( )  , and 

concentration ( )  and can be expressed in the series form as follows  

0 0 1
( ) , ( ) , and ( )n n n

n n n
n n n

f a e b e c e      
  

  

  

    
 

where , andn n na b c  are the coefficients. According to the solution expression and 

boundary conditions (2.2.19), we assume the following auxiliary linear operators as 
3 2 2

3 2 2, , and ,f
d d d df f

d d d d    
     L L L

  
(2.4.1) 

 
Initial approximations satisfying the boundary conditions (2.2.14) are found to be 

0 0 0, , .1( ) 1 ( ) ( )
1

mf e e e
m

                  

Let us consider the so-called zero-th order deformation equations  

0
ˆ ˆ(1 ) ( ; ) ( ) ( ) ( ; ) ,ff f fq L f q f qH N f q             (2.4.2) 

0
ˆˆ ˆ ˆ(1 ) ( ; ) ( ) ( ) ( ; ), ( ; ), ( ; ) ,q L q qH N q f q q                    (2.4.3) 

0
ˆˆ ˆ ˆ(1 ) ( ; ) ( ) ( ) ( ; ), ( ; ), ( ; ) .q L q qH N q q f q                  

 
 (2.4.4)  

Here [0,1]q  is an embedding parameter, while  , , 0f       are the convergence 

control parameters, and the nonlinear differential operators are defined from Eqns. 

(2.2.16) - (2.2.18) as 

3

2
3 2 2 3

2 2 3

ˆ ˆ ˆ ˆ2ˆ +W
1

ˆ ˆ
eˆ[ ]f

f f f
m

f f ff mf Mn
     

       
     


      

N
 

 (2.4.5)  

22

2

2

ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ[ , , ] Pr

ˆ ˆ ˆ ''ˆ ˆ                   3 1
2 2

 Pr m m

f Nb Nt f

ff f


     
    

 
  

          

       
  

        
   

      

N

 (2.4.6) 

2 2

2 2

ˆ ˆ ˆˆ ˆˆ ˆ[ , , ] .Ntf Lef
Nb

  
 

  
         

N  (2.4.7) 
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We choose the auxiliary functions as ( ) ( ) ( )fH H H e 
       . It can be seen 

from Eqns. (2.4.2) to (2.4.4) that, when 0q  , we have 0
ˆ ( ;0) ( )f f  , etc., while 

when  1q , we have  ˆ( ;1) ( )f f  , etc., so we recover the exact solutions when q = 

1. Expanding in q, we write 

0
1

0
1

0
1

ˆ ( ; ) ( ) ( ) ,  

ˆ( ; ) ( ) ( ) and

ˆ( ; ) ( ) ( )   

 

n
n

n

n
n

n

n
n

n

f q f f q

q q

q q

  

     

     













 

 

 






 

As q varies from 0 to 1, the homotopy solutions vary from the initial approximations 

to the solutions of interest. It should be noted that the homotopy solutions contain the 

unknown convergence control parameters  , , 0f      , which can be used to 

adjust and control the convergence region and the rate of convergence of the series 

solution. To obtain the approximate solutions, we recursively solve the so-called nth-

order deformation equations 

1[ ( ) ( )] ,f
f n n n f nf f    L R  

1[ ( ) ( )] ,n n n n


       L R  

1[ ( ) ( )]n n n n


       L R , 

1

01

ˆ[ ( ; )]1 ,
( 1)!

|
n

ff
n qn

f q
n q








 

N
R

 
1

01

ˆ ˆ ˆ[ ( ; ), ( ; ), ( ; )]1 ,
( 1)!

|
n

n qn

f q q q
n q

      






 
NR  

1

01

ˆ ˆ ˆ[ ( ; ), ( ; ), ( ; )]1 ,
( 1)!

|
n

n qn

f q q q
n q

     






 
N

R
 

0, 1,
1, 1.n

n
n




  
  

In practice, we can only calculate finitely many terms in the homotopy series 

solution. We therefore define the kth order approximate solution can by the partial 

sums  
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[ ] 0

1

[ ] 0

1

[ ] 0

1

( ) ( ) ( ) , 

( ) ( ) ( ),  and 

( ) ( ) ( ).

k

k n

n

k

k n

n

k

k n

n

f f f  

     

     







 

 

 







 

(2.4.8) 

With these approximations, we may evaluate the residual error and minimize it over 

the parameters f ,   and 


 in order to obtain the optimal value of f ,   and 


giving the least possible residual error. To do so, one may use the integral of squared 

residual errors, however, this is very computationally demanding. To get around this, 

we use the averaged squared residual errors, defined by 

 [M]

2

01
) )

1
( (f

M

n f k

k

f f
M




   
E N , 

 [M] [M] [M

2

]

0

( ) ( ), (
1

1
), ( )

M

n

k

k k k
M

f

      


   
E N ,  

 [M] [M] [M

2

]

0

( ) ( ), (
1

1
), ( )

M

n

k

k k k
M

f

      


   
E N , 

Where /k k M  , 0,1,2,.... .k M Now we minimize the error function 

,( ) ( )f

n f n



E E and ( )n



E in , andf   and obtain the optimal value of

, andf   . For 
thn order approximation, the optimal value of , andf   for

, and f    is given by 

0
( ) ( )( )

0, 0 and

f

n f nn
d dd

dh dh dh


  

E EE

 
respectively. Evidently, 

( ) (lim 0 , lim and lim0 ( ) 0)
m m m

f

n f n n

 

 
  

 E E E corresponds to a convergent 

series solution. Substituting these optimal values of , andf    in equation (2.4.8) 

we get the approximate solutions of equations (2.2.16) to (2.2.18) which satisfies the 

conditions (2.2.19). For the assurance of the validity of this method, (0)f   obtained 

via OHAM has been compared with Fang, et al., (2012), Khader and Megahed (2015) 

and Prasad et al., (2017b) for various special cases and the results are found to be in 

excellent agreement (see Table 2.1). In Tables 2.2, the optimal values of ,  and fh h h   

for the functions ''(0), '(0) and '(0)f     corresponding to various values of the 
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parameters are given and the corresponding averaged residuals are represented as 

10 10 10, andf  E E E . 

 

2.5. Results and Discussion 

 The system of equations (2.2.16) to (2.2.18) subject to the boundary conditions 

(2.2.19) is solved analytically via efficient OHAM. The computations are being 

carried out using Mathematica 8and obtained the flow, heat,and mass transfer 

characteristics of Williamson fluid with nanoparticles by considering Cattaneo – 

Christov heat flux model for several values of the governing parameters such as 

Weissenberg numberWe , thermal relaxation parameter , velocity power index 

parameter m, the variable thickness parameter ,the Prandtl number Pr, Magnetic 

parameter Mn , the thermophoresis parameter Nt and the Brownian motion parameter

Nb , and the Lewis number Le . Fig.2.5.1 - 2.5.5 describes the influence of various 

physical parameters on the horizontal velocity profile  f  , the temperature profile

( )  , and the concentration profile ( )  graphically. These profiles

     , , andf      are unity at the wall, decreases monotonically and tend to zero 

asymptotically as the distance increases from the boundary. The computed numerical 

values for the skin friction  0 ,f   the Nusselt number  0 and the wall Sherwood 

number  0 are presented in Table 2.2. 

 Figs.2.5.1 (a) to 2.5.1(c) illustrates the effect of Mn  and We on

     , , andf      . It is noticed that  f   decreases for increasing values of

Mn . This is due to the fact that the retarding/ drag forces called the Lorentz forces 

generated by the applied magnetic field act as resistive drag forces opposite to the 

flow direction which results in a decrease in velocity. Consequently, the thickness of 

the momentum boundary layer reduces with an increase in Mn .A similar trend is 

observed in the case of ,We  this is because the relaxation time of the fluid enhances 

for higher values of We causing a decrease in velocity of the fluid. The exact opposite 

trend is observed in the case of    and    (see Fig.2.5.1(c)). Fig.2.5.2 (a) through 

2.5.2(e) depicts the impact of   and m on      , , andf      . An interesting 

pattern may be observed in the case of positive and negatives of  and m . The 
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behavior of the boundary condition    0 1 1f m m    depends on the values of

 and m . For a given range 0 and  1m   or 0 and  >1m  , it is observed that 

 0 0f   which is the case of injection and for the other opposite set of range 

 and m , we have  0 0f   which is a suction case. From the Fig.2.5.2 (a), it is clear 

that as 0 and 0.3m     the velocity profiles are increasing for the decreasing 

values of  and the reverse trend is observed in the case of 0 and 5m   . The 

opposite pattern is noticed in the case of temperature and concentration profiles with 

0 and 0.3,2,10m    (see Fig.2.5.2 (b) to 2.5.2(e)). Injection enhances both 

temperature and nanoparticle concentration. Thermal and concentration boundary 

layer thickness for the injection case is significantly greater than for the suction case. 

Effectively suction achieves a strong suppression of nano-particle species diffusion 

and also regulates the diffusion of thermal energy (heat) in the boundary layer. This 

response to suction has significant effects on the constitution of engineered nanofluids 

and shows that suction is an excellent mechanism for achieving flow control, cooling, 

and nano-particle distribution in nanofluid fabrication. Fig.2.5.3 exhibits the impact of 

increasing values of  and Pr on    . Temperature decreases considerably when 

increases and hence thermal boundary layer decreases. In fact, for larger values of

 ,the particles of measurable material require more opportunity to hand over heat to 

its adjacent particles. Thus, larger is responsible for the decrease of temperature. 

Physically,  appears because of the heat flux relaxation time. The greater values of

 ,the liquid particles require more time to exchange heat to their neighboring 

particles which make a reduction in the temperature. The Cattaneo – Christov heat 

flux model can be reduced to fundamental Fourier’s law of heat conduction in the 

absence of . This observation gives us an insight that, the temperature in Cattaneo – 

Christov heat flux model is lower than the Fourier’s model (In the absence of   heat 

transfer instantly throughout the material). Furthermore, the behavior of Pr on the 

thermal boundary layer with the consideration of  found to be decreasing the 

temperature and thereby reduce the thickness of the thermal boundary layer. Fig.2.5.4 

elucidates the influence of  and Nt Nbon    . It is noted that the nanoparticle volume 

fraction increases with the increase in Nt (increase in thermophoresis force) and thus 

augments the concentration boundary layer thickness. In this case, the nanoparticles 
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move away from the hot stretching sheet towards the cold ambient fluid under the 

influence of temperature gradient. But in the case of  Nb (smaller nano-particles), the 

result is there verse. Moreover, larger values of  Nb  will stifle the diffusion of 

nanoparticles away from the surface, which results in a decrease in nano-particle 

concentration values in the boundary layer. Finally, Fig. 2.5.5(a) to Fig.2.5.5(c) 

exhibits the residual error for ( ), ( ) and ( )f      which is early shows the accuracy and 

convergence of OHAM. These figures show thata tenth-order approximation yields 

the best accuracy for the present model. 

  The impact of the physical parameters on      0 , 0 and 0f     , is presented in 

Table 2.2. We notice a decrease in the skin friction as Mn  increases, while the 

opposite pattern is observed for the Nusselt number and the Sherwood number. 

Increasing Weissenberg numberWe  enhances the Nusselt number and the Sherwood 

number where as thermal relaxation parameter  decreases the Nusselt number. 

Sherwood number decreases for increasing values of Le. 

 

2.6.Conclusions 

 In this article, MHD flow, heat and mass transfer of Williamson-Nano fluid over a 

stretching sheet with variable thickness has been examined. Cattaneo – Christov heat 

flux model was used to investigate the heat transfer mechanism. Some of the 

interesting conclusions are as follows: 

 The strong variation in the velocity, temperature, and concentration fields is 

noticed as wall thickness parameter increases accordingly with 1m   or 

1 1m   . 

 In comparison with Fourier's law, the behavior of temperature profile is of 

decreasing nature for Cattaneo - Christov heat flux model 

 An increase in the nanoparticle concentration profiles is due to the increase in 

the thermophoresis parameter and the Brownian motion parameter. 

 Due to the effect of Lorentz force, fluid finds a drag force and hence velocity 

profile decreases while temperature and concentration profiles increases for 

increasing values of magnetic parameter, 

 Weissenberg number is decreasing function of velocity whereas Lewis number 

reduces the Sherwood number. 
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Table 2.1: Comparison of results for -f''(0)when Mn = λ = γ = Nt = Le = 0 and Nb 0→ .   

α  m  
Fang  et al.,( 2012)  

By 

shooting method 

Khader and Megahed 

(2015) when λ = 0  

By Chebyshev spectral 

method 

Prasad et al., (2017b) 

When 

1 2 rε  = ε = 0,θ →∞  

 

Present Result 

OHAM 

-f''(0)  
fh  

f

10E  
CPU 

Time 

0.5 

10 1.0603 1.0603 1.0605 1.0604 1.3249 2.234x10
-8 

273.14 

9 1.0589 1.0588 1.0511 1.0512 1.3248 1.927x10
-8

 269.41 

7 1.0550 1.0551 1.0552 1.0551 1.3241 1.187x10
-8

 257.01 

5 1.0486 1.0486 1.0487 1.0487 1.0095 0.975x10
-8

 245.99 

3 1.0359 1.0358 1.0358 1.0358 1.0099     3.189x10
-9

 245.52 

2 1.0234 1.0234 1.0230 1.0231 1.0184   2.586x10
-9

 267.50 

1 1.0 1.0 1.0 1.0 0 0 98.016 

0.5 0.9799 0.9798 0.9791 0.9790 1.0013   6.932x10
-8

 264.260 

0 0.9576 0.9577 0.9571 0.9572 1.5586 0.981×10
-7

 230.339 

-1/3 1.0000 1.0000 0.9998 1.0000 1.5691 0.989×10
-7

 313.672 

-1/2 1.1667 1.1666 1.6689 1.1668 1.1992 1.089×10
-7

 273.826 

0.25 

10 1.1433 1.1433 1.1439 1.1439 1.2583  1.9986x10
-9

 280.32 

9 1.1404 1.1404 1.1402 1.1401 1.2586   1.975x10
-9

 258.82 

7 1.1323 1.1323 1.1329 1.1328 1.2635   1.456x10
-9

 253.80 

5 1.1186 1.1186 1.1189 1.1182 1.2724   0.986x10
-9

 308.51 

3 1.0905 1.0904 1.0908 1.0907 0.8474   0.965x10
-8

 278.76 

1 1.0 1.0 1.0 1.0 0 0 214.23 

0.5 0.9338 0.9337 0.9330 0.9331 1.4012   1.999x10
-8

 252.13 

0 0.7843 0.7843 0.7840 0.7841 1.13919   0.927x10
-7

 238.16 

-1/3 0.5000 0.5000 0.4999 0.49999          0.946x10
-6

 241.33 

-1/2 0.0833 0.08322 0.08330 0.08331          4.446x10
-6

 265.18 
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Table 2.2: Values of Skin friction, Nusselt number and Sherwood number for different physical parameters. 

 

Le Nt Nb   Pr M   Mn We ''(0)f  fh  
10

fE  '(0)  h  
10E

 '(0)  h  
10E

 CPU time 

0.2 0.5 0.5 0.2 1 0.5 0.25 1 

0 1.37855 -0.873272 8.63x10-10 0.625582 -0.66598 4.08x10-6 0.694768 -1.02251 1.53x10-4 104.641 

0.5 1.76270 -0.462871 2.12 x10-3 0.585092 -0.83649 4.23 x10-5 0.656452 -1.03779 4.10 x10-4 102.29 

0.75 1.86308 -0.236984 9.61 x10-3 0.525560 -0.83791 2.60 x10-4 0.629833 -0.98909 1.26 x10-4 106.89 

0.2 0.5 0.5 0.2 1 0.5 0.25 

0 

0.5 

1.19176 -1.979380 7.13 x10-6 0.664449 -0.56982 5.38 x10-5 0.740098 -0.99473 3.22 x10-5 103.62 

1 1.76270 -0.462871 2.12 x10-3 0.585092 -0.83649 4.21 x10-5 0.656452 -1.07438 4.10 x10-4 106.89 

2 1.86308 -0.236932 9.61 x10-3 0.525562 -0.83791 2.69 x10-4 0.629833 -0.98909 1.26 x10-3 102.93 

0.2 0.5 0.5 0.2 1 0.6 

0.2 

0.5 0.5 

1.40883 -1.406572 1.28 x10-6 0.578156 -1.22059 3.18 x10-4 0.674939 -1.15809 2.62 x10-3 108.56 

0.4 1.36813 -1.385160 1.02 x10-6 0.548096 -1.15795 4.28 x10-4 0.641979 -1.22383 3.32 x10-3 111.07 

0.6 1.32904 -1.365751 7.79 x10-7 0.515830 -1.22647 5.46 x10-4 0.610702 -1.58361 4.04 x10-3 112.20 

0.2 0.5 0.5 0.2 1 

-0.3 

0.25 0.5 0.5 

1.28285 -2.270433 4.69 x10-4 1.022861 -1.35472 5.75 x10-3 1.123012 -1.28715 2.09 x10-3 112.09 

0 1.28606 -2.055212 8.25 x10-6 0.837784 -0.43759 1.08 x10-4 0.904501 -1.25581 6.17 x10-5 109.14 

2 1.36813 -1.385130 1.02 x10-4 0.548096 -1.15795 4.28 x10-4 0.661497 -1.22383 3.32 x10-3 111.59 

5 1.39324 -1.301973 5.64 x10-7 0.483733 -1.20376 1.31 x10-3 0.577634 -1.22383 4.62 x10-3 110.62 

10 1.40469 -1.271321 4.29 x10-7 0.244992 -1.18419 4.19 x10-3 0.535254 -1.17625 4.95 x10-3 111.30 

0.22 0.2 0.2 0.5 

1 

0.3 0.1 0.2 0.1 

0.98183 -1.607461 1.77x10-6 0.552611 -0.65837 1.36x10-3 0.296702 -1.14837 9.86x10-4 102.32 

2 0.98183 -1.607461 1.77x10-6 0.652891 -0.35027 1.53x10-3 0.283287 -1.09906 6.31 x10-3 111.21 

3 0.98183 -1.607461 1.77x10-6 0.690607 -0.27337 1.99 x10-3 0.285916 -1.05317 2.14 x10-3 106.23 

0.22 0.3 0.3 

0.1 

1 0.3 0.1 0.5 0.2 

1.20094 -1.159821 3.62x10-3 0.417221 -1.03785 5..96 x106 .0.07092 -1.03785 2.09 x10-4 104.79 

0.5 1.20094 -1.159821 3.62x10-3 0.450824 -0.54876 1.01 x10-4 0.127017 -0.73465 2.35 x10-4 102.14 

0.9 1.20094 -1.159821 3.62x10-3 0.471138 -0.42114 2.31 x10-3 0.152528 -0.69573 1.74 x10-4 104.06 

0.2 0.5 

1.0 

0.2 1 -0.3 0.1 0.5 0.1 

1.22231 -1.538241 3.73 x10-6 0.370061 -0.95174 1.01 x10-4 0.534933 -0.90221 4.03x10-3 48.796 

1.5 1.22231 -1.538241 3.73 x10-6 0.323654 -0.89234 1.61 x10-4 0.584933 -0.83298 2.30 x10-3 48.125 

2.0 1.22231 -1.538241 3.73 x10-6 0.198278 -1.01025 2.23 x10-3 0.676833 -0.93904 2.41 x10-3 50.109 

0.2 

0.5 

1 0.2 1 -0.3 0.1 0.5 0.1 

1.22231 -1.538241 3.73 x10-6 0.334784 -1.06167 1.01 x10-3 0.638336 -0.97481 1.59 x10-3 48.796 

1.0 1.22231 -1.538241 3.73 x10-6 0.291184 -0.95155 1.63 x10-3 0.662644 -0.87605 1.80 x10-3 48.125 

1.5 1.22231 -1.538241 3.73 x10-6 0.200652 -0.87058 3.83 x10-3 1.24781 -0.85781 3.41 x10-3 52.281 

1 

0.5 0.5 0.2 1 -0.3 0.1 0.5  

1.22231 -1.538241 3.73 x10-6 0.334784 -1.06167 1.01 x10-3 0.638362 -0.97481 1.59 x10-4 101.02 

2 1.22231 -1.538241 3.73 x10-6 0.295675 -1.06154 1.51 x10-4 0.884259 -0.26653 2.87 x10-5 104.62 

3 1.22231 -1.538241 3.73 x10-6 0.257765 -1.05890 2.60 x10-3 1.226140 -1.88671 6.07 x10-3 112.06 
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Fig.2.5.1 (a ) : Horizontal velocity profiles for different values of 
                         We and Mn withPr = 1, Nb =  0.5, Nt = 0.5, Le = 0.2, 
                         m = 0.5,  = 0.2,  = 0.2. 
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Fig.2.5.1 (b ) :Temperature profiles for different values of We and  
                         Mn with Pr=1, Nb = 0.5, Nt = 0.5, Le = 0.2, m = 0.5, 
                          = 0.2,  = 0.2.
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Fig.2..5.1 (c) :Concentration profiles for different values of We 
                        and Mn with Pr = 1, Nb =  0.5, Nt = 0.5, Le = 0.2,    
                       m = 0.5,  = 0.2,  = 0.2.
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Fig.2.5.2 (a ) : Horizontal velocity profiles for different values of 
                          and m with Pr = 1,Nb = 0.5, Nt = 0.5, Le = 0.2,  
                         Mn = 0.5, We = 0.2,  = 0.2.

 

 

f'( )





 m = - 0.3,       m = 0.         

Fig.2.5.2 (b ) : Temperature profiles for different values of  
                         and m with Pr = 1, Nb = 0.5, Nt = 0.5, Le = 0.2, 
                          Mn = 0.5, We = 0.2,  = 0.2.
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Fig.2.5.2 (c ) : Temperature profiles for different values of   and  
                         m with Pr = 1, Nb = Nt = 0.5, Le = 0.2, Mn  = 0.5,  
                         We  = 0.2,  = 0.2.
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Fig.2.5.2 (d) : Concentration profiles for different values of   and
                         m with Pr = 1, Nb =  Nt = 0.5, Le = 0.2, Mn = 0.5, 
                         We = 0.2,  = 0.2.
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Fig.2.5.2 (e ) : Concentration profiles for different values of and 
                         m with Pr = 1, Nb =  0.5, Nt = 0.5, Le = 0.2, Mn = 0.5, 
                         We = 0.2,  = 0.2.
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Fig.2.5.3 : Temperature profiles for different values of  and Pr 
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Fig.2.5.4 : Concentration profiles for different values of  Nt and Nb
                   with Pr = 1, m = 0.5  Le = 1, Mn = 0.5, We = 0.1,  = 0.2,
                    = 0.25.
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Fig.2.5.5 (a): Residual error profile for velocity and temperature for    
                       mwith different values m = 0.5,  = 0.2,We=0.2, = 0.2, 
                       Nt =0.5, Nb= 0.5, Le = 0.2, Pr =1.0, Mn=0.5. 
                      

,      

 = 0.2, 0.4, 0.6

Fig.2.5.5 (b): Residual error profile for temperature and concentration 
                      for  with different values  m = 0.5, We=0.2, = 0.2,   
                      Nt=0.5, Nb= 0.5, Le = 0.2, Pr =1.0, Mn=0.5.  
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Fig.2.5.5 (c): Residual error profile for temperature and concentration 
                      for  with different values m = 0.5,We=0.2, = 0.2,     
                       Nt=0.5, Nb= 0.5, Le = 0.2, Pr =1.0, Mn=0.5.  
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3.1. Introduction 

In recent years, controlling the flow of electrically conducting fluids is one of 

the primary tasks to the scientists and engineers. The controlled flow of these fluids 

has enormous applications in industrial and technological processes involving heat 

and mass transfer phenomenon. However, the polymer industry has adopted a few 

conventional methods to control the fluid flow such as of suction/blowing and wall 

motion methods with the assistance of electromagnetic body forces. The flow of the 

fluids having high electrical conductivity such as liquid metals, plasma, and 

electrolytes, etc. can be significantly controlled by applying an external magnetic 

field. This concept can be used for controlling the classical electro 

magnetohydrodynamic (EMHD) fluid flows. In view of the industrial applications, 

Gailitis and Lielausis (1961) of the physics institute in Riga, the capital city of the 

Latvia country designed one of the devices known as Riga plate to generate 

simultaneous electric and magnetic fields which can produce Lorentz force parallel to 

the wall in weakly conducting fluids. This plate consists of a span wise aligned array 

of alternating electrodes and permanent magnets mounted on a plane surface. This 

array generates a surface-parallel Lorentz force with a neglected pressure gradient, 

which decreases exponentially in the direction normal to the (horizontal) plate. 

