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Chapter 1

INTRODUCTION

1.1 Definitions and Study of Literature

1.1.1 Partitions

A partition of a positive integers 7 is a finite non-increasing sequence of positive inte-

gers vy > vy -+ > v, > 0 such that

m
n= E Vi,
i=1

where v;’s are called parts. The number of partitions of n is denoted by p(n) and by

convention p(0) = 1. For example, partitions of 5 are
5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1.

Thus p(5) =7.

Ferrers Diagram
A Ferrers diagram is a way to represent partitions geometrically. The diagram consists
rows of dots. Each row represents a different addend in the partition. The rows are
ordered in non-increasing order so that the row with the most dots is on the top and
the row with the least dots is on the bottom.

For example: 13 can be partitioned into 5+ 3+ 2+ 2+ 1 which would be represented

by the following Ferrers diagram:
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5 e o o o o
3 e o o

2 e o

2 e o

1 e

Figure 1.1: Ferrers diagram of the partition 5+ 3+ 2+ 2 + 1.

The conjugate of a Ferrers diagram is formed by reflecting the diagram across its
diagonal (the one starting in the top left of the diagram). This can also be interpreted as
exchanging the rows for the columns. For example, consider our example from before

but this time let’s count the number of dots in each column:

5 4 2 1 1
5 e o o o o
3 e . o
2 e o
2 e o
1 e

Figure 1.2: Ferrers diagram of the conjugate partition 5+4+2+1 +1.

A French mathematician, Philip Naude (1684-1747), raised a number of questions in
his letter to Leonhard Euler (1707-1783) in 1740. One of his questions was as follows:
in how many ways can an integer n be represented as a sum of integers? In response
to this question, Euler discovered many ideas, results and methods of partitions of
numbers. These elementary, but remarkable, results were presented in his fundamental
treatise on analysis, Introductio in Analysin Infinitorum [24]. His fundamental works on
the theory of partitions of number based on the use of generating functions and formal

power series firmly established the additive number theory.
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1.1.2 Generating functions and Notation

Euler gave a generating function for p(n) using the g- series

(n)q" = . (1.1)
;” T @
Now
1 _ 1 1 1
(@90 1-q9 1-9> 1-¢°
:(1+q1+q1+1 q1+1+1 )(1+q +q .“)(1+q3+q3+3+.“).“
:1+q1+q1+1+q2+q1+1+1+q +q +ee-
:1+q1+(q1+1+q2)+(q1+1+1+q1+2+q3)+
=14+q+2¢°+3¢°+---. (1.2)

For any complex number a and g with |g| < 1, we have

[(o0]

l_[ 1—aq

k=0

and for any positive integer k,
fe = (054"
Euler noted that the series representation of infinite product (g;q)., is given by

(o]

2
(4:9)c0 = Z (=1)kq(3k+hr2
k=—oo
:1_q_q2+q5+q7_q12_q15++__'“' (13)

The above identity is known as Euler’s pentagonal number theorem. From (1.1) and
(1.3), we have

[ZP ]1—q g +q =gt =g =) = 1L (1.4)

n=0
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Which implies to get the following recurrence relation:

p(n)=pn=1)+pn-2)-p(n-5)-pn-7)+p(n-12)+p(n-15)—---.  (15)

A British mathematician, Percy Alexander MacMahon in 1916, was the first person
who computed p(#n) for n up to 200, using the Euler’s recurrence relation and he made

a table with columns of five numbers such as

7 42 176 627 ..
11 56 231 792..
15 77 297 1002 ...
22 101 385 1255..
30 135 490 1575 ..

g W N = =

Ramanujan noticed the table and found three simple congruences satisfied by p