However, in vector product form the volume density of a Lorentz force is written as 

1 F = J B and in terms of Ohm’s law it can be expressed as  J = σ E+V×B  where 

σ is an electrical conductivity of the fluid, V is the fluid velocity, and E is the electric 

field. In the absence of any extrinsic magnetic field, a complete contactless flow can 

be attained when 610σ S/m. Where as in the presence of extrinsic magnetic field, 

an induced high current density  σ V×B  can be obtained and we have

   1
  

2
F = J×B = σ V×B ×B = σ V×B B - B V . On the contrary, when 610σ S/m, 

a low current density  σ V×B  can be seen. To tackle with such cases, an extrinsic 

magnetic field is used to obtain the EMHD flow. The expression 

 1 F = J×B σ E×B

 

reveals that the electrical conductivity of a fluid is very small, 

and it does not rely upon the flow field. According to Grinberg (1961), the density 

force can be written as   1 2(-π a)x

1 1 0 0π M j 8 eF = . Tsinober and Shtern (1961) observed 

the substantial improvement in the strength of the Blasius flow towards a Riga plate, 

which is due to the more significant influence of wall parallel Lorentz forces. Further, 
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the boundary layer flow of low electrical conductivity of fluids over a Riga plate was 

scrutinized by Pantokratoras and Magyari (2009). Pantokratoras (2011) extended the 

work of Pantokratoras and Magyari (2009) to Blasius and Sakiadis flow. 

 In addition to controlling the flow of electrically conducting fluids, the 

technological industry demands the control of heat transfer in a process. This can be 

achieved with the help of nanofluids technology. Nanofluid is the blend of the 

nanometer-scale (1nm to100 nm) solid particles and low thermal conductivity base 

liquids such as water, ethylene glycol (EG), oils, etc. Two different phases are used to 

simulate nanofluid. In both the methods researchers assumed as the common pure 

fluid and more precisely in the second method, the mixer or blend is with the variable 

concentration of nanoparticles. Choi (1995) proposed the term nanofluid and verified 

that the thermal conductivity of fluids could be improved by the inclusion of 

nanometer-sized metals,oxides 2 3(Al O , CuO) , carbide ceramics (Sic, Tic/carbon 

nanotubes/fullerene) into the base fluids. Buongiorno (2006) established that 

Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids. 

Makinde and Aziz (2011) examined the impact of Brownian motion and 

thermophoresis on transport equations numerically. Ahmad et al., (2016) and Ayub et 

al., (2016) examined the boundary layer flow of nanofluid due to Riga plate. Further, 

Hayat et al., (2017b, 2017c) analysed squeezing flow of a nanofluid between two 

parallel Riga plates by considering different external effects. Recently, Naveed et al., 

(2019) continued the work of Hayat et al., (2017c) and studied salient features of 

3 4 2(Ag-Fe O /H O) hybrid nanofluid between two parallel Riga plates. Furthermore, 

several research articles can be found in the literature that covers the different 

physical and geometrical aspects of the classical liquids. Few of them can be seen in 

the references.,( Sheikholeslami and Rokni (2017), Wakif et al., (2018a, 2018b, 

2018c), Jawad et al., (2018), Prasad et al., (2019a), Oudina  (2019), Hayat et al., 

(2017d), Daniel et al., (2018), Hayat et al., (2018b), Abd El-Aziz et al., (2019), 

Manjunatha et al., (2018)).   

  All the researchers, as mentioned earlier, have concentrated on conventional 

nonlinear stretching but not on the stretching. Fang et al., (2012) have coined the 

word variable thickness for the specific type of nonlinear stretching and examined the 

performance of boundary layer flow over a stretching sheet with variable thickness. 

Khader and Megahed (2015) reviewed the work of Fang et al., (2012) via Numerical 
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method to explain velocity slip effects. Farooq et al., (2016) considered variable 

thickness geometry with Riga plate to analyze stagnation point flow and Prasad et al., 

(2016b, 2017a, 2018a, 2018b, 2019b) examined the impact of variable fluid properties 

on the Newtonian/non-Newtonian fluid flow field. 

 The main objective of the present work is to reduce the skin friction or drag 

force of the fluids by applying an external electric field in the presence of variable 

fluid properties over a slender elastic Riga plate under the influence of zero mass flux 

and heat transfer boundary conditions. Suitable similarity variables are introduced to 

transform the coupled nonlinear partial differential equations into a set of coupled 

nonlinear ordinary differential equations. These equations are solved numerically via 

Keller Box method (See Vajravelu and Prasad (2014)). The effects of various 

governing physical parameters for velocity, temperature, and nanoparticle 

concentration are discussed through the graphs and tables. The obtained results are 

compared with the actual results in previous literature and are found to be in excellent 

agreement. From this, it can be concluded that the present research work provides 

useful information for Science and industrial sector. 

 

3.2. Mathematical Analysis of the problem 

Consider an electromagnetic flow of a steady, incompressible non-Newtonian 

nanofluid over a slender Riga plate with variable fluid properties. Here the non-

Newtonian fluid model is the Casson model and the rheological equation of state for 

an isotropic and incompressible fluid is given by (for details see, Prasad et al., 

(2018a)). 

2

2

2( / 2 ) ,

2( / 2 ) ,

B x ij c

ij

B x c ij c

P e

p e

   


   

  
 

 

    (3.2.1)  

Where 
ij ije e  and 

ije is the ( , )thi j component of deformation rate,  is the product 

of the component of deformation rate with itself, B is the plastic dynamic viscosity of 

Casson fluid, 
2xP is yield stress of the fluid and c is a critical value of this product 

depending on the non-Newtonian model. Further, the Riga plate is considered as an 

alternating array consisting of electrodes and permanent magnets mounted on a plane 

surface situated at 2 0x   having 1x -axis vertically upwards. The fluid is 
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characterized by a nanoparticle and is analyzed by considering Brownian motion and 

thermophoresis phenomena. The following assumptions are made, 

 Joule heating and viscous dissipation are neglected. 

 The fluid is isotropic, homogeneous, and has constant electric conductivity. 

 The velocity of the stretching Riga plate and the free stream velocity are 

respectively, assumed to be 
1 0 1( ) ( )m

wU x U x b  and
1 1( ) ( )m

eU x U x b  , 

where 0andU U  are positive constants, m is the velocity power index and b 

is the physical parameter related to slender elastic sheet.  

 The Riga plate is not flat and is defined as  
 1 2

2 1x  = A , m 1,
m

x b


  where 

the coefficient A is chosen as small so that the sheet is sufficiently thin, to 

avoid pressure gradient along the Riga plate 1( /  = 0)p x   

 The temperature and nanoparticle concentration at the melting variable 

thickness of the Riga plate are andM MT C respectively and further andT C 

denote the ambient temperature and nanoparticle concentration of the fluid 

respectively. 

 For different applications, the thickness of the stretching Riga plate is assumed 

to vary with the distance from the slot due to acceleration/deceleration of an 

extruded plate.  

         For m =1 thickness of the plate become flat. The physical model of the problem 

is shown in Fig.3.2.1 (a) and Fig.3.2.1 (b). Based on the above assumptions and the 

usual boundary layer approximations, the governing equations for continuity, 

momentum, thermal energy, and concentration for the nanofluid model are expressed 

as follows: 

1 2

1 2

0
u u

x x

 
 

 
  (3.2.2) 

 

 
1 0 0 11 1 1 1

1 2 2

1 2 2 2 1 1 1

1 1
1 ( ) exp

8

e
e

j M xdUu u u
u u T U x

x x x x dx a x

 


   

      
                  

 (3.2.3)  
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Fig.3.2.1 (a): Physical model of Variable thickness 

 

 

 

 

 

 

 

Fig.3.2.1 (b): Physical model of Riga plate 

 

     

                                     

Microscopic 

view of 

nanoparticles 

 

Variable sheet thickness 

Melting heat phenomena 

 

 

 

    Nanofluid 

 
x3 

x2 

x1 



53 

 
 

2

0 1

1 2

1 2 2 2 2 2 2

1
( ) ( ) T

B

p p

Q x DT T T C T T
u u K T T T D C

x x c x x c x x T x


 


  

          
         

             

 (3.2.4) 

2

1 2 2

1 2 2 2 2

( ) T
B

DC C C T
u u D C

x x x x T x

     
   

     
     (3.2.5)  

where 1u  and 2u  are velocity components along 1x  and 2x  directions respectively.   

is the Casson parameter, 
pc  is the specific heat at constant pressure, and   is the 

fluid density. The transport properties of the fluid  are assumed to be constant, except 

for  the fluid  viscosity ( )T , the fluid thermal conductivity ( )K T  and Brownian 

diffusion of the fluid BD , are assumed to be functions of temperature and  nanoparticle 

concentration,  and are expressed as follows 

   2

1
( ) , i.e ( ) ,

1 M r

T T
T T a T T


 


 

  
     (3.2.6) 

1( ) 1 M

M

T T
K T K

T T




  
   

  
  (3.2.7)  

2( ) 1 M
B B

M

C C
D C D

C C






  
   

    

(3.2.8)
 
 

here 2 / and 1/ra T T       are constants and their values depend on the 

reference state and the small parameter   is known as thermal property of the fluid. 

Generally, the positive and negative values of 2a  describes two different states, 

namely, liquids and gases respectively, i.e. for 2 0a   represents the liquid state and 

2 0a   represents gas state. Here , and BK D
 

are ambient fluid viscosity, thermal 

conductivity and Brownian diffusion coefficient respectively. 1 2and 
 

are small 

parameters known as the variable thermal conductivity parameter and variable species 

diffusivity parameter respectively. The term  0 1Q x  represents the heat generation 

when 0 0Q   and heat absorption when 0 0Q  , and are used to describe exothermic 

and endothermic chemical reactions respectively. Further, 0j  
is the applied current 

density in the electrodes,  0 1M x  is the magnetization of the permanent magnets 

mounted on the surface of the Riga plate and  1 1a x  is width between the magnets 

and electrodes. The special forms    
(1 )/2

0 1 0 1 ,
m

Q x Q x b


 
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   
(1 )/2

0 1 0 1

m
M x M x b


  and    

(1 )/2

1 1 1 1

m
a x a x b


   are chosen to obtain the 

similarity solutions.   is defined as the ratio between the effective heat capacity of 

the nanoparticle material and heat capacity of the fluid, i.e. ( ) / ( ) ,p p p fc c    TD  

is the thermophoresis diffusion coefficient and  
0T

 
is solid temperature. The 

appropriate boundary conditions are   

   
 

1 1 0 1 1 2
2 2 2 1

2 1 0 2 1 2

1 1 1 2

( ) ( ) , 0,
at

( ) ( , ),

( ) ( ) , , as

m T
w B M m

s M

m

e

DC T
u U x U x b D T T

x T x x A x b

K T x c T T u x x

u U x U x b T T C C x

 




  

  
         

    


     

 (3.2.9)                      

The third condition defined in equation (3.2.9)    2 1 0 1 2( ) v( , )s MK T x c T T x x     

represents the melting temperature in which 1  is the latent heat of fluid, MT  is the 

melting temperature, 0  and sT C are the temperature and heat capacity of the concrete 

surface respectively. On substituting equations (3.2.6) - (3.2.8) in the basic equations 

(3.2.3) - ( 3.2.5), it reduces to 

 

 

1 1 1
1 2

1 2 2 2

0 0 1

2

1 1 1

1 1
1

1 ( )

exp
8

e
e

u u u
u u

x x x T T x

j M xdU
U x

dx a x



  

 





 



    
     

        

 
    

 

   (3.2.10)  

 0 1

1 2 1

1 2 2 2

2

2

2 2 2

1 ( )

1

M

p M p

M T
B

M

Q xK T TT T T
u u T T

x x x c T T x c

C C DC T T
D

C C x x T x


 

 





  

 

      
                

        
                   

(3.2.11) 

2

1 2 2 2

1 2 2 2 2

1 M T
B

M

C C DC C C T
u u D

x x x C C x T x




 

       
                

   (3.2.12)  

Now, we transform the system of equations (3.2.10) - (3.2.12) into dimensionless 

form. To this end, the dimensionless similarity variable be, 

 
( 1)

0 1
2

( )
1 2

mU x b
x m








 

 

(3.2.13)  
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and the dimensionless stream function, the dimensionless temperature and the 

dimensionless nanoparticle concentration are, 

 

  ( 1)

0 12 1 ( ) F( ), ( ) , ( ) ,m M M

M M

T T C C
m U x b

T T C C
    



 

 
      

 
 

(3.2.14)  

with the use of Eq. (3.2.13) and (3.2.14), the velocity components are, 

1 2 0 1

( 1)

2 1 0 1

( ) ( ),

2 ( 1) ( 1)
 =- = - ( ) ( ) ( ) ,

( 1) 2 2

m

m

u x U x b F

m m
u x U x b F F

m

 

    



    

  
      

  (3.2.15)  

here prime denotes differentiation with respect to . In the present work, it is assumed 

1m    for the validity of the similarity variable. With the use of Eqns. (3.2.13) - 

(3.2.15), then Eqns. (3.2.10) - (3.2.12) and the corresponding boundary conditions 

reduce to: 

1

1

2 *1 2
1 1 0

1r

m
F F F F A Qe

m

 

 





    
                          

(3.2.16) 

    1 2

2Pr
1 Pr (1 ) 0

( 1)
Nb Nt F

m
                  


                     

(3.2.17)   21 ' 0
Nt

Le F
Nb


  

          
  

                                 (3.2.18) 

1
'( ) Pr ( ) 0, '( ) 1, ( ) 0,

1

'( ) '( ) 0,

'( ) *, ( ) 1, ( ) 1

m
M F F

m

Nb Nt

F A

    

 

 
       

 

   

         

 (3.2.19)  

The non-dimensional parameters 1, *, , ,Pr, , , , , andr A Q Nb Nt Le M     represent 

the variable viscosity parameter, stretching rate ratio parameter, modified Hartman 

number, dimensionless parameter, Prandtl number, wall thickness parameter, 

Brownian motion parameter, thermophoresis parameter, heat source/sink parameter, 

Lewis number and the dimensionless melting heat parameter respectively and which 

are defined as follows. 

 

0 0
12 ( 1)

0 0 1 0 1
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, * , , , Pr ,

( ) 8 ( 1) ( )
r m

M
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A Q

T T U U a m U x b
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  
  



  


    

  
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0 0
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    



 
   




 

   (3.2.20)  

The value of the r  is determined by the viscosity of the fluid under consideration, it 

is worth mentioning here that for 0 .i e     (constant) then .r   It is also 

important to note that r  
is negative for liquids and positive for gases when ( )MT T   

is positive, this is due to fact that the viscosity of a liquid usually decreases with 

increasing in temperature. Further, 0M   shows that there is no melting 

phenomenon, also it should be noted that M comprises of the Stefan constants 

0 1 0( ) / and ( )p s Mc T T c T T  
 
of liquid and solid phase respectively.  Now, we define 

the following            , , ,      F f where            here 

   indicates the flat surface. Then Esq. (3.2.16) to (3.2.19) reduces to:

 

1

1

( )2 *1 2
1 1 0

( 1)r

m
f f f f A Qe

m

  

 



 

   
                       

(3.2.21) 

    1 2

2
1 Pr ' (1 ) ' ' Pr 0

1
Nb Nt f

m
              


 (3.2.22)                               

 21 ' 0
Nt

Le f
Nb

    
  

      
  

  (3.2.23) 
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m
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Nb Nt

f A

  

 

 

   
        

 

       

 (3.2.24)                                 
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Physical quantities of interest   

The important physical quantities of interest for the governing flow problem, 

such as skin friction
fC , the local Nusselt number ,Nu  and Sherwood number Sh are 

defined as follow. 

 

 

2

1

1

,

,

w
f

w

w

M

w

M

C
U

q
Nu x b

T T

j
Sh x b

C C









 


 


 (3.2.25)                                                                                                            

 
 

1 21
2 1

2 2 2

where , and at




  
    

  

m

w w w

T u T C
q j x A x b

x x x




                                                         

are respectively called the skin friction, the heat flux and the mass flux at the wall. 

These parameters in dimensionless form can be written as  

1/2 1
Re (0),

2
f

m
C f




  

1/2 1
Re (0) and

2

m
Nu  

 

 

1/2 1
Re (0)

2

m
Sh  

  , 

 where 1Re ( ) /wU x b    is called local Reynolds number.  

3.3. Exact analytical solutions for some special cases   

In this section, we study the exact solutions for some special cases. It is important to 

analyze some theoretical analysis of the certain solutions for some given physical 

parameters and these solutions serve as the base function for computing general 

solutions through numerical schemes. In the case of absence of Casson parameter ,  

variable fluid viscosity parameter ,r stretching rate ratio parameter *,A  and modified 

Hartman number Q  the present problem reduces to Fang et al., (2012). The 

discussions here will be emphasized on other parameters except 1m  .    
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Case (i): when  1/ 3m    then Eq. (3.2.21) reduces to the following form,  

2( ') 0f ff f      (3.3.1)   

with the associated boundary conditions (3.2.24) becomes,                                        

(0) 2 , '(0) 1, '( ) 0f f f      (3.3.2)  

On integration Eq. (3.3.1) twice yields to                                                                        

2 22 ( 2 ) (2 1)f f           (3.3.3)   

where (0),f  in order to have a finite solution it is essential to consider 2                                         

2 22 (2 1)f f     when ,   we have  

2( ) 2 4 .f      (3.3.4) 

The solution is    2 2 1 2( ) 2 4 tanh 2 4 2 tanh 2 2 4f           
  

 and (3.3.5)  

   2 2 2 1 2( ) 1 2 Sech 2 4 2 tanh 2 2 4 .f            
    

(3.3.6)     

It should be noted that, for  1/ 3,m    the above solutions reduce to the solutions for 

a flat stretching surface. This confirms that the present numerical solutions are in 

good agreement with those of Fang et al., (2012) and these can be used for numerical 

code validation in this work.       

Case (ii): For 1/ 2,m    we can obtain another analytical solution, for this case, Eq. 

(3.2.21) reduces to,                                                                                  

22( ') 0f ff f     (3.3.7)   

with the respective boundary conditions (3.2.24) becomes as,                                     

(0) 3 , '(0) 1, '( ) 0.f f f     (3.3.8) 

Equation (3.3.7) can be written in the form of                                                                

   3/2 1/2 3/21 2 3 0f d d f d d f f f    
    (3.3.9) 

Integrating Eq. (3.3.9) once reduces to the following form                                         

    
2 2 21 2 1 2 3 9f ff f f          

 
(3.3.10)

                                                
 

Applying free boundary condition,                                                                

 3 1 6    
 

 (3.3.11)  

On integration Eq. (3.3.10) leads to                                                                           

      3/21/2 3/22 3 2 3 3 3f f f      
 

 (3.3.12)
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The final solution is                                                                                                                                                                                                    

         
2

2 2 2 11 2 ln 3 tan 2 3 0D d f d f d d f d f d d  
       

     

(3.3.13) 

3/2 1/3where [(3 ) 3 / (2 3 ) andd               

      
2

2 2 2 11 2 ln 3 3 3 3 tan 2 3 3 0D d d d d d d d          
    (3.3.14)

 
 

Since the system of Eqns. (3.2.21) - (3.2.23) with boundary conditions (3.2.24) has no 

exact analytical solutions, they are solved numerically via a Keller-Box method.  

3.4. Method of solution 

The systems of highly nonlinear coupled differential equations (3.2.21) to 

(3.2.23) along with appropriate boundary conditions (3.2.24) are solved by finite 

difference scheme known as Keller Box Method. This system is not conditionally 

stable and has a second order accuracy with arbitrary spacing. For solving this system 

first write the differential equations and respective boundary conditions in terms of 

first order system, which is then, converted into a set of finite difference equations 

using central difference scheme. Since the equations are highly nonlinear and cannot 

be solved analytically, therefore these equations are solved numerically using the 

symbolic software known as Fedora. Further nonlinear equations are linearized by 

Newton’s method and resulting linear system of equations is solved by block tri-

diagonal elimination method. For the sake of brevity, the details of the solution 

process are not presented here. For numerical calculations, a uniform step size is 

taken which gives satisfactory results and the solutions are obtained with an error 

tolerance of 610  in all the cases. To demonstrate the accuracy of the present method, 

the results for the dimensionless Skin friction, Nusselt number and Sherwood number 

are compared with the previous results. 

Validation of Methodology 

The main objective of this section is to check the validation of the present 

work. The present numerical results are compared with the existing work of Farooq et 

al., (2016) and Prasad et al.,(2018b) in the absence and presence of Riga plate with 

1 2Pr * 0, 0, , rA Nt Le M Nb                and the results are 

in good agreement with the previous literature and the same has been depicted in 

Table 3.1 
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3.5. Results and discussion of the problem   

The systems of nonlinear ordinary differential equations (3.2.21) to (3.2.23) 

together with the appropriate boundary conditions (3.2.24) are numerically solved by 

using Keller Box method. The influence of  various physical parameters such as 

Casson parameter  , variable fluid viscosity parameter ,r velocity power index m , 

stretching rate ratio parameter *,A  modified Hartman number ,Q  dimensionless 

parameter 1 , variable thermal conductivity parameter 1 , Brownian motion 

parameter Nb , thermophoresis parameter ,Nt  Prandtl number Pr , heat source/sink 

parameter  , variable species diffusivity parameter 2 , Lewis number Le , and wall 

thickness parameter   on the horizontal velocity profile  f  , the temperature 

profile ( )  , and the concentration profile ( )   are exhibited through Figs.(3.5.1-

.3.5.8). The computed numerical values for the skin friction  0 ,f   the Nusselt 

number  0 and the wall Sherwood number  0 are presented in Table 3.2. 

The effect of velocity power index m  and wall thickness parameter  on 

velocity, temperature and concentration boundary layers are depicted in Figs. 3.5.1(a-

c). Fig. 3.5.1(a) elucidates that, for increasing values of ,m   f   reduce and this is 

due to the fact that the stretching velocity enhances for larger values of m  which 

causes more deformation in the fluid, consequently velocity profiles decrease. A 

similar trend may be observed in the case of ( )   (Fig.3.5.1(b)), where as 

concentration distribution (Fig.3.5.1(c)) shows a dual characteristic, that is for larger 

values of m  concentration profiles reduces near the sheet and opposite behaviour is 

observed away from the sheet. When 1,m  the sheet become flat. Similarly, for 

higher values of wall thickness parameter , velocity profiles fall, but the 

temperature distribution upgrade near the sheet and downwards away from the sheet. 

Whereas, the impact of   is quite opposite in the case of concentration distribution. 

Fig.3.5.2 (a) through 3.5.2(c) indicates the influence of   and 1  on

  , ( ) and ( )f      . For greater values of   velocity profiles are compressed, this 

is because as   increases the corresponding value of yield stress fall as a result 

velocity boundary layer thickness decreases. The temperature distribution rises for 

different estimations of   and concentration distribution exhibits exactly reverse 
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trend. Effect of 1  
on these three profiles is same as that of   . It is noticed from in 

Figs.3.5.3 (a-c) that both r and *A  exhibits opposite trend, increasing variable fluid 

viscosity reduces the velocity and concentration profiles while the enhancement is 

observed in the case of temperature profiles. This may be due to the fact that, lesser 

 r  implies higher temperature difference between the wall and the ambient nanofluid 

and the profiles explicitly manifest that  r is the indicator of the variation of fluid 

viscosity with temperature which has a substantial effect on  f  and hence on 

  ,f  where as in the case of temperature the effect is reversed. Fig.3.5.4 illustrates 

the impact of *A  and Q  on  f  . An improvement in *A  corresponds to the 

enhancement of velocity boundary layer thickness. The enhancement in the velocity 

profile is observed for amplifying Q . Conventionally the velocity profiles are the 

decreasing function of Hartman number where as in this case the Lorentz force which 

is produced due to the magnetic arrays parallel to the surface is responsible for the 

enhancement of the momentum boundary layer thickness. The influence of Nb  and 

Nt  on temperature and concentration distribution are sketched in Figs.3.5.5 (a-b). It is 

seen that the higher values of Nb  enhances temperature profiles and its boundary 

layer thickness, whereas concentration distribution suppressed near the sheet and 

swells away from the sheet. The larger Nt  creates a thermophoresis force which 

compels the nanoparticles to flow from the hotter region to the colder region which 

results in raising temperature profiles. In the case of concentration distribution, the 

duel behavior is noticed which reduces near the sheet and increases away from it (See 

Fig. 3.5.5(b)). The characteristic of Prandtl number Pr  and variable thermal 

conductivity parameter 1  
on temperature distribution is demonstrated in Fig.3.5.6. 

Usually temperature distribution reduces for higher values of Pr  and enhances for 

larger values of 1, but in this work quite opposite behaviour can be seen, this is due to 

the presence of melting heat transfer parameter M  and stretching rate ratio parameter

*A . Fig.3.5.7 records the effect of heat source/sink parameter  on ( )  , an increase 

in   means rise in the temperature difference ( ),MT T  which leads to an increment in 

temperature distribution. Fig.3.5.8 is plotted for different values of Le  and 2  on ( )  . 

Lower the Brownian diffusion coefficient BD  the higher Lewis number: This leads to 

a decrease in the thickness of the nanoparticle concentration boundary layer. It is 
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interesting to note that a distinct rock bottom in the nanoparticle volume fraction 

profiles occur in the fluid adjacent to the boundary for higher values of Le  and lower 

values of 2 . This means that the nanoparticle volume fraction near the boundary is 

lesser than the nanoparticle volume fraction at the boundary; accordingly, 

nanoparticles are likely to transfer to the boundary.   

In Table 3.2 we present the results for      0 , 0 and 0f    

corresponding to different values of the physical parameters. The skin friction 

coefficient is a decreasing function of the parameters ,m  , ,  1,  r  and 

increasing function of *,A  .Q  Nusselt number reduces for ,m , *,A  1  and 

increases for 1, , ,Pr,and .r Nb Nt     Further, the Sherwood number decreases for 

1&   and increases for *A . 

3.6. Some important key points of the problem (Conclusions) 

The present article examines the effects of variable fluid properties on the heat 

transfer characteristics of a Casson nanofluid over a slender Riga plate with zero mass 

flux and melting heat transfer boundary conditions. Here, the thickness of the sheet is 

erratic. The critical points of the present study are summarized as follows: 

 The effect of velocity power index m on velocity and temperature field is 

similar, that is, in both the cases the profiles increases as m reduces, whereas 

in the case of concentration distribution dual nature is observed. 

 Velocity and concentration distributions reduces for increasing values of 

Casson parameter, but the temperature distributions shows exactly opposite 

behavior for larger values of Casson parameter. 

 Enhanced variable fluid viscosity parameter influences the velocity and 

temperature field in opposite manner.  

 The modified Hartmann number enhances the velocity distribution and 

reduces the temperature distribution. 

 The squeezed thermal boundary layer is observed for the increasing values of 

variable thermal conductivity parameter. 

 The concentration distribution improves for higher values of variable species 

diffusivity parameter. The duel nature of the concentration profiles is recorded 

for the Brownian motion parameter and thermophoresis parameter.                                                                                   
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Table 3.1: Comparison of skin friction coefficient ''(0)f  for different values of 

wall thickness parameter   and velocity power
 
  index m  when the presence 

and absence of a Riga plate at fixed values of  

1 2 rPr = A* = ε = ε = Nt = λ = Le = M = 0, Nb 0,β ,θ .→ →∞ →∞  
 

                   
 

  

 

 

 

 

 

 

 

 

 

m  

Presence of 

Riga plate 

Farooq et al., 

(2016) by 

OHAM when 

10.1, 0.2Q    

Absence of Riga 

plate Prasad et al., 

(2018b) by OHAM, 

when

10, 0Mn Q      

Present results, Keller Box 

Method 

Presence 

of Riga 

plate 

Absence of 

Riga plate 

0.25 

02 0.9990 1.0614 0.9990 1.06140 

03 1.0465 1.0907 1.0456 1.09050 

05 1.0908 1.1182 1.0902 1.11860 

07 1.1120 1.1328 1.1121 1.13230 

09 1.1244 1.1401 1.1247 1.14041 

10 1.1289 1.1439 1.1288 1.14334 

0.5 

02 0.9673 1.0231 0.9672 1.02341 

03 0.9976 1.0358 0.9975 1.03588 

05 1.0252 1.0487 1.0253 1.04862 

07 1.0382 1.0551 1.0383 1.05506 

09 1.0458 1.0512 1.0458 1.05893 

10 1.0485 1.0604 1.0485 1.06034 


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Table 3.2: Values of Skin friction, Nussult number and Sherwood number for different physical parameters.  

Pr  Le  Nb  Nt  1  2    *A  M  1    Q  
r  m  0.25   0.5   

1 0.96 0.5 0.5 0.1 0.1 0.1 0.01 0.2 2 1 0.1 -5 

 (0)f   (0)   (0)  (0)f   (0)   (0)  

-0.3 -0.0573 1.883 -1.8833 -0.1095 2.4189 -2.4189 

-0.1 -0.1990 1.520 -.15201 -0.2243 1.8289 -1.8289 

 0.0 -0.2369 1.390 -1.3905 -0.2561 1.6311 -1.6311 

 0.5 -0.3297 1.025 -1.0256 -0.3356 1.0937 -1.0937 

 1.0 -0.3697 08643 -0.8643 -0.3685 0.8643 -0.8643 

Pr  Le  Nb  Nt  1  2    *A  M  m  
r  Q                          1 1.0                          1 2.0      

1 0.96 0.5 0.5 0.1 0.1 0.1 0.01 0.2 0.5 -5 0.1 

0.5 

0.25 

-0.4136 0.987 -0.9876 -0.4489 0.9879 -0.9879 

1.0 -0.4925 0.996 -0.9962 -0.5414 0.9969 -0.9969 

2.0 -0.5851 1.003 -1.0036 -0.6519 1.0044 -1.0044 

5.0 -0.6114 1.004 -1.0045 -0.6839 1.0056 -1.0056 

Pr  Le  Nb  Nt  1  2    *A  M  1  Q  
r                          0.5m                          1.0m   

1 0.96 0.5 0.5 0.1 0.1 0.1 0.1 0.2 2 1 

-10 

1 0.25 

-0.5288 0.968 -0.9682 -0.5628 0.8093 -0.8093 

-5.0 -0.5165 0.971 -0.9710 -0.5516 0.8105 -0.8105 

-2.0 -0.4863 0.977 -0.9776 -0.5234 0.8128 -0.8128 

-1.0 -0.4494 0.984 -0.9842 -0.4878 0.8143 -0.8143 

-0.5 -0.4009 0.989 -0.9890 -0.4395 0.8152 -0.8152 

r  Le  Nb  Nt  *A  2    m  M  1  Pr  Q                          1 0.2                          1 0.4   

-5 0.96 0.5 0.5 0.01 0.1 0.1 0.5 0.2 2 

0.72 

0.1 1 0.25 

-0.5275 0.873 -0.8735 -0.5283 0.8758 -0.8758 

1.0 -0.5113 1.042 -1.0429 -0.5118 1.0531 -1.0531 

2.0 -0.4932 1.394 -1.3949 -0.4934 1.4314 -1.4314 

5.0 -0.4844 1.681 -1.6814 -0.4850 1.7462 -1.7462 

Pr  Le  m    *A  2  1  1  M  Nb  r  Q                         
0.5Nt   

                      
1Nt 

   
 

1.0 0.96 0.5 0.1 0.01 0.1 0.3 0.1 0.2 

0.5 

-5 0.1 1 0.25 

-0.5111 1.036 -1.0366 -0.5149 0.9594 -1.9188 

1.0 -0.5101 1.054 -1.5272 -0.5113 1.0229 -1.0229 

2.0 -0.3415 4.900 -3.6755 -0.5096 1.0544 -0.5272 

1  M  Nb  Nt  *A  1  m    Le  Pr  r  Q                          2 0.2                         2 0.2   

0.3 0.2 0.5 0.5 0.01 0.1 0.5 0.1 

1.5 

1 -5 0.1 1 0.25 

-0.3365 1.0526 -1.0526 -0.3394 0.9289 -0.9289 

2.0 -0.3358 1.0755 -1.0755 -0.3385 0.9599 -0.9599 

5.0 -0.3339 1.1495 -1.1495 -0.3359 1.0579 -1.0579 
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     Fig.3.5.1(a ) : Horizontal velocity  profiles for different values 
                       of   and m with Pr = 1, Nb =  Nt = 0.5, = 0.1,     
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 = 0.3,  = 0.2, M = 0.2, A* = 0.01.
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Fig.3.5.1(b ) : Temperature profiles for different values of   and    
                        m with Pr = 1, Nb = Nt = 0.5, Le = 0.96, M = 0.2,   
                  = 0.1, 
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 = 0.1, 
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                        m with Pr = 1, Nb =  Nt = 0.5,  Le = 0.96,  M = 0.2, 
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                        with Pr = 1, Nb = 0.5,  Nt = 0.5,  Le = 0.96,M = 0.2,   
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 

 = 0.3,          


 =  1,            


 = 2

Fig.3.5.2(a ) : Horizontal velocity  profiles for different values of     
                        and 
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 with Pr = 1, Nb = 0.5,  Nt = 0.5,  Le = 0.96, 
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  with Pr = 1, Nb =  Nt = 0.5,  Le = 0.96, M = 0.2, 
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Fig.3.5.3(a ) : Horizontal velocity  profiles for different values of     

                       
r
  and A* with Pr = 1, Nb = Nt = 0.5,  Le = 0.96,   

                M = 0.2,  = 0.1, 
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Fig.3.5.3(b) : Temperature profiles for different values of 
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 and  

                       A* with Pr = 1, Nb = Nt = 0.5, Le = 0.96, M = 0.2,
                   = 0.1,  
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Fig.3.5.3(c ) : Concentration profiles for different values of 
r
    

                      and A* with Pr = 1, Nb = 0.5, Nt = 0.5, Le = 0.96,  
                  M = 0.2,  = 0.1, 
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Fig.3.5.5(b) : Concentration profiles for different values of Nb     
                        and Nt  with Pr = 1, Le = 0.96, M = 0.2,  = 0.1,    
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Fig.3.5.5(a) : Temperature profiles for different values of Nb     
                       and Nt  with Pr = 1, Le = 0.96, M = 0.2,  = 0.1,    
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Fig.3.5.6 : Temperature profiles for different values of 
1
 and Pr    

                   with m = 0.5, Nb = 0.5, Nt = 0.5, Le = 0.96, M = 0.2,  
                   = 0.1,  = 0.25, 


 = 0.1,

r
 = -5, Q = 1, 

1
 = 0.3, = 1, 

                   A* = 0.01.
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4.1.Introduction 

The stretching sheet is a blend of metal and polymer sheets that are used in the 

polymer extrusion processes. The flow induced by a special form of a stretching sheet has 

received the attention of numerous researchers.  The special form of a stretching sheet is 

called a variable thickened sheet; it helps to reduce the weight of structural elements in 

the mechanical, civil, automobile, and aeronautical engineering. Because of these facts, 

Lee (1967) has introduced the concept of a needle whose thickness is comparable with 

the boundary layer.  Fang et al., (2012) extended the work of Lee (1967) by considering 

slip velocity and obtained a dual solution. Khader and Megahed (2015) investigate the 

numerical solution for the slip velocity on the flow of a Newtonian fluid over stretching 

with variable thickness and Anjali Devi and Prakash (2016) considered similar geometry 

for MHD flow and heat transfer. The combined effect of variable viscosity and thermal 

conductivity on the flow field over a slender elastic sheet was examined by Vajravelu et 

al., (2017). Recently, Prasad et al., (2017a) and Muhammad et al., (2018) described the 

mixed convection boundary layer flow and heat transfer of a variably thickened vertically 

stretched heated sheet. The aspect of mixed convective boundary layer flow has a wide 

range of applications. Few such applications may include, solar receivers exposed to 

wind currents, electronic devices cooled by fans, nuclear reactors cooled during an 

emergency shutdown, heat exchangers placed in a low-velocity environment, drying 

technologies, etc. In studies (Vajravelu (1994), Ishak et al., (2008), Prasad et al., (2010), 

Das et al., (2015)) characteristics of the mixed convective boundary layer flows are 

analyzed.        

In modern days, nanotechnology becomes one of the most powerful research areas 

due to its importance in various fields of science and the industrial sector. Practically, 

convectional heat transfer fluids, including oil, water, grease, ethylene glycol, and engine 

oil, contain low thermal conductivity in comparison with solids. To lead this situation, 

adding a small number of solid particles to the fluids; as a result, thermophysical 

properties gradually improve, and hence these are known as nanofluids (see details, Choi 

(1995)). These are made up of tiny minute particle suspensions (metals, oxides, carbide 

ceramics, and carbon nanotubes, etc.) having size 10-50 nm. An instant research work 

grabbed more attention from various researchers due to their applications in science and 

engineering fields, such as microelectronic cooling, air conditioning, transpiration, 

ventilation, etc. The Brownian motion and thermophoresis effects on heat and mass 

transfer analysis were examined by Buongiorno (2006). To get more details of these 

fluids, some relevant investigations have mentioned in Refs. ( Makinde and Aziz (2011), 
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Shiekholeslami and Rokni (2017), Prasad et al., (2017a), Wakif et al.,(2018a, 2018b, 

2018c)). 

For highly conducting fluids such as liquid metals, plasma and electrolytes, etc, can 

be significantly controlled by applying an external magnetic fields, this type of 

mechanism is known as classical electro magnetohydrodynamic fluid flow control, which 

plays a vital role in science and industrial applications, such as in engineering, 

geophysics, astrophysics earthquakes, and sensors, etc. However, some of the fluids have 

low electrical conductivity and very small induced current when the magnetic field is 

present; therefore, to lead this difficult situation, it is necessary to apply an external 

electric field to control EMHD flow. To overcome these problems, two scientists named 

Gailitis and Lielausis (1961) framed the control device called the Riga plate to produce 

electric and magnetic fields simultaneous and, therefore, which can create wall parallel 

Lorentz force in weakly conducting fluids. Tsinober and Shtern (1961) extended this 

work to Blasius flow. Further, Pantokratoras and Magyari (2009) improved the work of 

Gailitis and Lielausis (1961) by considering a very basic aspect of the boundary layer 

flow of low electrically conducting fluids over the Riga plate. Hayat et al., (2016b, 2016c) 

described the convective heat transfer in the boundary layer flow of an electrically 

conducting nanofluid over a stretchable Riga plate with variable thickness. Recently, 

Bhatti et al., (2016) and Iqbal et al., (2017) examined the effects of thermal radiation and 

melting heat transport of electromagnetic hydrodynamics on viscous nanofluid through a 

Riga plate. Furthermore, Nayak et al., (2018a, 2018b, 2019) considered NaCl-CNP 

nanofluid, third grade nanofluid and tangent hyperbolic nanofluid to examine the flow 

nature through vertical Riga plate.    

The preceding works of literature give inspiration for the authors to study the flow, 

heat, and mass transfer characteristics of a mixed convective nanofluid over a coagulated 

Riga plate in the presence of viscous dissipation and chemical reaction. The physical 

impacts of the governing partial differential equations are converted into a set of ordinary 

differential equations with the help of appropriate similarity transformations. In the 

present work, an optimal homotopy analysis method (OHAM) (see Liao (2010), Van 

Gorder (2019)) is used to solve the coupled nonlinear ordinary differential equations. The 

outcomes of the numerical computation via  MATHEMATICA 12 software are 

graphically manifested and tabulated for the nanofluid velocity, temperature, and 

concentration within the appropriate scope of the relevant parameters. The obtained 

results are compared with the earlier published results and are found to be in excellent 

agreement. Here it is to be expected that the present literature provides useful 

information for science and industrial applications. 

https://www.wolfram.com/mathematica/
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4.2.Mathematical Formulation 

 A steady two – dimensional convective boundary layer flow of a  viscous 

incompressible nanofluid past an impermeable vertical heated coagulated Riga plate 

with zero mass flux at the surface is imposed for the investigation. Riga plate 

comprises permanent magnets and alternating electrodes in which 1x - axis is 

considered vertically above, as shown in Fig. 4.2.1(a). These arrays produce a Lorentz 

force which is parallel to the surface and exponentially decreases in the direction 

horizontal to the plate. The origin is situated at the ¸slot of the coagulated Riga plate 

with positive 1x -axis measured along the upward course of the plate and negative 

being measured opposite to it as exhibited in Fig.4.2.1(b). The flow is confined in the 

positive direction of the 2x -axis , which is caused due to continuous stretching of the 

plate with the simultaneous application of two equal opposite forces along the 1x - 

axis , such that the origin (variable thickness of the plate) is fixed. The velocity of the 

coagulated Riga plate is assumed to be 1 0 1( ) ( ) ,  m

wU x U x b where 0U  is a positive 

constant, b is a small physical parameter which is related to the slender of an elastic 

sheet and m  is the velocity exponent parameter. The sheet is not uniform, and its 

thickness is taken as
(1 )/2

2 1( ) , 1,  mx A x b m
 where A  is very small constant related to 

the stretching sheet. At 1,m   the present physical problem reduces to plane 

stretching sheet. Heat transfer characteristics are analyzed by considering the effects 

of viscous dissipation, Brownian motion and thermophoresis phenomena, the 

temperature and nanoparticle concentration at the non-uniform (variable thickness) 

surface of the coagulated Riga plate is assumed as 

       1 1 1 1 2 1and   
r s

w wT x A x b C x A x b  respectively, r and s are positive constants, 

and the ambient temperature and nanoparticle concentration are respectively denoted 

as and T C . The physical diagram of the present problem is given as, 
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Fig.4.2.1 (a) : Physical model of variable thickness of the sheet. 
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                                                      Fig.4.2.1(b): Riga plate. 
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Under the above assumptions and the usual boundary layer approximations, the 

governing equations for the mixed convective flow  heat and mass transfer in usual 

notations can be written as,  

1 2

1 2

0
u u

x x

 
 

 
  

(4.2.1)   

 

 
   

2
0 0 11 1 1

1 2 22

1 2 2 1 1

exp
8

T C

j M xu u u
u u x g T T g C C

x x x a x

 
  


 

    
            

  (4.2.2) 

 
2 2

2
0 1 1

1 2 1 2

2 2 2 2 2 2 2

( ) ( )T
B

p p

Q xD uT T T C T T
u u D C T T

x x x x x T x c c x


 

 


         
          

           

  (4.2.3) 

  
2 2

1 2 1 12 2

1 2 2 2

T
B

DC C C T
u u D K x C C

x x x T x




   
    

   
  (4.2.4)

  

and the corresponding boundary conditions can be written as, 

 

1 1 0 1 2

1 2

2 1

1

2 2 2

1 1 1 2

( ) ( ) , 0

at ( )
( )( ) , 0,

( ) ( ) , , as

m

w

m

T
s w B

m

e

u U x U x b u

x A x bDT C T
K T h x T T D

x x T x

u U x U x b T T C C x





  

   


    
        

     

  (4.2.5) 

in the above equations 1 2andu u  are the velocity components along the Cartesian 

coordinates 1 2andx x  respectively,   is the kinematic viscosity, 0j  is the applied 

current density in the electrodes, 
 
is the fluid density, g

 
is the acceleration due to 

gravity, T  
is thermal expansion coefficient, C  

is the concentration expansion 

coefficient, 1 is the thermal diffusivity,   is the ratio between the effective heat 

capacity of the nanoparticle material and heat capacity of the fluid, BD  is the Brownian 

diffusion coefficient, TD  is the thermophoresis diffusion coefficient, pc is the specific 

heat at constant pressure,   is dynamic viscosity, and   1 1K x  is the local chemical 

reaction rate parameter and exhibits destructive chemical reaction and generative 

chemical reaction for greater than zero and less than zero respectively. thermal 

conductivity, andT C are temperature and nanoparticle concentration of the fluid 

respectively. The special forms of 

               
2 1 1 2 1 1

0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1, , ,,
m m m m

M x M x b a x a x b K x K x b Q x Q x b
   

       

   
1 2

1 1and
m

s sh x h x b


   are respectively the variable magnetization of the 
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permanent magnets mounted on the surface of the Riga plate, the variable width 

between the magnets and electrodes, the variable chemical reaction rate, the variable 

heat generation/absorption coefficient, and is the surface variable heat transfer 

coefficient. These special forms are chosen to obtain the similarity solution. The third 

term on the right-hand side of the equation (4.2.2) represents the buoyancy force term, 

with “+” and “-” signs refer to the buoyancy assisting and buoyancy opposing flows, 

respectively. Fig.4.2.1(a) provides the necessary information of such a flow field for a 

stretching vertical heated sheet with the upper half of the flow field being assisted and 

the lower half of the flow field being opposed by the buoyancy force. For the assisting 

flow, the 1x -axis points upward in the direction of the stretching hot surface such that 

the stretching induced flow and the buoyant thermal flow assist each other. For the 

opposing flow, the 1x - axis points vertically downward in the direction of the 

stretching hot surface, but in this case, the stretching induced flow and the buoyant 

thermal flow oppose each other. The reverse trend occurs if the sheet is cooled below 

the ambient temperature.
 

The mathematical analysis of the present problems is simplified by introducing the 

following dimensionless similarity variables,  

 
( 1)

0 1
2

( )( 1)
.

2

mU x bm
x






  

(4.2.6) 

and the dimensionless stream function, temperature, and the nanoparticle 

concentration are  given by;  

( 1)

0 1

2
( ) F( ), ( ) , ( )

1

m

w w

T T C C
U x b

m T T C C
      

 

 
     

  
  (4.2.7) 

The  stream function satisfies automatically the equation of continuity and the 

velocity components are                                                                

( 1)

1 0 1 2 0 1

2 1 1
( ) ( ),  = - ( ) ( ) ( ) ,

1 2 2

m m m m
u U x b F u U x b F F

m
    



  
       

 (4.2.8)  

 

where primes denote the differentiation concerning , with the use of Eqs. (4.2.6) - 

(4.2.8), the  Eqs. (4.2.2) to (4.2.5) reduces to, 

 122
0

( 1)
T C

m
F FF F Qe

m

                

(4.2.9) 
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(4.2.12)                                                                                                                                                               

It is worth mentioning that for 0 assist the flow and for 0  opposes the flow, 

whereas for  0  represents the case when the buoyancy forces are absent. On the 

other hand, if  is of a significantly greater order of magnitude than one, the 

buoyancy forces will predominant, and the flow will essentially be free convective. 

Hence, combined convective flow exists when  1O  . The non-dimensional 

parameters 1, , , Pr, , , , , , , andT C cQ Nb Nt Ec Sc K Bi      represents the modified 

Hartman number, dimensionless parameter, thermal buoyancy parameter, 

concentration buoyancy parameter, Prandtl number, Brownian motion parameter, 

thermophoresis parameter, heat source/sink parameter, Eckert number, Schmidt 

number, Chemical reaction parameter, wall thickness parameter, and the 

dimensionless Biot number respectively and which are defined by, 
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Now, we define the following    ( ) ( ), ( ) ( )F f where                 : 

here     indicates the flat surface. Then Eqs. (4.2.9) to (4.2.12) reduces to, 
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 (4.2.17)                                                        

The important physical quantities of interest for the governing flow problem, such as 

skin friction fC , local Nusselt number ,Nu  and Sherwood number Sh are defined as 

follow, 
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respectively called wall skin friction, wall heat flux, and mass flux. Using the above-

mentioned similarity transformations, the Skin friction, Nusselt number, and 

Sherwood number in dimensionless form can be written as,  

1/2 1/2 1/21 1 1
Re (0), Re (0)and Re (0),

2 2 2
f

m m m
C f Nu Sh    

      
                      

where  1Re ( ) /wU x b    is called local Reynolds number. 

4.3. Semi-analytical solution: Optimal Homotopy Analysis Method (OHAM) 

The system of highly nonlinear coupled differential equations (4.2.14) – 

(4.2.16) along with appropriate boundary conditions (4.2.17) is solved by a semi-

analytical method known as Optimal Homotopy Analysis Method (OHAM). The 

detailed information of OHAM procedure can be seen in Liao (2010), Fan and You 

(2013) and Van Gorder (2019).  Depending on the respective boundary conditions 

(4.2.17), the appropriate initial guesses for the functions , andf    are defined as. 
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     (4.3.1)      

and the auxiliary linear operators which can satisfy above initial guesses are. 
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The generalized homotopic equations for Eqns. (4.2.14)-(4.2.16) are,  
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(4.3.3) 
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Here q is defined as an embedding parameter which takes values as 0 1q  , while

  0, ,f       are the convergence control parameters, and the nonlinear 

differential operators are defined as fallow,  
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  (4.3.4) 

Choosing the auxiliary functions as ( ) ( ) ( ) .fH H H e 
        It is easily 

verified that Eqns. (4.3.3) becomes linear when the embedding parameter 0q  and 

which reduces to nonlinear when 1q . Expanding the governing problems by Taylor 

series solution in the form of q, it can reduced as,  
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(4.3.5) 

The homotopy solutions vary from the initial approximations to the solutions of 

interest as q varies from 0 to 1. It should be noted that the homotopy solutions contain 

the unknown convergence control parameters   0, ,f       which can be used to 

adjust and control the convergence region and the rate of convergence of the series 

solution. To obtain the approximate solutions, here recursively solved the so-called 

nth-order deformation equations. 

1[ ( ) ( )] ,f
f n n n f nf f    L R  

1[ ( ) ( )] ,n n n n


       L R   (4.3.6) 

1[ ( ) ( )]n n n n


       L R ,  

where 
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In practice, this can only calculate finitely many terms in the homotopy series 

solution.  Therefore k
th

 order approximate solution by the partial sums defined by.  
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   (4.3.8) 

With these approximations, we may evaluate the residual error and minimize it over 

the parameters   0, ,f    in order to obtain the optimal value of   0, ,f     

giving the least possible residual error. To do so, one may use the integral of squared 

residual errors, however, this is very computationally demanding. To get around this, 

we use the averaged squared residual errors and which can be given as, 
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optimal values of , andf    in equation (4.3.8), thus the nonlinear system of 

equations (4.2.14) to (4.2.16) with required boundary conditions (4.2.17) is now 

reduced to several linear differential equations given in (4.3.7) and (4.3.8). Which can 

be solved exactly with the help of the computational software such as Mathematica

1,2,3,....n  .For the assurance of the validity of this method the optimal values of

, andf    for the functions ''(0), '(0) and '(0)f     corresponding to various 

values of the pertinent parameters are given and the corresponding averaged residuals 

are represented as 10 10 10,  and .fE E E 

 

According to Liao (2010), the total residual error is defined as, +t f

n n n nE E E E   , 

0.5, 20,y k    which can be solved exactly with the help of the computational 

software such as Mthematica8, for 1,2,3,....n  In this case the numerical code is 

evaluated at Pr 1, 1, 0.22, 0.1, 0.6, 2, 0.5, 0.2,TBi Sc m Nb Nt            

10.1, 0.1, 0.3, 0.3 and 0.2.C cQ Ec K       To verify the reliability of the 

OHAM method the optimal values of the individual residual errors and total residual 

errors are computed up to 15
th

 order of approximation which is shown in Tables (4.1 -

4.2)  and Figs. 4.3.1 (a-b). From the graph, it is clearly elucidated that the individual 

residual errors decrease for larger values of approximation p. The corresponding 

optimal convergence control parameters are found to be,  

1.2258, 1.1596 and 1.2561f         respectively.  

 4.4. Results and discussion  

 The system of coupled nonlinear partial differential equations is converted into a 

set of ordinary differential equations (4.2.14) to (4.2.16) together with appropriate 

boundary conditions (4.2.17) are solved by a semi-analytical method known as 

optimal homotopy analysis method (OHAM) (see for clear details, Liao (2010), Van 

Gorder (2019)).  A symbolic computational software such as MATHEMATICA8 is 

used to examine the relevant physical parameters. To approve the technique and to 

pass judgment on the precision of the examination, different values of wall thickness 

parameter   and velocity power index m in the case of absence and presence of the 

Riga plate are compared with the previously published results for special cases (see 

Table 4.3). To get a clear insight into the governing physical problems, the numerical 

results are presented graphically in Figs. (4.4.1- 4.4.9) and Table 4.4. These figures 
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show the variation of the horizontal velocity profile  f  , the temperature profile 

   and the concentration profile    for different values of the relevant physical 

parameters, namely, velocity power index m ,  wall thickness parameter  ,  

dimensionless parameter 
1 , modified Hartman number Q , thermal buoyancy 

parameter 
T , concentration buoyancy parameter 

C , Eckert number Ec , Prandtl 

number Pr , Brownian motion parameter Nb , thermophoresis parameter Nt , Schmidt 

number Sc  and chemical reaction parameter 
cK . 

Figs.4.4.1 (a-c) illustrates the impact of velocity power index and wall thickness 

parameter on the velocity profile, temperature profile, and the concentration profile. 

When 1m  ,    andf   
 
reduces, whereas exactly opposite pattern is found in 

the case of     (see Fig. 4.4.1(c)), while when 1m  the profile pattern is reversed. 

This interesting behavior of and m results in suction and blowing cases which may 

be attributed to the boundary condition       0 1 / 1f m m   . For different 

values of m, we observe the transpiration. More precisely, when 1m   , that is, 

 0 0f  , this has a similar impact as that of mass injection at the sheet. Furthermore, 

when 1 1m    , that is,  0 0f  is a case of suction that can significantly change the 

flow field. The suction has a greater impact on the constitution of engineered 

nanofluids and is an excellent mechanism for achieving flow control, cooling, and 

nano-particle distribution in nanofluid fabrication. The impact of m and 1  on 

     , andf       is elucidated in the Figs.4.4.2 (a-c). The velocity profile 

diminishes for extending values of 1  because 1
 
is inversely related 0U . In the case of 

temperature distribution, the impact of 1  is significant and the enhancement in the 

profile is recorded, whereas the concentration distribution shows dual nature. 

Figs.4.4.3 (a-c) sketched to exhibit the impact of 
1andQ   on      , andf     

. The velocity profile increases as Q  enhances, consequently a thicker momentum 

boundary layer is observed. Usually, the velocity profiles are the decreasing function 

of Hartman number, but in this case, the velocity profiles enhance because of Lorentz 

force, which is produced due to the alternating array of magnets and electrodes 

parallel to the surface of the Riga plate (see Fig.4.4.3a). The temperature distribution 

declines as Q  grows and the concentration distribution exhibits dual characteristics. 



79 

The significance of andT m  on profiles      , andf       is portrayed in 

Figs.4.4.4 (a-c). For increasing values of T  
there is a rise in  f  . Physically, the 

positive values of T  corresponds to assisting flow and negative values of T  
results 

opposing flow, whereas 0T 
 
shows the absence of buoyancy forces. However, quite 

the opposite pattern may be observed in the case of    , and the concentration 

distribution shows dual nature. Fig.4.4.5 and Fig.4.4.6 is drawn to see the behavior of 

velocity and temperature profiles respectively for different values of ,  and C Ec m . For 

higher values of C  the velocity profiles reduces and the temperature of the fluid 

enhances as Eckert number increases and the phenomenon is due to the relation 

between Ec  and temperature difference, that is,  1 wEc T T  . Fig.4.4.7 is drawn to 

explain the effects of distinct values of Pr  and Bi on ( )  . It is evident from the figure 

that the temperature profile reduces for extending values of Pr  (Reduction in K ) and 

increases for Bi . Higher values of Pr indicate a large heat capacity, which intensifies 

the heat transfer. Therefore, the cooling of the heated sheet can be improved by 

choosing a coolant with a large Pr. Analysis of the effect of andNb Nt  on 

   and     is demonstrated through the Figs. 4.4.8(a-b). The temperature 

profiles enhance for the larger values of both andNb Nt  (see Fig. (4.4.8a)), by the 

definition, thermophoresis is a mechanism in which nanoparticles move from hotter 

region to colder region; as a result temperature distribution rises. In the case of 

concentration distribution gives dual characteristics for Nt  and Nb  exhibit different 

results, which is opposite to Nt  (see Fig.4.4.8b). Fig.4.4.9 represents the influence of 

 and cK Sc   on concentration, since Sc is an inverse function of the Brownian diffusion 

coefficient BD ( i.e., ratio of kinematic viscosity to that of mass diffusivity), therefore, 

a gradual increase in Sc reduces the nanoparticle concentration and the corresponding 

concentration boundary layer thickness. Larger cK  results in the squeezed 

concentration profile. Physically, 0cK   gives a destructive chemical reaction and for 

0cK   yields constructive chemical reaction, whereas 0cK  shows the absence of 

chemical reaction. 

Table 4.4.4 gives the impact of various governing parameters on the Skin 

friction coefficient  0f  Nusselt number  0 and Sherwood number  0 . It is 
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evident that the Skin friction coefficient decrease for higher values of 1,, , Cm    and 

enhances for larger values of , , .TQ Ec  The Nusselt number raises for extending 

values of 1, , , , andm Ec Nb Nt Bi  and decreases for different values of 

, , and Pr.TQ  Further, the Sherwood number exhibits dual characteristics for several 

physical parameters. 

 4.5. Closed remarks of the present work 

 For different values wall thickness parameter and velocity power index 

( 0 and 1m   ), velocity and temperature profiles decrease, whereas exactly 

opposite pattern is found in the case of concentration, while when 0 and 1m  

the profile pattern is reversed.  

 For larger values dimensionless parameter, the velocity profiles reduce and the 

temperature profiles increases, whereas the concentration profiles exhibit dual 

characteristics. 

 Higher values of thermal buoyancy parameter, the velocity profiles enhance and 

temperature profiles decreases, while the concentration profiles initially lessen and 

then improves. 

 Velocity distribution rises and temperature distribution falls in the case of a higher 

modified Hartman number. 

 Enhancement of concentration buoyancy parameter results in the reduced
 
velocity 

profiles and temperature profiles enhance for higher values viscous dissipation 

parameter. 

 Temperature distribution improves for the Brownian motion parameter and 

thermophoresis parameter but the concentration distribution shows a dual 

characteristic.
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                                            Table 4.1: Individual residual error at a different approximation p, when the  

                                                            parameters are  fixed  at Q = 0.1, Bi = 1,Nb = Nt = 0.5,Pr = 1,  

                                                            1 T Cλ = 0.1,α = 0.6,m = 2,β = 0.3,λ = 0.2, λ = 0.1, Ec = 0.3,
       

   cSc = 0.22, K = 0.2.
                   

 

p  ( )f

p fE  ( )pE 

  ( )pE 

  CPU times (S) 

          1 5.165×10-5 5.206×10-4 5.192×10-4 0.3692 

 3 3.183×10-8 4.839×10-7 1.377×10-4 3.6593 

 5 5.992×10-10 3.058×10-7 1.156×10-4 17.689 

 7 2.149×10-10 1.138×10-8 1.379×10-6 69.350 

 9 1.554×10−11 1.605×10−10 1.320×10−7 192.12 

13 9.849×10−12 3.475×10−11 1.678×10−9 1361.5 

        15 9.422×10−15 5.322×10−12 2.059×10−10 4526.4 

 

Table 4.2: Total residual error at a different approximation p 

p  
f  

    
t

pE  CPU times (S) 

1 0.9008 0.4153 1.1176 1.377×10-3 0.3692 

3 0.9452 1.0053 1.1220 2.684×10-4 3.6593 

5 1.1395 1.0473 1.1192 1.672×10-6 17.689 

7 1.0609 1.0612 1.1582 1.356×10-7 69.350 

9 1.2150 1.0782 1.2062 2.391×10-8 192.12 

14 1.2255 1.1961 1.2749 1.403×10-9 1361.5 

15 1.2258 1.1596 1.2583 4.574×10-10 4526.4 

 



82 

Table 4.3: Comparison results of Skin friction coefficient -f''(0)  for different values wall thickness parameter  and 

 velocity power index parameter m , when the absence and presence of Riga Plate at 1 cPr = Bi = Q = β = Ec =K = 0     

  
T Cλ = λ = Nt = λ = Sc = 0 and Nb 0.→                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Absence of Riga plate
1(Q = 0,β = 0)     Presence of Riga plate 

1(Q = 0.1,β = 0.3)  

  m  

Fang et 

al., 

(2012) 

Prasad et al., 

(2018b)  when 

(λ = 0,Mn = 0)  

Present 

results 
Hayat et 

al.,(2016

c) 

Iqbal et al., 

(2017) when 

M = 0  

Present results 

0.25 

-0.5 0.0833 0.0832 0.0799 0.0949 0.0945 0.0931 

-0.3 0.5000 0.5000 0.5021 0.7214 0.7123 0.7222 

02 1.0614 1.0614 1.0621 0.9990       1.0614 1.0021 

03 1.0905 1.0905 1.1023 1.0456 1.0905 1.0572 

05 1.1186 1.1186 1.1186 1.0902 1.1186 1.0899 

07 1.1323 1.1323 1.1323 1.1121 1.1323 1.1265 

09 1.1404 1.1404 1.1404 1.1247 1.1404 1.1358 

10 1.1433 1.1433 1.1433 1.1288 1.1433 1.1352 

0.5 

-0.5 1.1667 1.1665 1.1665 1.1665 1.1665 1.1521 

-0.3 1.0000 1.0000 1.0000 1.0131 1.0093 1.0027 

02 1.0234 1.0234 1.0234 0.9672 1.0234 1.0195 

03 1.0359 1.0358 1.0358 0.9975 1.0358 1.0287 

05 1.0486 1.0486 1.0486 1.0253 1.0486 1.0387 

07 1.0550 1.0550 1.0550 1.0383 1.0550 1.0487 

09 1.0589 1.0589 1.0589 1.0458 1.0589 1.0578 

10 1.0606 1.0603 1.5999 1.0485 1.0603 1.0485 
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Table 4.4: Values of Skin friction, Nusselt number and Sherwood number with the computed CPU time (in seconds) for   

                   different physical parameters and fixed values of  Sc = 0.22, Bi = 1, λ = 0.1,  at 10
th

  approximation. 

Pr  Kc  Nt  Nb  Ec  C  T  Q  m    ''(0)f  fh  
10

fE  '(0)  h  10E  '(0)  h  
10E  

CPU 

time (S)  

1 0.22 0.5 0.5 0.3 0.1 0.2 0.1 2 

0.2 0.9887 0.9433 1.29x10-10 0.5213 0.9555 2.29x10-10 0.5212 1.2987 2.16 x10-8 388.41 

0.4 0.9628 0.9089 5.87x10-10 0.5166 0.9999 1.33x10-10 0.5165 1.2945 2.71x10-8 346.48 

0.6 0.9375 0.9163 1.8 x10-11 0.5118 1.1498 7.07 x10-11 0.5118 1.2226 7.61 x10-8 374.61 

1 0.22 0.5 0.5 0.3 0.1 0.2 0.1 

-0.1 

0.2 

0.2288 0.8162 1.88x10-11 0.6259 1.0395 4.01x10-7 0.6227 1.0272 5.87x10-7 339.08 

    2 0.9887 0.9433 1.29x10-10 0.5613 0.9555 2.29x10-10 0.5622 1.0277 2.16 x10-8 388.41 

    5 1.0981 0.9703 8.79x10-11 0.5248 0.9750 1.17 x10-9 0.5231 1.3662 5.87x10-7 347.05 

1 0.22 0.5 0.5 0.3 0.1 0.2 

0.1 

2 2 

0.5115 0.9651 3.74x10-7 0.3417 0.9496 2.68 x10-6 0.3366 1.2377 1.05 x10-5 571.90 
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 Fig.4.3.1 (a): Individual residual error at a different approximation p 

 

 

 

 

             Fig.4.3.1 (b): Total residual error at a different approximation p 
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5.1. Introduction 

In recent years, numerous researchers analyzed the suction and injection process 

over different geometries because of its vast applications in engineering and techno-

logical domain such as thrust bearing design, radial diffusers, thermal oil recovery and 

many others. Erickson et al., (1966), considered the stretchable surface to examine the 

impact of Suction/ injection on the flow field. Fox et al., (1968) contributed similar 

work for uniform surface velocity and temperature. Gupta and Gupta (1977) contin-

ued the work of Erickson et al., (1966) by making the changes in the speed of the sur-

face. Chen and Char (1988) explored the impacts of suction and injection on the heat 

transfer attributes of a continuous, linearly elastic sheet for both the variations of 

power law surface temperature and heat flux. The examination of the behavior of suc-

tion /injection on the flow and heat transfer with power law stretching sheet was re-

ported by Ali et al., (1995). Cortel (2005b) added the permeability to the linear 

stretching sheet and analyzed the internal heat generation/ absorption nature on the 

flow pattern. Prasad and Vajravelu (2009) investigated the behavior of power law flu-

ids over a flat surface in the presence of magnetic field and suction/injection parame-

ter. Recently, Khan et al., (2018) utilized OHAM to obtain the numerical results of an 

unsteady Casson fluid past a stretching sheet in the presence of mass suc-

tion/injection. Further, Maleki et al., (2019a, 2019b) considered pseudo plastic non-

Newtonian fluid over a permeable elastic surface and studied effects of suction or in-

jection. Recently, Shakiba and Rahimi (2019) used the vertical cylindrical surface ge-

ometry and reported the impact of suction/ injection on the flow of nanofluid.  

In addition to flow over a stretching sheet, the flow induced by rotating disk has 

also got several applications in the science and technological industry such as jet mo-

tors, electronic devices, and rotational air cleaners, computer storage devices, rotating 

machinery, medical equipment, spin coating and many others. Von Karman (1921) 

introduced the method to solve the problem of the Navier-Stokes equations for a rotat-

ing disk of infinite radius. Cochran (1931) extended the work of Von Karman (1921) 

using numerical integration method and obtained more accurate results. The impact of 

the blowing through a porous rotating disk was reported by Kuiken (1971) Watson 

and Wang (1979), Watson et al., (1985) examined the unsteady flow over a porous 

rotating disk and discussed deceleration case. Takhar et al., (1995) investigated the 

unsteady flow of a micropolar fluid due to a decelerating porous rotating disk with 

https://scialert.net/fulltextmobile/?doi=jas.2010.2127.2131#559134_ja
http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=heat+transfer
http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=heat+transfer
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suction/ injection. Fang and Tao, (2012) visited the work of Watson et al., (1985) ex-

amined the unsteady flow induced by a stretchable rotating disk and obtained physi-

cally feasible solution branch. Rashidi et al., (2013) discussed the unsteady MHD 

flow over a rotating surface in presence of artificial neural network. Numerical solu-

tion via shooting method for unsteady viscous flow due to a nonlinear stretchable ro-

tating disk was reported by Hobiny et al., (2015). Further, Turkyilmazoglu (2018) 

scrutinized the unsteady flow and heat characteristics over a vertically moving rotat-

ing disk and Prasad et al., (2019a) investigated the MHD Casson nanofluid flow over 

a rotating disk with heat source/sink and slip effects. 

       All the above researchers analyzed the flow and heat transfer characteristics over 

disk/sheet by considering the constant thermo physical properties. However, several 

researchers (Vajravelu et al., (2013), Prasad et al., (2017a, 2017c)) considered varia-

ble thermo physical properties. Here, the ambient fluid may change with temperature 

namely viscosity and thermal conductivity of the fluid. Effects of Hall current and 

variable fluid properties on MHD flow due to a rotating porous disk was reported by 

Abdul Maleque and Abdus Sattar (2005). Fresteri and Osalusi (2007) discussed the 

MHD slip flow over a porous rotating disk in the presence of variable fluid properties. 

Rashidi et al., (2014b) investigated the MHD slip flow over a porous rotating disk 

with variable fluid properties. Vajravelu et al., (2016a) studied the effects of variable 

transport properties and velocity-temperature slips of MHD squeeze flow between 

parallel disks with transpiration using OHAM. Recently, Prasad et al., (2018c) scruti-

nized the effects of variable viscosity and variable thermal conductivity on the Casson 

fluid flow past a vertical stretching sheet with transpiration. 

         To the author’s best knowledge, no combined work has been made earlier to 

study the unsteady MHD convective boundary layer flow and heat transfer over a 

stretchable rotating disk in the presence of mass suction/ injection. Moreover, the im-

pact of viscous dissipation and variable fluid properties are considered. The solutions 

are obtained via Optimal Homotopy Analysis Method (Liao (2010) and Von Garder 

(2019)). An important finding for instance the unsteady parameter; viscosity parame-

ter and Hartmann number squeezes the momentum boundary layer thickness which 

complements the existing results in the literature. 
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5.2. Mathematical formulation  

Consider an unsteady two dimensional viscous incompressible axially symmetric 

convective flow and heat transfer of an electrically conducting fluid  over a stretcha-

ble rotating disk, which has an angular velocity varying with time  21 t   in the 

presence of external magnetic field along the z-axis. The physical model of the rotat-

ing disk is presented in Fig. 5.2.1. Under these assumptions, governing equations for 

continuity, momentum and energy in cylindrical coordinates as follows,  

 
1

0z
r

u
ru

r r r
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           (5.2.4) 

where,  , ,r zu u u  are the velocity components in the direction of cylindrical coordi-

nate system  *, , ,r z  t
 
is the time,   is the density of the fluid,  is the electrical 

conductivity,    
1/2

0 2B 1B t t


  is the special form of magnetic field imposed along 

z-axis, 
pc is the specific heat at constant pressure. Further, it is assumed that the ther-

mo-physical transport properties of the fluid are constant except for the fluid viscosity 

( )T  and thermal conductivity K( )T  which varies as a function of temperature in the 

following forms:  

 
 

 2

1
. . ,

1
rT i e a T T

T T




 

  
 

                                                          

(5.2.5)    

where, 2 and 1ra T T      are constants and their values depend on the refer-

ence state and thermal property of the fluid. In general 2 0a  indicates the liquid, 

2 0a  indicates the gases. 

  1

1( ) 1 ,K T K T T T  

                                                                               (5.2.6) 
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                                  Fig.5.2.1: Geometry of the physical model 
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where ( ), ( ),  and KT K T  
are respectively called variable fluid viscosity, variable 

thermal conductivity, coefficient of viscosity of the fluid and thermal conductivity of 

the fluid far away from the disk,   is the thermal property of the fluid, 

1 ( ) /K K K    is a variable thermal conductivity parameter,
wT T T   is the 

temperature difference, K
 
is the thermal conductivity,    1r rT T T T        is 

the fluid viscosity parameter, which is negative for liquids and positive for gases (for 

more details see Prasad et al., (2017c)).  Using Eqns. (5.2.5) and (5.2.6) in (5.2.2) to 

(5.2.4) reduces to, 

 

2 2 1

1

r r r r
r z r

uu u u uB
u u u

t r z r z zT T

 

    

   

    


 
     
     

   (5.2.7) 

 

2 1

1

r
r z

u u u u u uB
u u u

t r z r z zT T

    




    

   

    


 
     
     

  (5.2.8) 

 

 

1

22

1

1

1

1r z

P

r

P

T T T T
u u K

t r z c z z

uu

c z zT T

T T
T







 





 

    

    



 

 



  
     

  

   
              

 

                                       (5.2.9)  

Appropriate boundary conditions are,  

   
2 2 2

, , 2 , at 0,
1 1 1

0, 0, as

r z w s w

r

r r T
u u u f K h t T T z

t t t z

u u T T z





 

  




   





       
  

   
 

(5.2.10) 

where, b  is the disk stretching parameter,    
1/2

11s sh t h t


   is the special 

form of heat transfer coefficient. Now the following similarity transformations are 

introduced to reduce the governing equations into dimensionless form (for more de-

tails see Fang and Tao (2012). 

     

 
 

2 2 2

2

2 0

2 2 2

, , 2 ,
1 1 1

, , .
1 1 1

r w z

w

r r
u u f u g u f

t t t

BT T r
z

T T t t t




  

  

  
   

 

 






 

    
  

 
    

    

               

(5.2.11)                                 

Using Eq. (5.2.11), Eq. (5.2.1) is automatically satisfied and Eqns. (5.2.7) to (5.2.10) 

takes the self similar form, 
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    
1 2 21 / 2 (1/ 2) 0rf g ff f S f f Mnf  
 

                             (5.2.12)

 

    
1

1 / 2 2 (1/ 2) 0rg fg f g S g g Mng  
 

                                     (5.2.13)

 

      

   

1

1 2 2

1 2Pr Pr (1/ 2)

Pr 1 / 0r

f f S

Ec f g

      

 


       

                       

(5.2.14)

 

          

     

0 , ' 0 , 0 1, 0 1 0 ,

' 0, 0, 0.

wf f f g Bi

f g

  



     

     
             

 (5.2.15)  

here prime denotes derivative with respect to ,          , , ,f f g      are re-

spectively called the axial, radial, tangential velocity profiles and temperature profile, 

2 / ,Pr / , / and / /p w p sMn B c K Ec u cc Bi h K             are respec-

tively called Hartmann number, Prandtl number, Eckert number and Biot number, 

2S   is called unsteady parameter where 0S  corresponds disk acceleration and 

0S  corresponds disk deceleration, wf is called mass transfer parameter where 

0wf  indicate mass suction and 0wf   indicate mass injection. Important physical 

parameters for engineering interest are local skin friction and Nusselt number given 

by, 

          
22 22

21 / , / ,f zr z w wC t r Nu rq K T T                       (5.2.16) 

where andzr z  are called radial and tangential shear stress at the surface of the disk 

and wq is the heat flux which are defined as follow, 

     
at 0at 0 at 0

, , .r
zr z w

zz z

uu T
T T q K T

z z z


   

 

    

    
        

    
 

Substituting Eqn. (5.2.11) in (5.2.16)  we get, 

 
 

           
1/2

2 21/2 1/2

1

1
Re 0 0 , Re 1 0 .

1 /
f

r

C f g Nu   
 

       
 

     

(5.2.17) 

Here  2

2Re / 1r t   is the Reynolds number. 
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5.3. Method of solution 

    In order to obtain the appropriate solutions for the system of highly coupled 

nonlinear ordinary differential equations (5.2.12) - (5.2.14) with boundary condition 

(5.2.15), we adopt the following semi-analytical technique such as Optimal Ho-

motopy Analysis Method (OHAM). Now we can pick the initial guesses for velocity 

and temperature profiles keeping in view of boundary conditions, 

      0 0 0, , and .
1

w

Bi
f f e g e e

Bi

           


                            (5.3.1) 

 

Now select the linear operators in the form,  

3 2 2 2

3 2 2 2
, 1, and 1.f g

d d d d
L L L

d d d d


   
     

                                     

 (5.3.2) 

Let us consider the zeroth order deformation equations are, 

             

             

             

0

0

0

1 , , , , , , ,

1 , , , , , , ,

1 , , , , , , ,

f f f f

g g g g

q L f q f qH N f q g q q

q L g q g qH N g q h q f q

q L q qH N q f q g q   

      

     

        

        

       

       

          (5.3.3)
  

with respective boundary conditions are, 

          
     

0, , 0, , 0, 1, 0, 1 0, ,

, 0, , 0, , 0,

wf q f f q g q q Bi q

f q g q q

  



      

      

            

here q
 
is an embedding parameter its values lies between 0 and 1,  , , 0f g    

are the convergence control parameters and , ,f gN N N
 are nonlinear operators which 

are defined as, 

  

   
 

 

     

21
2

2

2

2

2

, , ,
1 ,

, , ,1
,

2

f

r

f q q f q
N g q

f q f q f q
S Mn

   


  

  


  

      
               

   
       

                                           

     
 

 
 

 
 

 

1

, , , ,
1 2 , 2 ,

,1
, , ,

2

g

r

g q q f q g q
N g q f q

g q
S g q Mng q

    
 

   


  



     
           

 
   

 

             (5.3.4) 
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 
       

 
 

 
 

 
 

21 22

1 2

, , , ,
1 Pr 1

, , ,1
2Pr , Pr , PrS , .

2

r

q q f q g q
N Ec

q f q q
f q q q



     
 

   

    
     

  

         
                          

   
        

 

Now choose the auxiliary functions as       .f gH H H e 

       It can be seen 

from Eqn.(5.3.3) that when 0and 1q q  , we have 

           

           

0 0 0,0 , ,0 , ,0 ,

,1 , ,1 , ,1 .

f f g g

f f g g

       

       

  

    

Now expand      , , , and ,f q g q q    by Taylors series, 

     
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p

f q f f q
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q q
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  

     













 

 
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




                                                                      

(5.3.5) 

where, 

 
 

 
 

 
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0 0 0

, , ,1 1 1
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! ! !
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q q q
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   
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  
  

  

If equation (5.3.5) converges at q=1, now obtain the Homotopy series solutions, 
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(5.3.6)  

It is be noticed that OHAM solution contains the unknown convergence control pa-

rameters  , , 0f g   , which can be adjusted and control the convergence region 

and the rate of convergence of the series solution. The p
th

 order deformation equations 

are as follows, 
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
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(5.3.7) 
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and the boundary conditions are,

 

          
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where, 

0, 1

1, 1.
p

p

p



 


 

Now calculate the error and minimize over , ,f g 
in order to get the optimal val-

ues for , ,f g 
 and the least possible error. In the process of error analyses, we 

have two methods namely, exact residual error and average residual error. For differ-

ent order approximation, CPU time required for evaluation of      0 , ' 0 and ' 0f g   

is observed. As for as CPU time is concerned, the average residual error needs less 

time compared to that of the exact residual error for increasing values of .p   At 
thp  

order deformation equation, the exact residual errors can be written as, 
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    
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
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(5.3.8) 
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We used the average squared residual error instead of exact residual error 

     , andf g

p f p g pE E E

 because of the less time factor. 
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(5.3.9) 

and 

        ,t f g

p p f p g pE E E E

                                                        (5.3.10)  

where  t

pE  is the total residual error and / p, 0,1,..p.y y y    Now minimize the 

error function      , andf g

p f p g pE E E

 in , ,f g  and obtain the optimal val-

ues of , , .f g  For p
th

 order approximation, the optimal value of , ,f g   for 

, ,f g  is given by,
     

0, 0, 0

f g

p f p g p
E E E

h h h




  

  
    respectively.  Evident-

ly,    lim , lim ,f g

p f p g
p p

E E
  

 lim ,p
p

E




corresponding to a convergent series so-

lution. Table 5.1 and Table 5.2 represent the values of the individual average residual 

error and total residual error for the different order of approximations. It can be noted 

that average residual error and total residual error converges consistently with the 

higher order approximation. As such, by taking the order of approximation sufficient-

ly large and by choosing the convergence control parameters to minimize the average 

residual error, we can get an appropriate solution. 

 

5.4. Validation of the methodology  

         The main purpose of this section is to provide the liability of the current method 

utilized in the present article. Consider the case 1, Ec 0.5,Mn S Bi       

1Pr 0.72, 0.1,f 0.1, 10.w r     
 
The 14

th
 order of approximation is obtained and the 

corresponding convergence control parameters are 0.984215, 0.987565,f g  and 

1.04934   and it is clearly observed that residual error of each governing equation 

reduces as we increase the order of approximation (see in Figs. 5.3.1(a-b)). Further, 
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Table 5.3 discussed for the assurance of the OHAM technique, the results are com-

pared with Fang and Tao (2012) and Rashidi et al., (2014b) and found to be in excel-

lent manner.  

5.5. Results and discussions  

System of coupled nonlinear ODEs (5.2.12) to (5.2.14) together with appropriate 

boundary conditions (5.2.15) are solved by a semi-analytical method known as Opti-

mal Homotopy Analysis Method (OHAM) (see detail, Liao (2010) and Von Gorder 

(2019)). The semi-analytical computations are being carried out using  Mathematica 8 

software to obtain numerical values for the flow and heat transfer characteristics. The 

influence of various physical parameters, such as, unsteady parameter S , variable flu-

id viscosity parameter ,r  disk stretching parameter ,  mass suction/injection param-

eter wf , Hartmann number Mn , variable thermal conductivity parameter 1 ,  Prandtl 

number Pr , Eckert number Ec  and Biot number Bi  on the axial velocity profile  f  , 

radial velocity profile  f  , tangential velocity profile  g  and temperature profile

    are exhibited through Figs.(5.5.1 - 5.5.4). The local skin friction coefficients

   0 & 0f g  and Nusselt number  0 are also discussed and presented in Table 

5.4. 

       Fig. 5.5.1 (a-c) illustrates the effect of variable fluid viscosity parameter r  
and 

unsteady parameter S  on axial, radial and tangential velocity profiles. It is observed 

that all velocity profiles decreases with increasing values of 
r  and tends to zero as 

the distance increase from the boundary. Fig. 5.5.1 (d) explains the effect of 
r  on 

temperature distribution. From the figure, it is seen that the increasing values of 
r  is 

to enhance the temperature distribution. This may be due to the fact that 1 ,r T   as 

lesser 
r  implies higher temperature difference. The influence of the unsteady param-

eter is to decrease the velocity profiles      andf f g    (see Fig. 5.5.1(a-c)); this is 

due to the fact that the velocity gradient at the surface is larger for larger values S  

which produces the larger skin friction coefficient and hence boundary layer thickness 

decreases. The effect of increasing values of the unsteady parameter is to decrease the 

temperature field and hence reduces the thermal boundary layer thickness (see 

Fig.5.5.1 (d)). The impact of mass suction/ injection parameter wf  and disk stretching 

parameter  on axial velocity  f   is presented in Fig. 5.5.2 (a). The mass suc-
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tion/injection parameter wf gives three different cases, namely,
 

0wf  is a case of mass 

suction,
 

0wf 
 
is a mass injection case and 0wf   shows the absence of suc-

tion/injection. For increasing values of wf  the axial velocity profile increases. But in 

the case of radial velocity  f   the mass suction/ injection parameter gives exactly 

opposite results (see Fig. 5.5.2 (b)). This is due to the fact that the suction reduces the 

velocity boundary layer thickness whereas the injection has the opposite effect. These 

results are consistent with the physical situation (see Table 5.4). An increasing values 

of disk stretching parameter   the axial and radial velocity profiles enhances, this is 

because an increase in stretching parameter creates more pressure on fluid flow which 

leads to be augment in    andf f  . Fig. 5.5.3 (a) is drawn to see the behavior of 

Prandtl number Pr  and Biot number Bi  on temperature profile. The figure demon-

strates that an increase in Pr  results reduction in thermal boundary layer thickness. 

Clearly, higher values of Pr  indicates a large heat capacity, which intensifies the heat 

transfer. Therefore the cooling of heated sheet can be improved by choosing a coolant 

with increasing Pr . The temperature of the fluid increases as Biot number Bi  extends, 

since Bi is directly proportional to the heat transfer coefficient sh , due to this Bi

cause’s stronger convection which leads to increment in the temperature profile.  Fig. 

5.5.3 (b) exhibits the impact of Eckert number Ec and variable thermal conductivity 

parameter 1  on temperature distribution    . For increasing values of Ec  the tem-

perature profiles extends, this is due to the assumption of the relation between Ec  and 

temperature difference, i.e.,
 

 1 wEc T T  . A similar behavior may be observed in the 

case of
1 ,

 
this is due the fact that the temperature dependent thermal conductivity 

   1( ) 1K T K T T T      which boosts the temperature distribution. The signifi-

cance of Hartman number Mn  and unsteady parameter S  on axial, radial and tangen-

tial velocity profiles are depicted in Fig.5.5.4 (a-c). Velocity, namely, axial, radial and 

tangential  profiles decreases with an increasing values of Mn  and tends to zero as the 

distance increases from the boundary. This is because an existence of magnetic field 

creates Lorenz forces, which act as resistive drag forces opposite to the flow direction, 

which results in a decrease in velocity. Consequently the thickness of the momentum 

boundary layer reduces with an increase in Mn . A similar effect is observed in the 

case of increasing values of S .      
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 Numerical results for different values of the sundry parameters on the local skin fric-

tion coefficients    0  & 0f g   and Nusselt number  0 is presented in Table.5.4. It 

is recorded that an increase in ,r Mn  and variations of mass suction/ injection parame-

ter such as 0, 0, 0w w wf f f    results in the decrease of    0  and 0f g  and an increase 

in  0 . This is because 1 ,r T   as 
r rises temperature difference becomes small 

which leads to the increment in the temperature gradient, and also, in the case of Mn  

the result is due to the existence of magnetic field which creates a Lorenz’s force, 

which opposes the fluid flow. This type of resisting force slows down the velocity of 

the fluid. Further, it is noticed that for larger values of unsteady parameter S , the re-

duction in the skin friction as well as temperature gradient is recorded. Further, 

   0  and 0f g  are the increasing function of  , this is because an increase in the 

stretching parameter creates more pressure on fluid flow, which leads to an enhance-

ment in the values of    0  and 0f g  . Concerning Pr  we can conclude that the larger 

values of this parameter results in the reduction of the thermal boundary layer thick-

ness and hence reduced values of   0 is recorded.  In the case of 1Bi,  and Ec   the 

results are opposite to that of Pr  and is due to thermal conductivity

   1( ) 1K T K T T T     which boosts the temperature gradient. 
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5.6. Conclusions 

In the present article, unsteady MHD flow over an erratic rotating disk with variable 

fluid properties, mass suction/ injection parameter, viscous dissipation parameter and 

convective boundary condition is investigated. Some of the important conclusions are 

made as follows, 

 Unsteady parameter lessens the local skin friction and Nusselt number. 

 Fluid viscosity and Hartmann number reduces the fluid flow and strengthened 

the temperature and exactly opposite characteristics are seen in the case of 

stretching parameter.  

    0  and 0f g  are inversely related with respect to the suction and injec-

tion parameter.  

 The temperature of the fluid increases with raising the values of variable ther-

mal conductivity, Biot number and viscous dissipation parameter whereas in-

verse impact is seen with Prandtl number. 

 For various values of unsteady parameter, fluid viscosity and Hartmann num-

ber reduces the skin friction and inverse trend is recorded in the case of 

stretching parameter. 

 Impact of viscous dissipation parameter and Prandtl number on temperature 

gradient is quite opposite.  
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Table 5.1: Individual average residual errors as a function of the number of 

                  iterations when parameters are fixed atα =Mn = S =1, = Ec = 0.5,Bi  

                                                                              1w rPr = 0.72,f = ε = 0.1,θ = -10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Table 5.2: Total squared residual errors and convergence control  parameters  

                      for different approximation p. 

 

                   

 

 

p  f

pE  g

pE  pE  CPU time (s) 

2 5.29x10
-4 

6.78x10
-3 

2.48x10
-4 

11.6205 

4 8.34x10
-6 

1.42x10
-4 

3.67x10
-5 

54.5011 

6 1.91x10
-6 

6.26x10
-6 

7.47x10
-6 

263.945 

8 3.44x10
-7 

3.51x10
-7 

8.53x10
-7 

790.305 

10 5.37x10
-8 

1.86x10
-8 

1.53x10
-7 

2169.01 

12 7.67x10
-9 

5.81x10
-10 

4.27x10
-8 

4040.75 

14 1.07x10
-9 

3.53x10
-11 

1.98x10
-8 

8944.68 

p  
f  

g  
  t

pE
 
 CPU   time (s) 

 2 0.8991 0.9676 1.086 2.06×10
-2

 11.6205 

4 0.9237 0.9480 1.050 1.39×10
-4

 54.5011 

6 0.9606 0.9544 1.019 1.11×10
-6

 263.945 

8 0.9770 0.9605 1.033 1.29×10
-7

 790.305 

10 0.9839 0.9645 1.043 1.99×10
-8

 2169.01 

12 0.9814 0.9417 1.032   9.15×10
-9

 4040.75 

14 0.9842 0.9875 1.049 2.81×10
-9

 8944.68 
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Table 5.3: Comparison of present and previous work for various results of 

     f 0 and g 0   when    
1 w rPr=0.72,Ec=Bi=ε =0.5,Mn=f =0,θ .→∞  

 

   0f    0g  

 S  Fang 

& Tao 

(2012) 

Rashidi 

et al.,  

(2013) 

Present Fang 

& Tao 

(2012) 

Rashidi 

et al.,  

(2013) 

Present 

0   0.1 0.530 0.530 0.530 0.578 0.578 0.578 

0.2 0.551 0.551 0.551 0.541 0.541 0.541 

0.5 0.614 0.614 0.614 0.428 0.428 0.428 

1 0.719 0.719 0.719 0.236 0.236 0.236 

2   0.1 3.111 3.117 3.117 2.053 2.052 2.052 

0.2 3.078 3.078 3.078 2.037 2.037 2.037 

0.5 2.960 2.961 2.960 1.990 1.990 1.990 

1 2.762 2.762 2.762 1.911 1.910 1.910 
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Table 5.4: Values of local Skin friction, Nusselt number, convergence control parameter and average squared residual error for differ-

ent physical parameters. 

Ec
 

Bi
 r  Pr  1  Mn  wf  S     0f    

10

fE  
 

 
10

gE   0    
10E

 
CPU  

Time(S) 

0.5 0.5 -10 0.72 0.1 1 0.1 1 
0.5 

1 

2 

4.50838 0.64106 2.26 x10-4 2.65815 0.68663 2.84 x10-4 0.08706 0.68253 8.26 x10-5 1789.5 

1.74409 0.93319 1.31x10-6 2.12695 1.01168 2.97x10-7 0.20151 1.03017 3.48x10-6 2527.4 

0.64828 1.12736 8.29x10-8 1.83289 1.10466 7.82x10-8 0.24348 1.23999 7.32x10-8 1759.8 

0.5 0.5 -10 0.72 0.1 1 0.1 

1 

2 

3 

1 

1.74409 0.93319 1.31x10-6 2.12695 1.01168 2.97x10-7 0.20151 1.03017 3.48x10-6 2527.4 

1.95743 0.80011 8.22x10-7 2.30457 0.82876 8.41x10-7 0.22997 0.87681 1.62x10-6 2013.5 

2.15436 0.69615 2.83 x10-6 2.47280 0.74192 3.82 x10-6 0.24832 0.79265 4.61 x10-6 1849.5 

0.5 0.5 -10 0.72 0.1 1 
-0.1 

0 

0.1 

1 1 

1.52732 1.03228 3.59x10-7 1.92456 1.00826 2.02x10-7 0.20239 1.09012 2.94x10-6 1846.5 

1.63241 0.99685 3.42x10-7 2.02299 0.98864 4.56x10-6 0.20195 1.07423 1.98x10-6 1861.5 

1.74409 0.93319 1.31 x10-7 2.12695 1.01168 2.97 x10-7 0.20151 1.03017 3.48 x10-6 2527.4 

0.5 0.5 -10 0.72 0.1 
1 

1.5 

2 

0.1 1 1 

1.74409 0.93319 1.31 x10-6 2.12695 1.01168 2.97 x10-7 0.20152 1.03017 3.48 x10-6 2527.3 

1.92585 0.82858 1.75x10-6 2.25486 0.96582 1.58x10-6 0.19025 0.98952 2.74x10-6 2805.2 

2.04252 0.75454 2.72 x10-6 2.37708 0.81302 8.41 x10-6 0.17197 0.85752 4.98 x10-6 3092.5 

0.5 0.5 -10 0.72 
0.1 

0.3 

0.5 

1 0.1 0.5 0.5 

0.57351 1.2574 1.11 x10-7 1.72308 1.22691 3.64 x10-7 0.21911 1.36116 7.28 x10-6 1902.5 

0.57363 1.25936 1.06x10-7 1.72352 1.22691 4.05x10-7 0.21564 1.33647 8.63x10-6 1864.5 

0.57376 1.26102 1.03x10-7 1.72394 1.22734 4.45x10-7 0.21236 1.31163 8.37x10-6 1953.9 

0.5 0.5 -10 
1.09 

2 

5.09 

0.1 1 0.1 1 1 

0.56571 1.23216 1.81 x10-7 1.70159 1.22864 3.41 x10-8 0.34455 1.27251 1.55 x10-9 1965.4 

0.56348 1.18879 2.25 x10-7 1.69524 1.23198 2.37 x10-8 0.38148 1.16059 3.81x10-8 1799.5 

0.55985 0.87477 8.21x10-7 1.68525 0.83882 8.09x10-6 0.42447 0.68886 1.51x10-7 1810.5 

0.5 0.5 
-10 

-5 

-2 

0.72 0.1 1 0.1 1 1 

0.64167 1.12470 9.71 x10-8 1.81567 1.10578 9.73 x10-9 0.33501 1.26005 2.12 x10-8 1889.7 

0.65541 1.13888 8.21x10-8 1.85126 1.10591 1.89x10-8 0.33485 1.26843 2.23x10-8 1881.5 

0.69337 1.17916 5.13x10-8 1.94967 1.13559 8.51x10-8 0.33442 1.29273 2.48x10-8 1839.2 

0.5 
0.5 

1 

2 

-10 0.72 0.1 1 0.1 1 1 

0.56571 1.23216 1.81 x10-7 1.70159 1.22864 3.41 x10-8 0.34455 1.27251 1.55 x10-9 1965.4 

0.57207 1.23858 1.81x10-7 1.71876 1.23556 3.11 x10-8 0.31453 1.29395 5.74 x10-9 1946.4 

0.58027 1.23948 1.75x10-7 1.72576 1.24256 2.98 x10-8 0.24845 1.31395 3.74 x10-9 1956.2 

0.5 

1 

1.5 

0.5 -10 0.72 0.1 1 0.1 1 1 

0.57351 1.25740 1.11 x10-7 1.72308 1.22691 3.64 x10-7 0.21911 1.36116 7.28 x10-6 1902.5 

0.57959 1.28798 6.71x10-8 1.73982 1.23648 7.88x10-7 0.12141 1.346422 2.12x10-5 1909.1 

0.58259 1.27858 7.15x10-8 1.74325 1.24245 1.21x10-7 0.82548 1.31254 1.26x10-5 1925.5 

 

f  ' 0g g



 

           

                                               Fig. 5.3.1(a): Residual error vs. order of approximation 

 

           

                                   Fig.5.3.1 (b): Total residual error versus order of approximation p 
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Fig. 5.5.1 (b): Radial velocity profiles for different values of 
r
 and S 

               with = 0.5, Mn = 1,

  = 0.1, Bi = 0.5,  f

w
 = 0.1, 

                          Ec = 0.01, Pr = 0.72.



Fig. 5.5.1 (a): Axial velocity profiles for different values of 
r
 and S 

                 with = 0.5, Mn = 1,

 = 0.1, Bi = 0.5, Ec = 0.01, 

                          Pr = 0.72, f
w
 = 0.1.
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Fig. 5.5.1 (d): Temperature profiles for different values of 
r
 and S 

                with= 0.5, Mn = 1, 

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An analysis has been carried out to examine the Williamson nanofluid flow over a slender elastic sheet with vari-
able thickness using Cattaneo-Christov theory. To explore the heat transfer characteristics, Cattaneo-Christov
heat flux model is used instead of classical Fourier’s law. The nonlinear governing equations with suitable
boundary conditions are initially cast into dimensionless form by similarity transformations. The optimal homo-
topy analysis method is proposed for the development of analytical solutions. Special prominence is given to
the non-dimensional velocity, temperature, concentration and their graphical behavior for various parameters
are analyzed and discussed. The impact of Cattanneo-Christov heat flux model is to reduce the temperature
and concentration distribution.

KEYWORDS: Williamson Nanofluid Flow, Cattaneo-Christov Heat Flux Model, Brownian Diffusion, Thermophoresis.

1. INTRODUCTION
The technological industry has embraced several method-
ologies to improve the efficiency of the heat transfer,
namely, utilization of extended surfaces, application of
vibration to the heat transfer surfaces, and usage of
microchannels. The thermal conductivity of a fluid plays
a vital role in the process of improving the efficiency
of the heat transfer. Most commonly used heat trans-
fer fluids are water, ethylene glycol, and engine oil
which are with relatively low thermal conductivities in
comparison with solids. The addition of small quantity
of solid particles with high thermal conductivity to the
fluid (ethylene glycol+water, water+ propylene glycol
etc.,) results in an increase in the thermal conductiv-
ity of a fluid. The Argonne National Laboratory revis-
ited the concept of enhancement of thermal conductivity
of fluid by considering suspensions like nanoscale metal-
lic particle and carbon nanotube suspensions and several
things remain intangible about this nanostructured mate-
rial suspension, which has been coined as “nanofluids” by
Choi.1 However, Masuda et al.2 have observed the sim-
ilar kind of results earlier to Choi.1 The term nanofluid

∗Author to whom correspondence should be addressed.
Email: prasadkv2007@gmail.com
Received: 3 September 2017
Accepted: 17 October 2017

attracted numerous researchers, which is a new kind of
heat transfer medium with nanoparticles (1–100 nm) which
are uniformly disseminated in the base fluid. Choi and
Eastman3 documented that nanofluids exhibit high ther-
mal conductivities compared to other heat transfer flu-
ids and concluded by establishing a dramatic reduction in
the heat exchanger pumping power. Moreover, the tem-
perature is one more impartment aspect in the enhance-
ment of thermal conductivity of nanofluids. Das et al.,4

Chon and Kihm,5 Li and Peterson6 have conducted exper-
imental studies on the determination of the thermal con-
ductivity of nanofluids at room temperature and Murshed
et al.7 has reported an experimental and theoretical study
on the thermal conductivity and viscosity of nanofluids
and concluded that the thermal conductivity of nanoflu-
ids depends strongly on temperature. Literature survey
reveals that the behavioral study of nanofluids was mainly
done by numerous researchers using two models, that is,
the Tiwari-Das model8 and Buongiorno model.9 Buon-
giorno model explains the effects of thermophysical prop-
erties of the nanofluid and also focus on the heat transfer
enhancement observed in convective situations. Further,
Zahmatkesh10 invoked a hybrid Eulerian-Lagrangian pro-
cedure to evaluate the airflow and temperature distribution
and analyzed the importance of thermophoresis as well
as Brownian diffusion in the process of particle deposi-
tion. The model used by Rana and Bhargava11 for the
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nanofluid incorporates the effects of Brownian motion
and thermophoresis. Rashidi et al.12 examined the model
used by Ref. [11] by considering the effects of suc-
tion or injection. Many researchers have focused on the
behaviour of nanofluid using Buongiorno model with dif-
ferent geometry.13–17

Heat transfer mechanism in several significant situa-
tions was classically explained by Fourier’s law of heat
conduction.18 In spite of being the most successful model
for the description of heat transfer mechanism, it has
a major limitation such as this law leads to parabolic
energy equation for the temperature field which con-
tradicts with the principle of causality. The pioneering
work of Cattaneo19 has managed to provide a success-
ful alternative to the Fourier’s law of heat conduction
with the vital characteristic of thermal relaxation time
to present “thermal inertia,” which is popularly known
as Maxwell-Cattaneo law. Moreover, Cattaneo-Christov
heat flux model is the improved version of Maxwell
Cattaneo’s model in which Christov20 replaced the time
derivative with the Oldroyd’s upper-convected derivative
to preserve the material-invariant formulation. Several
researchers used Cattaneo-Christov heat flux model on
Newtonian/non-Newtonian fluids with different physical
constraints.21–25

All the above-mentioned researchers restricted their
analyses to study the boundary layer flow over a linear or
nonlinear stretching sheet in a thermally stratified environ-
ment which has several engineering applications. However,
not much work has been carried out for a special type of
nonlinear stretching (that is, stretching sheets with variable
thickness; for details, see Fang et al.26). The variable thick-
ness has applications to the vibration of orthotropic plates
and is observed in many engineering applications more fre-
quently than a flat surface such as machine design, archi-
tecture, nuclear reactor technology, naval structures, and
acoustical components. Ishak et al.27 examined the bound-
ary layer flow over a horizontal thin needle and Ahmed
et al.28 analyzed mixed convection flow over a vertically
moving thin needle. Recently, Khader and Megahed,29

Prasad et al.,30 Salahuddin et al.,31 Prasad et al.32 analyzed
the effects of various physical parameters on the flow and
heat transfer by considering this special form of stretching
sheet. In the present analysis, Optimal Homotopy Analysis
Method (OHAM)33–35 is applied for obtaining the solutions
of nonlinear BVPs. We carry out an analytical study to
observe the impact of Cattaneo-Christov heat flux model
on the flow of Williamson fluid over a slender elastic
sheet with variable thickness. The obtained results are ana-
lyzed graphically for different sundry variables and anal-
ysis reveals that the fluid flow is appreciably influenced
by the physical parameters. It is expected that the results
presented here will not only complement the existing lit-
erature but also provide useful information for industrial
applications.

2. MATHEMATICAL FORMULATION OF THE
WILLIAMSON-NANOFLUID MODEL

Consider a steady two-dimensional boundary layer flow,
heat and mass transfer of a viscous incompressible and
electrically conducting non-Newtonian Williamson fluid
with nanoparticles, in the presence of a transverse mag-
netic field B�x�, past an impermeable stretching sheet
(vw = 0, see Liao34) with variable thickness. The origin is
located at the slit, through which the sheet is drawn in the
fluid (see Fig. 1 for details).
The x-axis is chosen in the direction of the motion and

the y-axis is perpendicular to it. The stretching velocity of
the surface is Uw�x� = U0�x+ b�m where U0 is constant,
b is the physical parameter related to stretching sheet, and
m is the velocity exponent parameter with constant sur-
face temperature Tw and the constant nanoparticle species
diffusion Cw. Cattaneo-Christov heat flux model is used
instead of Fourier’s law to explore the heat transfer char-
acteristic. We assume that the sheet is not flat but rather is
defined as y = A�x+ b��1−m�/2. The coefficient A is cho-
sen as a small constant so that the sheet is sufficiently
thin to avoid a measurable pressure gradient along the
sheet ��p/�x = 0�. For different applications, due to the
acceleration or deceleration of the sheet, the thickness of
the stretched sheet may decrease or increase with distance
from the slot, which is dependent on the value of the veloc-
ity power index m. The problem is valid for m �= 1, since
m= 1 refers to the flat sheet case. Viscous and Joule dis-
sipation were neglected. Under such assumptions, and by
using the usual boundary layer approximation, the gov-
erning equations for basic steady conservation of mass,
momentum, thermal energy and nanoparticles equations
for the non-Newtonian Williamson fluid with nanoparticles
can be written in Cartesian coordinates x and y as (see
Refs. [31, 32])

�u

�x
+ �v

�y
= 0 (1)

u
�u

�x
+ v

�v

�y
= �

(
�2u

�y2
+√

2�
�u

�y

�2u

�y2

)
− �B2

0

�
u (2)

Williamson nanofluid

Velocity boundary layer

x

Variable sheet thickness

Uw

y

Slot
B0 (x) = B0 (x+b)(1–m)/2

Γ = Γ (x) = Γ (x+b)(3m–1)/2

Nanometer-sized metallic particles

Fig. 1. Schematic diagram of the Casson nanofluid model with a vari-
able stretching sheet.
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�cpv ·	T =−	 ·q (3)

u
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�x
+ v

�C

�y
=DB

�2C

�y2
+ DT

T�

�2T

�y2
(4)

where u and v are the fluid velocity components mea-
sured along the x and y directions, respectively, � is the
constant fluid density, Cp is the specific heat at constant
pressure, � is kinematic viscosity, DB is the Brownian
diffusion coefficient, DT is the thermophoresis coeffi-
cient, q is normal heat flux vector, T is the temperature,
T� is the constant values of the temperature. Also, � is
the electrical conductivity, � = ��x� = ��x+b��3m−1�/2 is
the Williamson parameter, and B2

0�x�=B2
0�x+b�1−m is the

magnetic field, This forms of B2
0�x� and ��x� has also

been considered by several researchers to study MHD non-
Newtonian flow problems and to obtain similarity solu-
tion (see Prasad et al.,30 Salahuddin et al.31 for details)
over a moving or fixed flat plate. 
 = ��cp�p/��cp�f is the
ratio between the effective heat capacity of the nanoparti-
cle material and heat capacity of the fluid, �p is the density
of the nanoparticle, cpf is the specific heat of the fluid, and
cpp the specific heat of the nanoparticle (that is, ��cp�p is
the effective heat capacity of the nanoparticle material and
��cp�f is the heat capacity of the fluid). The boundary con-
ditions for the physical problem under consideration are
given by

u�x�y�=Uw=U0�x+b�m� v�x�y�=0� T �x�y�=Tw�

C�x�y�=Cw� at y=A�x+b�1−m/2

u�x�y�→0� T �x�y�→T�� C�x�y�→C� as y→�
(5)

The positive and negative values of m represent two differ-
ent cases, namely, stretching and shrinking sheets, respec-
tively. The new flux model is known as Cattaneo-Christov
heat flux model (see Refs. [19, 20]) which is the general-
ized form of Fourier’s law and is given by

q+�

(
�q

�t
+V ·	 ·q−q ·	V+ �	 ·V�q

)

=−k	T + 


[
DB

�C

�y

�T

�y
+ DT

T�

(
�T

�y

)2]
(6)

where V is the velocity vector, � is the thermal relaxation
time, k is the fluid thermal the fluid. It is noted that for
�= 
 = 0, Eq. (6) reduces to classical Fourier’s law. As it
is assumed that fluid is incompressible therefore Eq. (6)
takes the form

q+�

(
�q

�t
+V ·	q−q ·	V

)

=−k	T + 


[
DB

�C

�y

�T

�y
+ DT

T�

(
�T

�y

)2]
(7)

eliminating q from Eqs. (3) and (7) we get

u
�T

�x
+v

�T

�y
+�

(
u
�u

�x

�T

�x
+v

�v

�y

�T

�y
+u

�v

�x

�T

�y
+v

�u

�y

�T

�x

+2uv
�2T

�x�y
+u2 �

2T

�x2
+v2

�2T

�y2

)

= k

�cp

�2T

�y2
+


[
DB

�C

�y

�T

�y
+DT

T�

(
�T

�y

)2]
(8)

The dimensionless stream function 
�x� y� is given by
�u� v� = ��
/�y�−�
/�x�, which satisfies (1) automati-
cally. We transform the system of Eqs. (2), (4) and (8) into
a dimensionless form. The suitable similarity transforma-
tions for the problem are


�x� y�= F ���

√
2

m+1
U0��x+b�m+1/2�

���� = �T −T��
�Tw −T��

� ���� = �C−C��
�Cw −C��

�

� = y

√
m+1
2

U0

�
�x+b�m−1/2 (9)

With Eq. (9), the velocity components can be written as

u=UwF
′��� and

v=−
√
�
m+1

2
U0�x+b�m−1/2

[
F ���+�F ′���

(
m−1

m+1

)]
(10)

Here prime denotes differentiation with respect to �. In the
present work, it is assumed m>−1 for the validity of the
similarity variable. With the use of (9) and (10), Eqs. (2),
(4), (5) and (8) reduces to

F ′′′ +FF ′′ − 2m
�m+1�

�F ′�2+�F ′′F ′′′ −MnF ′ = 0 (11)

�′′ +Pr

(
Nb�′�′ +Nt��′�2+F �′

(
1+ ��m−3�

2
F ′
)

−��m+1�
2

F 2�′′
)
= 0 (12)

�′′+
(
Nt

Nb

)
�′′+LeF �′ =0 (13)

F ���= ��1−m�

�1+m�
� F ′���=1� ����=1� ����=1�

F ′���→0� ����→0� ����→0 (14)

The nondimensional parametersMn, �, �, Pr�Nb�Nt�Le,
and �, denoting magnetic parameter, Weissenberg number,
thermal relaxation parameter, Prandtl number, Brownian
motion parameter, thermophoresis parameter, the Lewis
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number, and wall thickness parameter, respectively, are
given by

Mn= 2�B2
0

�U 2
0 �1+m�

� �= �U 3
0

√
U0

�
�m+1��

� = �U0Uw

�Re
� Pr = �cp

k
Nb = 
DB�Cw −C��

�
�

Nt = 
DT �Tw −T��
T��

� Le = v

DB

� �= A

√
m+1
2

U0

�
(15)

Here � = � indicates the plate surface. For the purpose of
computation, we define f ��� = F ���, ���� = ����, and
����=���� where � = �−�. Now the Eqs. (11) to (13)
become

f ′′′ + ff ′′ − 2m
�m+1�

�f ′�2+�f ′′f ′′′ −Mnf ′ = 0 (16)

�′′ +Pr

(
Nb�′�′ +Nt��′�2+ f�′

(
1+�

�m−3�

2
f ′
)

−�
�m+1�

2
f 2�′′

)
= 0 (17)

�′′ +
(
Nt

Nb

)
�′′ +Lef�′ = 0 (18)

and the corresponding boundary conditions (14) for m �=
−1 are

f �0�= �
1−m

1+m
� f ′�0�= 1� ��0�= 1� ��0�= 1�

lim
�→�

f ′���= lim
�→�

����= lim
�→�

����= 0 (19)

where the prime denotes the differentiation with respect to
�. With reference to variable transformation, the integra-
tion domain will be fixed from 0 to �. When we observe
the boundary condition f �0� = ��1−m�/�1+m� and for
�= 0 or m= 1, the boundary condition reduces to f �0�=
0 which indicates an impermeable surface. The important
physical quantities of interest, the skin friction coefficient
Cfx

the local Nusselt number Nux, and the local Sherwood
number Shx are defined as

Cfx
= 2���u/�y�y=A�x+b�1−m/2

U 2
w

=
(

Rex
2�m+1�

)−1/2

f ′′�0��

Nux=
�x+b���T /�y�y=A�x+b�1−m/2

�Tw−T��
=−

(
�m+1�

2
Rex

)1/2

�′�0�

Shx=
�x+b���C/�y�y=A�x+b�1−m/2

�Cw−C��
=−

(
�m+1�

2
Rex

)1/2

�′�0�

(20)

where Rex = U0�x+b�/� is the local Reynolds number.

3. EXACT SOLUTIONS FOR SOME
SPECIAL CASES

Here we present exact solutions for certain special cases
and these solutions serve as a baseline for computing
general solutions through numerical schemes. We notice
that in the absence of Weissenberg number, thermal relax-
ation parameter, magnetic field, nanoparticle volume frac-
tion parameter and heat transfer reduces to those of Fang
et al.26 In the limiting case of �r → � and m = 1 the
boundary layer flow and heat transfer equations degener-
ate. The solution for the velocity in the presence of mag-
netic field out to be f ��� = 1− e−��/� and f ′��� = e−��

where � =±√
1+Mn.

3.1. In the Absence of Variable Weissenberg Number,
Thermal Relaxation Parameter, Magnetic Field,
Nanoparticle Volume Fraction Parameter and
Heat Transfer; But in the Presence of
Variable Thickness (� =Mn= � = 0 =
Nt= Le= Pr= 0 m �= 1�

Case (i): When m=−1/3, Eq. (16) becomes

f ′′′ + ff ′′ + f ′2 = 0 (21)

with the boundary conditions

f �0�= 2�� f ′�0�= 1� f ′���= 0 (22)

On integrating (21) twice yields to

f ′ + f 2

2
= ��+2���+ �2�2+1� (23)

where � = f ′′�0�. To obtain finite solution it is essential
to consider � =−2�.
Thus (23) reduces to

f ′ + f 2

2
= �2�2+1� (24)

The solution is

f ���=
√
2+4�2 tanh

[√
2+4�2

2
�+ tanh−1

(
2�√

2+4�2

)]
(25)

and

f ′���= 1+2�2Sech2
[√

2+4�2

2
�+ tanh−1

(
2�√

2+4�2

)]
(26)

Case (ii): When m=−1/2, Eq. (16) becomes

f ′′′ + ff ′′ +2f ′2 = 0 (27)

with the boundary conditions

f �0� = 3�� f ′�0�= 1� f ′���= 0 (28)

Equation (27) is equivalent to

1
f

d

d�

[
f 3/2 d

d�

(
f −1/2f ′ + 2

3
f 3/2

)]
= 0 (29)
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Integrating (29) once reduces to the following form

−1
2
f ′2+ ff ′′ + f 2f ′ = −1

2
+3��+9�2 (30)

Applying for free boundary condition we obtain

� =−3�+ 1
6�

(31)

An integration of (30) leads to

f −1/2f ′ + 2
3
f 3/2 = 2

3
�3��3/2+ 1√

3�
(32)

The final solution is

�+D= 1
2d2

ln
[
f +d

√
f +d2

�d−√
f �2

]
+
√
3

d2
tan−1

(
2
√
f +d

d
√
3

)
(33)

where d = ��3��3/2+3/�2
√
3���1/3 and

D= 1
2d2

ln
�3�+d

√
3�+d2�

�d−√
3��2

+
√
3

d2
tan−1

(
2
√
3�+d

d
√
3

)
(34)

Since the system of Eqs. (16) to (18) with conditions (19)
has no exact analytical solutions, the equations are solved
analytically via Optimal Homotopy Analysis Method.

4. SEMI-ANALYTICAL SOLUTION: OPTIMAL
HOMOTOPY ANALYSIS METHOD (OHAM)

Optimal homotopy analysis method has been employed to
solve the nonlinear, system of Eqs. (16)–(18) with bound-
ary conditions (19). The OHAM scheme breaks down a

Table I. Comparison of results for −f ′′�0� when Mn= �= � = Nt = Le= 0 and Nb → 0.

Present result

Fang et al.26 Khader and Megahed29 when Prasad et al.32 when OHAM
by shooting �= 0 by Chebyshev �1 = �2 = 0� �r →�

a m method spectral method by OHAM −f ′′�0� �f �f
10 CPU time

0.5 10 1�0603 1�0603 1�0605077120653874 1�0604 1�3249 2�23413×10−8 273�9668
9 1�0589 1�0588 1�0511040757424492 1�0512 1�3248 1�92781×10−8 269�7467
7 1�0550 1�0551 1�0552402381500168 1�0551 1�3241 1�18723×10−8 257�20091
5 1�0486 1�0486 1�048791366557854 1�0487 1�0095 0�97562×10−8 245�996
3 1�0359 1�0358 1�035877993886442 1�0358 1�0099 3�18554×10−9 245�527
2 1�0234 1�0234 1�0230051676018523 1�0231 1�0184 2�57682×10−9 267�506
1 1�0 1�0 1�0 1�0 0 0 98�0504
0.5 0�9799 0�9798 0�9791336007879321 0�9790 1�0013 6�93683×10−8 264�260
0 0�9576 0�9577 0�9571649276940054 0�9572 1�5586 0�98174×10−7 230�339

−1/3 1�0000 1�0000 0�999835549839111 1�0000 1�5691 0�98999×10−7 313�672
−1/2 1�1667 1�1666 1�1668932098461453 1�1668 1�1992 1�09785×10−7 273�826

0.25 10 1�1433 1�1433 1�1439820336033696 1�1439 1�2573 1�99861×10−9 280�328
9 1�1404 1�1404 1�1402440847765778 1�1401 1�2586 1�97562×10−9 258�626
7 1�1323 1�1323 1�1329048196291788 1�1328 1�2635 1�45781×10−9 253�809
5 1�1186 1�1186 1�1181398433389969 1�1182 1�2724 0�99871×10−9 304�807
3 1�0905 1�0904 1�090832184327589 1�0907 0�8474 0�96781×10−9 278�567
1 1�0 1�0 1�0 1�0 0 0 101�036
0.5 0�9338 0�9337 0�9330216794465643 0�9331 1�40129 1�99959×10−8 252�132
0 0�7843 0�7843 0�7840615830209784 0�7841 1�13919 0�92790×10−7 238�463

−1/3 0�5000 0�5000 0�49999454048648743 0�49999 0�7633 0�94699×10−6 241�383
−1/2 0�0833 0�08322 0�08330568175024846 0�08331 1�2948 4�44657×10−6 265�181

nonlinear differential equation into infinitely many linear
ordinary differential equations whose solutions are found
analytically. In the framework of the OHAM, the nonlinear
equations are decomposed into their linear and nonlinear
parts as follows.
In accordance with the boundary conditions (19), con-

sider the base functions as �e�−n�� for n ≥ 0� then, the
dimensionless velocity f ′���, temperature ����, and con-
centration ���� and can be expressed in the series form as
follows

f ��� =
�∑
n=0

ane
�−n��� ����=

�∑
n=0

bne
�−n�� and

����=
�∑
n=1

cne
�−n��

where an, bn, and cn are the coefficients. According to
the solution expression and boundary conditions (19), we
assume the following, we choose the auxiliary linear oper-
ators as

�f =
d3

d�3
− d

d�
� �� =

d2

d�2
− f � and �� = d2

d�2
− f

(35)
Initial approximations satisfying the boundary conditions
(34) are found to be

f0���= 1+�

(
1−m

1+m

)
− e−�� �0���= e−�� and

�0���= e−�
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Let us consider the so-called zeroth order deformation
equations

�1−q�Lf �f̂ ��� q�− f0����= qHf ����f Nf �f̂ ��� q��

(36)

�1−q�L���̂��� q�−�0����

= qH������N���̂��� q�� f̂ ��� q�� �̂��� q�� (37)

�1−q�L���̂��� q�−�0����

= qH������N���̂��� q�� �̂��� q�� f̂ ��� q�� (38)

Here q ∈ �0�1� is an embedding parameter, while �f �= 0,
�� �= 0 and �� �= 0 are the convergence control parameters,
and the nonlinear differential operators are defined from
Eqs. (30)–(32) as

�f �f̂ � =
�3f̂

��3
+ f̂

�2f̂

��2
−
(

2m
m+1

)(
�f̂

��

)2

+�
�2f̂

��2

�3f̂

��3
−Mn

�f̂

��
(39)

(a) (b)

(c)

Fig. 2. (a) Horizontal velocity profiles for different values of � and Mn with Pr = 1, Nb = 0�5, Nt = 0�5, Le = 0�2, m = 0�5, � = 0�2, � = 0�2.
(b) Temperature profiles for different values of � and Mn with Pr = 1, Nb = 0�5, Nt = 0�5, Le= 0�2, m= 0�5, �= 0�2, � = 0�2. (c) Concentration
profiles for different values of � and Mn with Pr = 1, Nb = 0�5, Nt = 0�5, Le= 0�2, m= 0�5, �= 0�2, � = 0�2.

���f̂ ��̂��̂� =
�2�̂

��2
+Pr

(
Nb

��̂

��

��̂

��
+Nt

(
��̂

��

)2

+ f̂
��̂

��

)

+Pr�

((
m−3
2

)
f̂
�f̂

��

��̂

��
−
(
m+1
2

)
f̂ 2 ��̂

′′

��

)
(40)

���f̂ � �̂� �̂�=
�2�̂

��2
+
(
Nt

Nb

)
�2�̂

��2
+Lef̂

��̂

��
(41)

We choose the auxiliary functions as Hf ��� = H���� =
H���� = e−� . It can be seen from Eqs. (36) to (38) that
when q = 0, we have f̂ ���0� = f0���, etc., while when
q = 1, we have f̂ ���1� = f ���, etc., so we recover the
exact solutions when q = 1. Expanding in q, we write

f̂ ��� q� = f0���+
�∑
n=1

fn���q
n�

�̂��� q�= �0���+
�∑
n=1

�n���q
n� and

�̂��� q� = �0���+
�∑
n=1

�n���q
n
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As q varies from 0 to 1, the homotopy solutions
vary from the initial approximations to the solu-
tions of interest. It should be noted that the homo-
topy solutions contain the unknown convergence control

(a) (b)

(c) (d)

(e)

Fig. 3. (a) Horizontal velocity profiles for different values of � and m with Pr = 1, Nb = 0�5, Nt = 0�5, Le = 0�2, Mn = 0�5, � = 0�2, � = 0�2.
(b) Temperature profiles for different values of � and m with Pr = 1, Nb = 0�5, Nt = 0�5, Le = 0�2, Mn = 0�5, � = 0�2, � = 0�2. (c) Temperature
profiles for different values of � and m with Pr = 1, Nb = 0�5, Nt = 0�5, Le= 0�2, m= 0�5, �= 0�2, � = 0�2. (d) Concentration profiles for different
values of � and m with Pr = 1, Nb = 0�5, Nt = 0�5, Le= 0�2, Mn= 0�5, �= 0�2, � = 0�2. (e) Concentration profiles for different values of � and m

with Pr = 1, Nb = 0�5, Nt = 0�5, Le= 0�2, m= 0�5, �= 0�2, � = 0�2.

parameters, �� �= 0, and �� �= 0, which can be used
to adjust and control the convergence region and the
rate of convergence of the series solution. To obtain
the approximate solutions, we recursively solve the

8 J. Nanofluids, 7, 1–12, 2018
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so-called nth-order deformation equations

�f �fn���−�nfn−1����= �f�
f
n�

����n���−�n�n−1����= ���
�
n�

����n���−�n�n−1����= ���
�
n �

�f
n =

1
�n−1�!

�n−1�f �f̂ ��� q��

�qn−1

∣∣∣∣
q=0

�

��
n =

1
�n−1�!

�n−1���f̂ ��� q�� �̂��� q�� �̂��� q��

�qn−1

∣∣∣∣
q=0

�

��
n = 1

�n−1�!
�n−1���f̂ ��� q�� �̂��� q�� �̂��� q��

�qn−1

∣∣∣∣
q=0

�

�n =
{
0� n≤ 1�

1� n > 1

In practice, we can only calculate finitely many terms in
the homotopy series solution. We, therefore, define the kth
order approximate solution can by the partial sums

f�k���� = f0���+
k∑

n=1

fn���� ��k����= �0���+
k∑

n=1

�n���

and ��k����= �0���+
k∑

n=1

�n��� (42)

With these approximations, we may evaluate the residual
error and minimize it over the parameters �f , �� and �� in
order to obtain the optimal value of �f , �� and �� giving
the least possible residual error. To do so, one may use the
integral of squared residual errors, however, this is very
computationally demanding. To get around this, we use
the averaged squared residual errors, defined by

�f
n ��f �=

1

M +1

M∑
k=0

��f �f�M���k���
2 (43)

��
n����=

1

M +1

M∑
k=0

����f�M���k�� ��M���k����M���k���
2

(44)

��
n ����=

1
M +1

M∑
k=0

����f�M���k�� ��M���k����M���k���
2

(45)

where �k = k/M , k = 0�1�2� � � � �M . Now we minimize

the error function �f
n ��f �, ��

n���� and ��
n ���� in �f , ��

and �� and obtain the optimal value of �f , �� and ��.
For nth order approximation, the optimal value of �f ,

�� and �� for f � � and � is given by d�f
n ��f �/dh = 0,

d��
n����/dh= 0 and d��

n ����/dh= 0 respectively.
Evidently, corresponds to a convergent series solu-

tion. Substituting these optimal values of �f , �� and
�� in Eq. (42) we get the approximate solutions of

Fig. 4. Temperature profiles for different values of � and Pr with Mn=
0�5, m=−0�3, Nb = 0�5, Nt = 0�5, Le = 0�2, � = 0�2, �= 0�2.

Eqs. (16) to (18) which satisfies the conditions (19). For
the assurance of the validity of this method, −f ′′�0�
obtained via OHAM has been compared with Fang et al.,26

Khader and Megahed29 and Prasad et al.32 for various spe-
cial cases and the results are found to be in excellent agree-
ment (see Table I). In Table II, the optimal values of hf , h�

and h� for the functions −f ′′�0�, −�′�0� and −�′�0� cor-
responding to various values of the parameters are given
and the corresponding averaged residuals are represented
as Ef

10, E
�
10 and E

�
10.

5. RESULTS AND DISCUSSION
The system of Eqs. (16) to (18) subject to the boundary
conditions (19) is solved analytically via efficient OHAM.
The computations are being carried out using Mathematica
8and obtained the flow, heat,and mass transfer characteris-
tics of Williamson fluid with nanoparticles by considering

Fig. 5. Concentration profiles for different values of Nt and Nb with
Pr = 1, m= 0�5, Le = 1, Mn= 0�5, �= 0�1, � = 0�2, �= 0�25.
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Cattaneo-Christov heat flux model for several values of the
governing parameters such as Weissenberg number �, ther-
mal relaxation parameter �, velocity power index param-
eter m, the variable thickness parameter �, the Prandtl
number Pr , Magnetic parameter Mn, the thermophoresis
parameter Nt and the Brownian motion parameter Nb, and
the Lewis number Le. Figures 2–5 describes the influence
of various physical parameters on the horizontal velocity
profile f ′���, the temperature profile ����, and the concen-
tration profile ���� graphically. These profiles f ′���� ����,
and ���� are unity at the wall, decreases monotonically
and tend to zero asymptotically as the distance increases
from the boundary. The computed numerical values for the
skin friction f ′′�0�, the Nusselt number �′�0� and the wall
Sherwood number �′�0� are presented in Table II.
Figures 2(a) to (c) illustrates the effect of Mn and � on

f ′���� ����, and ����. It is noticed that f ′��� decreases
for increasing values of Mn. This is due to the fact that the

(a) (b)

(c)

Fig. 6. (a) Residual error profile for horizontal velocity and temperature for different values of m with �= 0�2, �= 0�2, � = 0�2, Nt = 0�5, Nb = 0�5,
Le = 0�2, Pr = 1, Mn = 0�5. (b) Residual error profile for temperature and concentration for different values of � with m = 0�5, � = 0�2, � = 0�2,
Nt = 0�5, Nb = 0�5, Le = 0�2, Pr = 1, Mn= 0�5. (c) Residual error profile for temperature and concentration for different values of � with m= 0�5,
�= 0�2, �= 0, Nt = 0�5, Nb = 0�5, Le= 0�2, Pr = 1, Mn= 0�5.

retarding/drag forces called the Lorentz forces generated
by the applied magnetic field act as resistive drag forces
opposite to the flow direction which results in a decrease
in velocity. Consequently, the thickness of the momentum
boundary layer reduces with an increase in Mn. A sim-
ilar trend is observed in the case of �, this is because
the relaxation time of the fluid enhances for higher val-
ues of � causing a decrease in velocity of the fluid. The
exact opposite trend is observed in the case of ���� and
���� (See Fig. 2(c)). Figures 3(a) through (e) depicts the
impact of � and m on f ′���, ����, and ����. An inter-
esting pattern may be observed in the case of positive
and negatives of � and m. The behavior of the bound-
ary condition f �0� = ���1−m�/�1+m�� depends on the
values of � and m. For a given range � > 0 and m < 1
or � < 0 and m > 1, it is observed that f �0� > 0 which
is the case of injection and for the other opposite set of
range � and m, we have f �0� < 0 which is a suction case.

10 J. Nanofluids, 7, 1–12, 2018



Prasad et al. Analytical Study of Cattaneo-Christov Heat Flux Model for Williamson-Nanofluid

A
R
T
IC
LE

From the Figure 3(a), it is clear that as � > 0 and m =
−0�3 the velocity profiles are increasing for the decreas-
ing values of � and the reverse trend is observed in the
case of � > 0 and m= 5. The opposite pattern is noticed
in the case of temperature and concentration profiles with
� > 0 and m=−0�3�2�10 (See Figs. 3(b to e)). Injection
enhances both temperature and nanoparticle concentration.
Thermal and concentration boundary layer thickness for
the injection case is significantly greater than for the suc-
tion case. Effectively suction achieves a strong suppression
of nano-particle species diffusion and also regulates the
diffusion of thermal energy (heat) in the boundary layer.
This response to suction has significant effects on the con-
stitution of engineered nanofluids and shows that suction is
an excellent mechanism for achieving flow control, cool-
ing, and nanoparticle distribution in nanofluid fabrication.
Figure 4 exhibits the impact of increasing values of �
and Pr on ����. Temperature decreases considerably when
� increases and hence thermal boundary layer decreases.
In fact, for larger values of �, the particles of measurable
material require more opportunity to hand over heat to its
adjacent particles. Thus, larger � is responsible for the
decrease of temperature. Physically, � appears because of
the heat flux relaxation time. The greater values of �, the
liquid particles require more time to exchange heat to their
neighboring particles which make a reduction in the tem-
perature. The Cattaneo-Christov heat flux model can be
reduced to fundamental Fourier’s law of heat conduction
in the absence of �. This observation gives us an insight
that, the temperature in Cattaneo-Christov heat flux model
is lower than the Fourier’s model (In the absence of �
heat transfer instantly throughout the material). Further-
more, the behavior of Pr on the thermal boundary layer
with the consideration of � found to be decreasing the
temperature and thereby reduce the thickness of the ther-
mal boundary layer. Figure 5 elucidates the influence of
Nt and Nb on ����. It is noted that the nanoparticle vol-
ume fraction increases with the increase in Nt (increase
in thermophoresis force) and thus augments the concentra-
tion boundary layer thickness. In this case, the nanoparti-
cles move away from the hot stretching sheet towards the
cold ambient fluid under the influence of temperature gra-
dient. But in the case of Nb (smaller nano-particles), the
result is the reverse. Moreover, larger values of Nb will
stifle the diffusion of nanoparticles away from the surface,
which results in a decrease in nanoparticle concentration
values in the boundary layer. Finally, in order to obtain
the optimal values of �f , �� and �� which is displayed
in Eqs. (43)–(45), the residual error for f ′���, ���� and
���� is depicted in Figures 6(a) to (c). It clearly shows the
accuracy and convergence of OHAM. These figures show
that a tenth-order approximation yields the best accuracy
for the present model.

The impact of the physical parameters on f ′′�0�, �′�0�,
and �′�0� is presented in Table II. We noticed a decrease

in the skin friction as Mn increases, while the opposite pat-
tern is observed for the Nusselt number and the Sherwood
number. Increasing Weissenberg number � enhances the
Nusselt number and the Sherwood number whereas ther-
mal relaxation parameter � decreases the Nusselt number.
Sherwood number decreases for increasing values of Le.

6. CONCLUSIONS
In this article, MHD flow, heat and mass transfer of
Williamson-Nano fluid over a stretching sheet with vari-
able thickness has been examined. Cattaneo-Christov heat
flux model was used to investigate the heat transfer mech-
anism. Some of the interesting conclusions are as follows:
• The strong variation in the velocity, temperature, and
concentration fields is noticed as wall thickness parameter
increases accordingly with m> 1 or 1>m>−1.
• In comparison with Fourier’s law, the behavior of tem-
perature profile is of decreasing nature for Cattaneo-
Christov heat flux model.
• An increase in the nanoparticle concentration profiles is
due to the increase in the thermophoresis parameter and
the Brownian motion parameter.
• Due to the effect of Lorentz force, fluid finds a drag
force and hence velocity profile decreases while temper-
ature and concentration profiles increases for increasing
values of magnetic parameter.
• Weissenberg number is decreasing the function of
velocity whereas Lewis number reduces the Sherwood
number.
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In this article, an analysis has been carried out to study the effects of variable 
viscosity and variable thermal conductivity on the heat transfer characteristics of a 
Casson nanofluid over a slender Riga plate with zero mass flux and melting heat 
transfer boundary conditions. The nonlinear governing equations with the suitable 
boundary conditions are initially cast into dimensionless form by similarity 
transformations. The resulting coupled highly nonlinear equations are solved 
numerically by an efficient second-order finite difference scheme known as Keller Box 
Method. The effect of various physical parameters on velocity, temperature, and 
concentration profiles are illustrated through graphs and the numerical values are 
presented in tables. One of the critical findings of our study is that the effect of 
variable viscosity on velocity shows reducing nature, but there is an increasing nature 
in temperature and concentration. 

Keywords:  
Riga plate; Melting heat transfer; 
variable fluid properties; Keller box 
method  Copyright © 2019 PENERBIT AKADEMIA BARU - All rights reserved 

 

1. Introduction 
 

In recent years, controlling the flow of electrically conducting fluids is one of the primary tasks 
to the scientists and engineers. The controlled flow of these fluids has enormous applications in 
industrial and technological processes involving heat and mass transfer phenomenon. However, the 
polymer industry has adopted a few conventional methods to control the fluid flow such as of 
suction/blowing and wall motion methods with the assistance of electromagnetic body forces. The 
flow of the fluids having high electrical conductivity such as liquid metals, plasma, and electrolytes, 
etc. can be significantly controlled by applying an external magnetic field. This concept can be used 
for controlling the classical electro magnetohydrodynamic (EMHD) fluid flows. In view of the 
industrial applications, Gailitis, and Lielausis [1] of the physics institute in Riga, the capital city of the 
Latvia country designed one of the devices known as Riga plate to generate simultaneous electric 
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and magnetic fields which can produce Lorentz force parallel to the wall in weakly conducting 
fluids. This plate consists of a spanwise aligned array of alternating electrodes and permanent 
magnets mounted on a plane surface. This array generates a surface-parallel Lorentz force with a 
neglected pressure gradient, which decreases exponentially in the direction normal to the 
(horizontal) plate. However, in vector product form the volume density of a Lorentz force is written 

as 1 F = J B and in terms of Ohm’s law it can be expressed as ( )J = σ E+V×B  where σ is an 

electrical conductivity of the fluid, V is the fluid velocity, and E is the electric field. In the absence of 

any extrinsic magnetic field, a complete contactless flow can be attained when 610−σ S/m. Where 

as in the presence of extrinsic magnetic field, an induced high current density ( )σ V×B  can be 

obtained and we have ( ) ( )1
  

2F = J ×B = σ V×B ×B = σ V×B B - B V . On the contrary, when 

610σ S/m, a low current density ( )σ V×B  can be seen. To tackle with such cases, an extrinsic 

magnetic field is used to obtain the EMHD flow. The expression ( )1 F = J×B σ E×B

 
reveals that 

the electrical conductivity of a fluid is very small, and it does not rely upon the flow field. According 

to Grinberg [2], the density force can be written as
1

1 0 0
1

8

y
a

M j
e


 −

F = . Tsinober and Shtern [3] 

observed the substantial improvement in the strength of the Blasius flow towards a Riga plate, 
which is due to the more significant influence of wall parallel Lorentz forces. Further, the boundary 
layer flow of low electrical conductivity of fluids over a Riga plate was scrutinized by Pantokratoras 
and Magyari [4]. Pantokratoras [5] extended the work of Pantokratoras and Eugen [4] to Blasius and 
Sakiadis flow. 

In addition to controlling the flow of electrically conducting fluids, the technological industry 
demands the control of heat transfer in a process. This can be achieved with the help of nanofluids 
technology. Nanofluid is the blend of the nanometer-scale (1nm to100 nm) solid particles and low 
thermal conductivity base liquids such as water, ethylene glycol (EG), oils, etc. Two different phases 
are used to simulate nanofluid. In both the methods researchers assumed as the common pure 
fluid and more precisely in the second method, the mixer or blend is with the variable 
concentration of nanoparticles. Choi [6] proposed the term nanofluid and verified that the thermal 
conductivity of fluids could be improved by the inclusion of nanometer-sized metals (Cu, Ag, Au), 
oxides 2 3(Al O , CuO) , carbide ceramics (Sic, Tic/carbon nanotubes/fullerene) into the base fluids. 

Buongiorno [7] established that Brownian diffusion and thermophoresis are important slip 
mechanisms in nanofluids. Makinde and Aziz [8] examined the impact of Brownian motion and 
thermophoresis on transport equations numerically. Ahmad et al., [9] and Ayub et al., [10] 
examined the boundary layer flow of nanofluid due to Riga plate. Further, Hayat et al., [11, 12] 
analysed squeezing flow of a nanofluid between two parallel Riga plates by considering different 
external effects. Recently, Naveed et al., [13] continued the work of Ref [12] and studied salient 
features of 3 4 2(Ag-Fe O /H O) hybrid nanofluid between two parallel Riga plates. Furthermore, 

several research articles can be found in the literature that covers the different physical and 
geometrical aspects of the classical liquids. Few of them can be seen in the references. [14-25].  

All the researchers, as mentioned earlier, have concentrated on conventional nonlinear 
stretching but not on the stretching. Fang et al., [26] have coined the word variable thickness for 
the specific type of nonlinear stretching and examined the performance of boundary layer flow 
over a stretching sheet with variable thickness. Khader and Megahed [27] reviewed the work of 
Fang et al., [26] via Numerical method to explain velocity slip effects. Farooq et al., [28] considered 
variable thickness geometry with Rega plate to analyze stagnation point flow and Prasad et al., [29-
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33] examined the impact of variable fluid properties on the Newtonian/non-Newtonian fluid flow 
field. 

The main objective of the present work is to reduce the skin friction or drag force of the fluids 
by applying an external electric field in the presence of variable fluid properties over a slender 
elastic Riga plate under the influence of zero mass flux and heat transfer boundary conditions. 
Suitable similarity variables are introduced to transform the coupled nonlinear partial differential 
equations into a set of coupled nonlinear ordinary differential equations. These equations are 
solved numerically via Keller Box method (See Vajravelu and Prasad [34]). The effects of various 
governing physical parameters for velocity, temperature, and nanoparticle concentration are 
discussed through the graphs and tables. The obtained results are compared with the actual results 
in previous literature and are found to be in excellent agreement. From this, it can be concluded 
that the present research work provides useful information for Science and industrial sector. 
 
2. Mathematical Analysis of the Problem 
 

Consider an electromagnetic flow of a steady, incompressible non-Newtonian nanofluid over a 
slender Riga plate with variable fluid properties. Here the non-Newtonian fluid model is the Casson 
model and the rheological equation of state for an isotropic and incompressible fluid is given by (for 
details see, Prasad et al., [32]). 
 

2( / 2 ) ,

2( / 2 ) ,

B y ij c

ij

B y c ij c

P e

p e

   


   

 + 
= 

+ 

                                                                                                            (1)  

 

where ij ije e = and ije is the ( , )thi j component of deformation rate,  is the product of the 

component of deformation rate with itself, B is the plastic dynamic viscosity of Casson fluid, yP is 

yield stress of the fluid and c is a critical value of this product depending on the non-Newtonian 

model. Further, the Riga plate is considered as an alternating array consisting of electrodes and 
permanent magnets mounted on a plane surface situated at y = 0 having x-axis vertically upwards. 
The fluid is characterized by a nanoparticle and is analyzed by considering Brownian motion and 
thermophoresis phenomena. The following assumptions are made 

i. Joule heating and viscous dissipation are neglected. 
ii. The fluid is isotropic, homogeneous, and has constant electric conductivity. 

iii. The velocity of the stretching Riga plate and the free stream velocity are respectively, 

assumed to be 0( ) ( )m

wU x U x b= +  and ( ) ( )m

eU x U x b= + , where 0andU U  are positive 

constants, m is the velocity power index and b is the physical parameter related to slender 
elastic sheet.  

iv. The Riga plate is not flat and is defined as ( )
( )1 2

 = A , m 1,
m

y x b
−

+  where the coefficient A 

is chosen as small so that the sheet is sufficiently thin, to avoid pressure gradient along the 
Riga plate ( /  = 0)p x   

v. The temperature and nanoparticle concentration at the melting variable thickness of the 

Riga plate are andM MT C respectively and further andT C  denote the ambient 

temperature and nanoparticle concentration of the fluid respectively. 
vi. For different applications, the thickness of the stretching Riga plate is assumed to vary with 

the distance from the slot due to acceleration/deceleration of an extruded plate.  



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 64, Issue 1 (2019) 19-42 

22 
 

For m =1 thickness of the plate become flat. The physical model of the problem is given below 

(Figure 1). 
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(b) 

Fig. 1. Physical model of (a) variable thickness and (b) Riga plate 

   
Based on the above assumptions and the usual boundary layer approximations, the governing 

equations for continuity, momentum, thermal energy, and concentration for the nanofluid model 
are expressed as follows 

 
v

0
u

x y

 
+ =

 
                                                                                                                                                        (2) 
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( )

( )
1 0 0 1

1

1 1
v 1 ( ) exp

8

e
e

j M xdUu u u
u T U y

x y y y dx a x

 


   

    −   
+ = + + +              

                                      (3) 

 

( )
( )

2

01
v ( ) ( ) T

B

p p

Q x DT T T C T T
u K T T T D C

x y c y y c y y T y


 


  

          
+ = + − + +    

           

                       (4) 

 
2

2
v ( ) T

B

DC C C T
u D C

x y y y T y

     
+ = + 

     
                                          (5) 

 
where u and v are velocity components along x and y directions respectively.   is the Casson 

parameter, pc  is the specific heat at constant pressure, and   is the fluid density. The transport 

properties of the fluid  are assumed to be constant, except for  the fluid  viscosity ( )T , the fluid 

thermal conductivity ( )K T  and Brownian diffusion of the fluid BD , are assumed to be functions of 

temperature and  nanoparticle concentration,  and are expressed as follows 
 

1 1

2( ) [1 ( )] , i.e ( ) [ ( )] ,M rT T T T a T T   − −

= + − = −                                                                             (6)                                 

 

1( ) [1 (( ) / ( ))]M MK T K T T T T = + − −                                                                                                          (7)                                                         

 

2( ) [1 (( ) / ( ))]B B M MD C D C C C C
 = + − −                                                                                                   (8)                                                                                   

 

 

here 2 / and 1/ra T T   = = −  are constants and their values depend on the reference state and 

the small parameter   is known as thermal property of the fluid. Generally, the positive and 

negative values of 2a  describes two different states, namely, liquids and gases respectively, i.e. for 

2 0a   represents the liquid state and 2 0a   represents gas state. Here , and BK D
  are 

ambient fluid viscosity, thermal conductivity and Brownian diffusion coefficient respectively. 

1 2and 
 are small parameters known as the variable thermal conductivity parameter and variable 

species diffusivity parameter respectively. The term ( )0Q x  represents the heat generation when 

0 0Q   and heat absorption when
0 0Q  , and are used to describe exothermic and endothermic 

chemical reactions respectively. Further, 0j  is the applied current density in the electrodes, ( )0M x  

is the magnetization of the permanent magnets mounted on the surface of the Riga plate and 

( )1a x  is width between the magnets and electrodes. The special forms 

( ) ( )
(1 )/2

0 0 ,
m

Q x Q x b
−

= + ( ) ( )
(1 )/2

0 0

m
M x M x b

−
= + and ( ) ( )

(1 )/2

1 1

m
a x a x b

−
= +  are chosen to obtain 

the similarity solutions.   is defined as the ratio between the effective heat capacity of the 
nanoparticle material and heat capacity of the fluid, i.e. ( ) / ( ) ,p p p fc c   = TD  is the 

thermophoresis diffusion coefficient and  
0T  is solid temperature. The appropriate boundary 

conditions are 
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( )  
( )

0

1 0
1 2

( ) ( ) ,

( ) v(x,y),  

at
0

m

w

s M M
m

T
B

u U x U x b

K T y c T T T T

y A x bDC T
D

y T y

 
−



= = +


  = + − = 


= + 
+ = 

  


                (9)       

( ) ( ) , , asm

eu U x U x b T T C C y  → = + → → →                        

 
The second boundary condition defined in Eq. (9) 

( )  1 0( ) v(x,y)s MK T y c T T   = + − represents the melting temperature in which 1  is the latent 

heat of fluid, MT  is the melting temperature, 0  and sT C are the temperature and heat capacity of the 

concrete surface respectively. On substituting Eq. (6)-(8) in the basic Eq. (3)-(5), it reduces to 
 

( )

( )
0 0

1

1 1
v 1 exp

1 ( ) 8

e
e

j M xdUu u u
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x y y T T y dx a x
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                                                                    (12)  

 
Now, we transform the system of Eq. (10)-(12) into dimensionless form. To this end, the 
dimensionless similarity variable be, 
 

( )
( 1)

0 ( )
1 2

mU x b
y m



−



+
= +                                                                                                                      (13)

  

 
and the dimensionless stream function, the dimensionless temperature and the dimensionless 
nanoparticle concentration are, 
 

( ) ( 1)

02 1 ( ) F( ), ( ) , ( ) ,m M M

M M

T T C C
m U x b

T T C C
    +



 

− −
= + +  =  =

− −
                                              (14)  

                      
with the use of Eq. (13) and (14), the velocity components are, 
 

( 1)
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2 ( 1) ( 1)
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( 1) 2 2
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here prime denotes differentiation with respect to  . In the present work, it is assumed m >-1 for 

the validity of the similarity variable. With the use of Eq. (13)-(15), then Eq. (10)-(12) and the 
corresponding boundary conditions reduce to: 
 

 1

1

21 2 2 2
1 1 '' '' ( ') * 0

( 1) ( 1) ( 1)r

m m
F FF F A Qe

m m m
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 + − + − + + =    + + +    

                  (16)  
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The non-dimensional parameters 1, *, , ,Pr, , , , , andr A Q Nb Nt Le M     represent the variable 

viscosity parameter, stretching rate ratio parameter, modified Hartman number, dimensionless 
parameter, Prandtl number, wall thickness parameter, Brownian motion parameter, 
thermophoresis parameter, heat source/sink parameter, Lewis number and the dimensionless 
melting heat parameter respectively and which are defined as follows 
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(20)                                                                                

 

The value of the r  is determined by the viscosity of the fluid under consideration, it is worth 

mentioning here that for 0 .i e  → =  (constant) then .r →   It is also important to note that 

r
 is negative for liquids and positive for gases when ( )MT T −  is positive, this is due to fact that 

the viscosity of a liquid usually decreases with increasing in temperature. Further, 0M =  shows 
that there is no melting phenomenon, also it should be noted that M comprises of the Stefan 

constants 0 1 0( ) / and ( )p s Mc T T c T T − −
 of liquid and solid phase respectively.  Now, we define the 

following ( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ),F f f               = − =  = − =  = − =  here  =  

indicates the flat surface. Then Eq. (16) to (19) reduce to 
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2.1 Physical Quantities of Interest 
 

The important physical quantities of interest for the governing flow problem, such as skin 

friction
xfC , the local Nussult number ,xNu  and Sherwood number xSh are defined as follow. 
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= = = = +

    
are respectively called the skin 

friction, the heat flux and the mass flux at the wall. These parameters in dimensionless form can be 
written as  
 

( )
1/21/2Re ( 1) / 2 (0),

( 1)x

r
x f

r

C m f




 
= +  

−   

( ) ( )
1/21/2

1Re ( 1) / 2 1 (0) andx xNu m  − = − + +

 

( ) ( )
1/21/2

2Re ( 1) / 2 1 (0)x xSh m  − = − + + , where Re ( ) /x wU x b = +  is called local Reynolds 

number.  
 
3. Exact Analytical Solutions for Some Special Cases   
 

In this section, we study the exact solutions for some special cases. It is important to analyze 
some theoretical analysis of the certain solutions for some given physical parameters and these 
solutions serve as the base function for computing general solutions through numerical schemes. In 

the case of absence of Casson parameter ,  variable fluid viscosity parameter ,r stretching rate 

ratio parameter *,A  and modified Hartman number Q  the present problem reduces to Fang et al. 

[26]. The discussions here will be emphasized on other parameters except 1m  .   
 

Case (i): when  1/ 3m = −  then Eq. (21) reduces to the following form, 
 

2( ') 0f ff f + + =                                                                                                                                        (26)   

 
with the associated boundary conditions (24) becomes,                         
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(0) 2 , '(0) 1, '( ) 0f f f= =  =                                                                                                                (27)  

 
On integration Eq. (26) twice yields to 
                                                                                               

2
2( 2 ) (2 1)

2

f
f     + = + + +                                                                                                                     (28)   

 
where (0),f = in order to have a finite solution it is essential to consider 2 = −  

2
2(2 1)

2

f
f  + = +   when , →  we have  2( ) 2 4 .f  = +                                                            (29) 

 

The solution is 
2

2 1

2

2 4 2
( ) 2 4 tanh tanh

2 2 4
f

 
  



−
  +

= + +  
+   

  and                                   (30) 

 
2

2 2 1

2

2 4 2
( ) 1 2 Sech tanh

2 2 4
f

 
  



−
  +

 = + +  
+   

                                                                       (31)   

   
It should be noted that, for  1/ 3,m = −  the above solutions reduce to the solutions for a flat 

stretching surface. This confirms that the present numerical solutions are in good agreement with 
those of Fang et al., [26] and these can be used for numerical code validation in this work.       

 
Case(ii): For 1/ 2,m = −  we can obtain another analytical solution, for this case, Eq. (21) reduces to,   

                                                                           
22( ') 0f ff f + + =                                                                                                                                      (32) 

 
with the respective boundary conditions (24) becomes as,                       
 

(0) 3 , '(0) 1, '( ) 0f f f= =  =                                                                                                                (33) 
 
Eq. (32) can be written in the form of                                                                                                                   

 

3/2 1/2 3/21 2
0

3

d d
f f f f

f d d 

−  
 + =  

  
                                                                                                        (34) 

 
Integrating Eq. (34) once reduces to the following form                                                                           

 

( )
2 2 21 1

3 9
2 2

f ff f f    − + + = − + +
                                                                                                    (35) 

 

Applying free boundary condition we get,                                                                                               

 
1

3
6

 


= − +                                                                                                                                                    (36)  
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On integration Eq. (35) leads to                                                                                                      

 

( )
3/21/2 3/22 2 1

3
3 3 3

f f f 


−  + = +
                                                                                                               (37)   

 

The final solution is                                                                                                                  

( )

2

1

22 2

21 3
ln tan 0

2 3

f d f d f d
D

d d dd f

 −

 
 + + + + = + =   

−    
                  (38) 

where 

 
3/2 1/3[(3 ) 3 / (2 3 )d  = +  

 
and 
 

( )

( )

2

1

22 2

3 31 3 2 3
ln tan 0

2 33

d d d
D

d d dd

  



−

 + +  + = + =   
 −  

                                                                  (39) 

 
Since the system of Eq. (21)-(23) with boundary conditions (24) has no exact analytical solutions, 
they are solved numerically via a Keller-Box method.  
 
4. Method of Solution 
 

The system of highly nonlinear coupled differential Eq. (21) to (23) along with appropriate 
boundary conditions in Eq. (24) are solved by finite difference scheme known as Keller Box Method. 
This system is not conditionally stable and has a second order accuracy with arbitrary spacing. For 
solving this system first write the differential equations and respective boundary conditions in 
terms of first order system, which is then, converted into a set of finite difference equations using 
central difference scheme. Since the equations are highly nonlinear and cannot be solved 
analytically, therefore these equations are solved numerically using the symbolic software known 
as Fedora. Further nonlinear equations are linearized by Newton’s method and resulting linear 
system of equations is solved by block tri-diagonal elimination method. For the sake of brevity, the 
details of the solution process are not presented here. For numerical calculations, a uniform step 
size is taken which gives satisfactory results and the solutions are obtained with an error tolerance 
of 610−  in all the cases. To demonstrate the accuracy of the present method, the results for the 
dimensionless Skin friction, Nussult number and Sherwood number are compared with the previous 
results. 
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4.1 Validation of Methodology 
 

The main objective of this section is to check the validation of the present work. The present 
numerical results are compared with the existing work of Farooq et al., [28] and Prasad et al., [31] 

in the absence and presence of Riga plate with 1 2Pr * 0, 0,A Nt Le M Nb  = = = = = = = = →  

, r →  →   and the results are in excellent agreement with the previous literature (Table 1).  

 
Table 1 
Comparison of Skin friction coefficient ''(0)f−  for different values of wall thickness parameter 

 
and 

velocity power index m  when the presence and absence of a Riga plate at fixed values of 

1 2Pr * 0, 0, , .rA Nt Le M Nb    = = = = = = = = → →  →   

  m  Presence of Riga plate Farooq 
et al., [28] by OHAM when 

10.1, 0.2Q = =  

Absence of Riga plate Prasad et al., 
[31] by OHAM, when 10, 0Mn Q = = = =  

Present results, Keller Box 
Method 

Presence of 
Riga plate 

Absence of 
Riga plate 

0.25 02 0.9990 1.0614 0.9990 1.06140 
03 1.0465 1.0907 1.0456 1.09050 
05 1.0908 1.1182 1.0902 1.11860 
07 1.1120 1.1328 1.1121 1.13230 
09 1.1244 1.1401 1.1247 1.14041 
10 1.1289 1.1439 1.1288 1.14334 

0.5 02 0.9673 1.0231 0.9672 1.02341 
03 0.9976 1.0358 0.9975 1.03588 
05 1.0252 1.0487 1.0253 1.04862 
07 1.0382 1.0551 1.0383 1.05506 
09 1.0458 1.0512 1.0458 1.05893 
10 1.0485 1.0604 1.0485 1.06034 

  
5. Results and Discussion 
  

The system of nonlinear ordinary differential Eq. (21) to (23) together with the appropriate 
boundary conditions (24) are numerically solved by using Keller Box method. The influence of  
various physical parameters such as Casson parameter  , variable fluid viscosity parameter 

,r velocity power index m , stretching rate ratio parameter *,A  modified Hartman number ,Q  
dimensionless parameter 1 , variable thermal conductivity parameter 1 , Brownian motion 

parameter Nb , thermophoresis parameter ,Nt  Prandtl number Pr , heat source/sink parameter  , 

variable species diffusivity parameter 2 , Lewis number Le , and wall thickness parameter   on the 

horizontal velocity profile ( )f  , the temperature profile ( )  , and the concentration profile ( )   
are exhibited through Figure 2-9. The computed numerical values for the skin friction ( )0 ,f   the 

Nussult number ( )0 and the wall Sherwood number ( )0 are presented in Table 2. 

In Table 2 we present the results for ( ) ( ) ( )0 , 0 and 0f     corresponding to different values 

of the physical parameters. The skin friction coefficient is a decreasing function of the parameters 

,m  , ,  1,  r  and increasing function of *,A  .Q  Nusselt number reduces for ,m , *,A  1  

and increases for 1, , ,Pr,and .r Nb Nt     Further, the Sherwood number decreases for 1&   
and increases for *A . 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 64, Issue 1 (2019) 19-42 

30 
 

The effect of velocity power index m  and wall thickness parameter  on velocity, temperature 
and concentration boundary layers are depicted in Figure 2(a) – 2(c). Figure 2(a) elucidates that, for 

increasing values of ,m  ( )f   reduce and this is due to the fact that the stretching velocity 

enhances for larger values of m  which causes more deformation in the fluid, consequently velocity 
profiles decrease. A similar trend may be observed in the case of ( )   (Figure 2(b)), whereas 

concentration distribution (Figure 2(c)) shows a dual characteristic, that is for larger values of m  
concentration profiles reduces near the sheet and opposite behaviour is observed away from the 
sheet. When 1,m =  the sheet become flat. Similarly, for higher values of wall thickness parameter 

, velocity profiles fall, but the temperature distribution upgrade near the sheet and downwards 

away from the sheet. Whereas, the impact of   is quite opposite in the case of concentration 

distribution. Figure 3(a) through 3(c) indicates the influence of   and 1  on ( ), ( ) and ( )f      . 

For greater values of   velocity profiles are compressed, this is because as   increases the 

corresponding value of yield stress fall as a result velocity boundary layer thickness decreases. The 
temperature distribution rises for different estimations of   and concentration distribution exhibits 

exactly reverse trend. Effect of 1
 on these three profiles is same as that of   . It is noticed from in 

Figure 4(a) to 4(c) that both r and *A  exhibits opposite trend, increasing variable fluid viscosity 

reduces the velocity and concentration profiles while the enhancement is observed in the case of 

temperature profiles. This may be due to the fact that, lesser  r  implies higher temperature 

difference between the wall and the ambient nanofluid and the profiles explicitly manifest that 

 r is the indicator of the variation of fluid viscosity with temperature which has a substantial effect 

on ( )f  and hence on ( ) ,f  where as in the case of temperature the effect is reversed. Figure 5 

illustrates the impact of *A  and Q  on ( )f  . An improvement in *A  corresponds to the 

enhancement of velocity boundary layer thickness. The enhancement in the velocity profile is 
observed for amplifying Q . Conventionally the velocity profiles are the decreasing function of 

Hartman number where as in this case the Lorentz force which is produced due to the magnetic 
arrays parallel to the surface is responsible for the enhancement of the momentum boundary layer 
thickness. The influence of Nb  and Nt  on temperature and concentration distribution are 
sketched in Figure 6(a) and 6(b). It is seen that the higher values of Nb  enhances temperature 
profiles and its boundary layer thickness, whereas concentration distribution suppressed near the 
sheet and swells away from the sheet. The larger Nt  creates a thermophoresis force which compels 
the nanoparticles to flow from the hotter region to the colder region which results in raising 
temperature profiles. In the case of concentration distribution, the duel behavior is noticed which 
reduces near the sheet and increases away from it (See Figure 6(b)). The characteristic of Prandtl 

number Pr  and variable thermal conductivity parameter 1
 on temperature distribution is 

demonstrated in Figure 7. Usually temperature distribution reduces for higher values of Pr  and 

enhances for larger values of 1, but in this work quite opposite behaviour can be seen, this is due 

to the presence of melting heat transfer parameter M  and stretching rate ratio parameter *A . 
Figure 8 records the effect of heat source/sink parameter  on ( )  , an increase in   means rise in 

the temperature difference ( ),MT T − which leads to an increment in temperature distribution. 

Figure 9 is plotted for different values of Le  and 2  on ( )  . Lower the Brownian diffusion 

coefficient BD  the higher Lewis number: This leads to a decrease in the thickness of the 

nanoparticle concentration boundary layer. It is interesting to note that a distinct rock bottom in 
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the nanoparticle volume fraction profiles occur in the fluid adjacent to the boundary for higher 

values of Le  and lower values of 2 . This means that the nanoparticle volume fraction near the 

boundary is lesser than the nanoparticle volume fraction at the boundary; accordingly, 
nanoparticles are likely to transfer to the boundary.  
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Fig.2(a ) : Horizontal velocity  profiles for different values of  and m with Pr = 1,   

                  Nb = 0.5, Nt = 0.5, Le = 0.96,  M = 0.2,  = 0.1, 

 = 0.1, 


 = 0.1,

                  
r
 = -5, Q = 0.2, 

1
 = 0.3,  = 0.2,  A

*
 = 0.01.

 

 f'()


 

(a) 

 

0 1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

Fig.2(b ) : Temperature profiles for different values of  and m with Pr = 1,   
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Fig. 2. The effect of velocity power index m  and wall thickness parameter  on (a) 
horizontal velocity, (b) temperature and (c) concentration boundary layers profiles 

for different values of Pr = 1, Nb = 0.5, Nt = 0.5, Le = 0.96, M = 0.2,  = 0.1, 1 = 0.1, 

2 = 0.1,  = -5, Q= 0.2, 1 = 0.3,  = 0.2, A* = 0.01. 
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Fig. 3. The influence of   and 1
 
on (a) horizontal velocity, (b) temperature and 

(c) concentration profiles for different values of Pr = 1, Nb = 0.5, Nt = 0.5, Le = 

0.96, M = 0.2,  = 0.1, 1 = 0.1, 2 = 0.1,  = -5, Q= 0.1,  = 0.25, A* = 0.01 
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Fig. 4. The (a) horizontal velocity, (b) temperature and (c) concentration profiles for 

different values of  and A* with Pr = 1, Nb = 0.5, Nt = 0.5, Le = 0.96, M = 0.2,  = 

0.1, 1 = 0.1, 2 = 0.1, Q= 1,  = 0.25, m = 0.5 
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Fig. 6. The influence of  Nb and  Nt on the (a) temperature and (c) concentration 

profiles with Pr = 1, Le = 0.96, M = 0.2,  = 0.1, 1 = 0.1, 2 = 0.1,  = 0.25, Q = 1, 1 = 2, 

 = 1,   = -0.5 and A* = 0.01 
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6. Conclusions 
 

The present article examines the effects of variable fluid properties on the heat transfer 
characteristics of a Casson nanofluid over a slender Riga plate with zero mass flux and melting heat 
transfer boundary conditions. Here, the thickness of the sheet is erratic. The critical points of the 
present study are summarized as follows: 

i. The effect of velocity power index m on velocity and temperature field is similar, that is, in 
both the cases the profiles increases as m reduces, whereas in the case of concentration 
distribution dual nature is observed. 

ii. Velocity and concentration distributions reduces for increasing values of Casson parameter, 
but the temperature distributions show exactly opposite behavior for larger values of 
Casson parameter. 

iii. Enhanced variable fluid viscosity parameter influences the velocity and temperature field in 
opposite manner.  

iv. The modified Hartmann number enhances the velocity distribution and reduces the 
temperature distribution. 

v. The squeezed thermal boundary layer is observed for the increasing values of variable 
thermal conductivity parameter. 

vi. The concentration distribution improves for higher values of variable species diffusivity 
parameter. The duel nature of the concentration profiles is recorded for the Brownian 
motion parameter and thermophoresis parameter.                                                                                   

 

Acknowledgement 
This research was funded by a grant from Government of India, Ministry of Tribal Affairs 
(Scholarship Division), New Delhi for supporting financially under Scheme of National Fellowship 
and Scholarship for Higher Education. (Grant No. 2017-18-NFST-KAR-00764). 
 
References  
[1] Gailitis, A. and Lielausis, O. "On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte." 

Appl. Magnetohydrodynamics Rep.Inst. Phys. Inst. Riga 13, (1961): 143-146. 
[2] Grinberg, E. "On determination of properties of some potential fields." Applied Magnetohydrodynamics 12, 

(1961): 147–154. 
[3] Tsinober, A. B., and A. G. Shtern. "Possibility of increasing the flow stability in a boundary layer by means of 

crossed electric and magnetic fields." Magnetohydrodynamics 3, no. 2 (1967): 152-154. 
[4] Pantokratoras, Asterios, and Eugen Magyari. "EMHD free-convection boundary-layer flow from a Riga-

plate." Journal of Engineering Mathematics 64, no. 3 (2009): 303-315. 
[5] Pantokratoras, Asterios. "The Blasius and Sakiadis flow along a Riga-plate." Progress in Computational Fluid 

Dynamics, An International Journal 11, no. 5 (2011): 329-333. 

[6] Choi, Stephen US, and Jeffrey A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. No. 

ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab., IL (United States), 1995. 

[7] Buongiorno, Jacopo. "Convective transport in nanofluids." Journal of Heat Transfer 128, no. 3 (2006): 240-250. 

[8] Makinde, Oluwole D., and A. Aziz. "Boundary layer flow of a nanofluid past a stretching sheet with a convective 

boundary condition." International Journal of Thermal Sciences 50, no. 7 (2011): 1326-1332. 

[9] Ahmad, Adeel, Saleem Asghar, and Sumaira Afzal. "Flow of nanofluid past a Riga plate." Journal of Magnetism and 

Magnetic materials 402 (2016): 44-48. 

[10] Ayub, M., T. Abbas, and M. M. Bhatti. "Inspiration of slip effects on electromagnetohydrodynamics (EMHD) 

nanofluid flow through a horizontal Riga plate." The European Physical Journal Plus 131, no. 6 (2016): 193. 

[11] Hayat, T., Mumtaz Khan, M. Imtiaz, and A. Alsaedi. "Squeezing flow past a Riga plate with chemical reaction and 

convective conditions." Journal of Molecular Liquids 225 (2017): 569-576. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 64, Issue 1 (2019) 19-42 

41 
 

[12] Hayat, Tasawar, Mumtaz Khan, Muhammad Ijaz Khan, Ahmed Alsaedi, and Muhammad Ayub. "Electromagneto 

squeezing rotational flow of Carbon (C)-Water (H2O) kerosene oil nanofluid past a Riga plate: A numerical 

study." PloS one 12, no. 8 (2017): e0180976. 

[13] Naveed, A., Fitnat, S., Umar, K., Ilyas, K., Tawfeeq, A. A., Imran, F. and Syed, T. Mohyud-Din. "Spherical 

shaped (Ag−Fe3O4/H2O) hybrid nanofluid flow squeezed between two Riga plates with nonlinear thermal 

radiation and chemical reaction effects." Energies 12, no. 1 (2019): 76. 

[14] Sheikholeslami, Mohsen, and Houman B. Rokni. "Effect of melting heat transfer on nanofluid flow in existence of 

magnetic field considering Buongiorno Model." Chinese Journal of Physics 55, no. 4 (2017): 1115-1126. 

[15] Wakif, Abderrahim, Zoubair Boulahia, Farhad Ali, Mohamed R. Eid, and Rachid Sehaqui. "Numerical analysis of the 

unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and 

two-phase nanofluid models for Cu–Water nanofluids." International Journal of Applied and Computational 

Mathematics 4, no. 3 (2018): 81. 

[16] Wakif, Abderrahim, Zoubair Boulahia, and Rachid Sehaqui. "A semi-analytical analysis of electro-thermo-

hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more 

realistic boundary conditions." Results in Physics 9 (2018): 1438-1454. 

[17] Wakif, Abderrahim, Zoubair Boulahia, S. R. Mishra, Mohammad Mehdi Rashidi, and Rachid Sehaqui. "Influence of 

a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with 

metallic nanoparticles using the generalized Buongiorno’s mathematical model." The European Physical Journal 

Plus 133, no. 5 (2018): 181. 

[18] Reza, Jawad, Fateh Mebarek-Oudina, and Oluwole Daniel Makinde. "MHD slip flow of Cu-Kerosene nanofluid in a 

channel with stretching walls using 3-stage Lobatto IIIA formula." In Defect and Diffusion Forum, vol. 387, pp. 51-

62. Trans Tech Publications, 2018. 

[19] Prasad, K. V., Hanumesh Vaidya, Oluwole Daniel Makinde, and B. Srikantha Setty. "MHD mixed convective flow of 

Casson nanofluid over a slender rotating disk with source/sink and partial slip effects." In Defect and Diffusion 

Forum, vol. 392, pp. 92-122. Trans Tech Publications, 2019. 

[20] Mebarek‐Oudina, Fateh. "Convective heat transfer of Titania nanofluids of different base fluids in cylindrical 

annulus with discrete heat source." Heat Transfer—Asian Research 48, no. 1 (2019): 135-147. 

[21] Hayat, Tasawar, Taseer Muhammad, Sabir Ali Shehzad, and Ahmed Alsaedi. "An analytical solution for 

magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat 

generation/absorption." International Journal of Thermal Sciences 111 (2017): 274-288. 

[22] Daniel, Yahaya Shagaiya, Zainal Abdul Aziz, Zuhaila Ismail, and Faisal Salah. "Impact of thermal radiation on 

electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness." Alexandria Engineering 

Journal 57, no. 3 (2018): 2187-2197. 

[23] Hayat, Tasawar, Madiha Rashid, Ahmed Alsaedi, and Bashir Ahmad. "Flow of nanofluid by nonlinear stretching 

velocity." Results in Physics 8 (2018): 1104-1109. 

[24] El-Aziz, M. Abd, and A. A. Afify. "Effect of Hall current on MHD slip flow of Casson nanofluid over a stretching 

sheet with zero nanoparticle mass flux." Thermophysics and Aeromechanics 26, no. 3 (2019): 429-443. 

[25] Rajashekhar, C., G. Manjunatha, Hanumesh Vaidya, B. Divya, and K. Prasad. "Peristaltic flow of Casson liquid in an 

inclined porous tube with convective boundary conditions and variable liquid properties." Frontiers in Heat and 

Mass Transfer (FHMT) 11 (2018). 

[26] Fang, T., Zhang, J. and Zhong. Y. "Boundary layer flow over a stretching sheet with variable thickness." Applied 

Mathematics and Computations 218, (2012): 7241-7252. 

[27] Khader, M. M. and Megahed, A, M. "Boundary layer flow due to a stretching sheet with a variable thickness and 

slip velocity." Journal of Applied Mechanics and Technical Physics 56, (2015): 241-247. 

[28] Farooq, M., Anjum, A., Hayat, T. and Alsaedi, A. "Melting heat transfer in the flow over a variable thicked Riga 

plate with homogeneous-heterogeneous reactions." Journal of Molecular liquids 224, (2016): 1341-1347. 

[29] Prasad, K. V., Hanumesh, V., Vajravelu. K. and Rashidi, M. M. "Effects of variable fluid properties on MHD flow and 

heat transfer over a stretching sheet with variable thickness." Journal of Mechanics 33, (2016): 501-512. 

[30] Prasad, K. V., Vajravelu, K., Hanumesh, V. and Robert A.Van Gorder. "MHD flow and heat transfer in a nanofluid 

over a slender elastic sheet with variable thickness." Results in Physics 7, (2017): 1462-1474. 

[31] Prasad, K. V., Hanumesh, V., Vajravelu, K. and Ramanjini, V. "Analytical study of Cattanneo-Christov heat flux 

model for Williamson -Nanofluid flow over a slender elastic sheet with variable thickness. " Journal of Nanofluids 

7, (2018): 583-594. 

https://www.mdpi.com/search?authors=Naveed%20Ahmed&orcid=0000-0002-5020-199X
https://www.mdpi.com/search?authors=Fitnat%20Saba&orcid=
https://www.mdpi.com/search?authors=Umar%20Khan&orcid=
https://www.mdpi.com/search?authors=Ilyas%20Khan&orcid=0000-0002-2056-9371
https://www.mdpi.com/search?authors=Tawfeeq%20Abdullah%20Alkanhal&orcid=0000-0002-2056-9371
https://www.mdpi.com/search?authors=Imran%20Faisal&orcid=
https://www.mdpi.com/search?authors=Syed%20Tauseef%20Mohyud-Din&orcid=


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 64, Issue 1 (2019) 19-42 

42 
 

[32] Prasad, K.V., Hanumesh V., Vajravelu, K., Neelufer. Z. Basha and Umesh, V. "Thermal and species concentration of 

MHD Casson fluid at a vertical sheet in the presence of variable fluid properties." Ain Shams Engineering Journal 

9, no. 4 (2018): 1763-1779.  

[33] Prasad, K., Hanumesh Vaidya, K. Vajravelu, and U. Vishwanatha. "Influence of Variable Liquid Properties on Mixed 

Convective MHD Flow over a Slippery Slender Elastic Sheet with Convective Boundary Condition." Journal of 

Advanced Research in Fluid Mechanics and Thermal Sciences 56, no. 1 (2019): 100-123. 

[34] Vajravelu, Kuppalapalle, and Kerehalli V. Prasad. Keller-box method and its application. Vol. 8. Walter de Gruyter 

GmbH & Co KG, 2014. 



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



CURRICULUM VITAE 

 

                                               V. RAMANJINI 

 
Permanent Address: 

S/o  Venkatesha. V, Valmiki street, Somappa Camp, SreeRamarangapura (Suggenahalli 

Kottal), S. R. R. PURA  Post-583129,  Kampli (Tq), Ballari (Dist). 

Email Address: ramanjinibly@gmail.com 

Mobile No: 7204364277 

 

Educational Qualification: 

Examination 

Passed 

Examining Body/ 

University 

Year of 

Passing 
%Marks 

S.S.L.C 
Karnataka Secondary School 

Education Board, Bangalore 
2007     75.36% 

B.Sc. Gulbarga University, Gulbarga. 2012 82.51% 

M.Sc. Gulbarga University, Gulbarga. 2014 83.20% 

 

Other achievements 

 Awarded with National Fellowship for Higher Education, (Award Letter No: 

201718-NFST-KAR-00764), Govt. of India (RGNF) in 2017 for tenure of 5 years 

for pursuing Ph.D. 

 

 

 



       Papers Presentation in National/ International Conferences 

 Presented a paper entitled “ Analytical study of Cattanneo – Christov heat flux 

model for Williamson nanofluid flow over a slender elastic sheet with 

variable thickness”, in the national conference on recent advances in 

Mathematical sciences and applications, organized by the Department of 

Mathematics, Tumkur Univrsity, Tumkur, Karnataka, during 1st and 2nd 

December 2017.  

 

 Presented a paper entitled “MHD heat transfer of Casson nanofluid over a 

slender Riga plate”, in the international conference on advances in pure and 

applied Mathematics 2018, organized by School of Mathematics, Madurai 

Kamaraj University in association with International Multidisciplinary Research 

Foundation (IMRF), Madurai, Tamilnadu, 6th - 8th September, 2018. 

 

 Presented a paper entitled “Influence of variable transport properties on 

Casson nanofluid over a slender Riga plate: Keller box scheme”, in the 

national conference named as New Vistas in Science and Technology in 

Common Good, organized by NMKRV College for women in association with 

KSTA Bangalore, 1st and 2nd February 2019. 

 

 Presented a paper entitled “Effect of mixed convective nanofluid flow over a 

stretchable Riga plate in the presence of viscous dissipation and chemical 

reaction”, in the 2nd international conference on global advancement of 

Mathematics (GAM-2019), organized by Acharya institute of graduate studies, 

Bangalore – 560107, India, held on 25th and 26th June 2019. 

  

 

 



        LIST OF PUBLICATIONS 

 K.V. Prasad, Hanumesh Vaidya, K. Vajravelu, and V. Ramanjini, “Analytical 

Study of Cattanneo-Christov Heat Flux Model for Williamson -Nanofluid 

Flow Over a Slender Elastic Sheet with Variable Thicknesss”, Published in the 

Journal of Nanofluids, Vol. 7, 583-594, 2018. 

 

 K.V. Prasad, Hanumesh Vaidya, K. Vajravelu, V. Ramanjini, G. Manjunatha and 

C. Rajashekhar, “Influence of variable transport properties on Casson 

nanofluid over a slender Riga plate: Keller box scheme”, Published in the 

Journal of Advanced Research in Fluid Mechanics and Thermal Science, 

Vol.64(1), 19-42, 2019. 

 

  K.V. Prasad, Hanumesh Vaidya, O.D. Makinde, K. Vajravelu,  V. Ramanjini, 

“Mixed convective nanofluid flow over a coagulated Riga plate in the 

presence of viscous dissipation and chemical reaction,” communicated to the 

Journal of Applied and Computational Mechanics, 2020. 

  

K.V. Prasad, Hanumesh Vaidya, K. Vajravelu, O.D. Makinde and V. Ramanjni, 

“Influence of suction/injection and heat transfer on unsteady MHD Flow 

over a stretchable rotating disk,” accepted for publishing in the International 

Journal of Latin American Applied Research, 2019. 

 

 

 

 

 

 


	1. chapter 0-Final
	2. I chapter-Final
	3. II chapter-Final
	4. III chapter-Final
	5. IV chapter-Final
	6. V chapter-Final
	7. Total Reference



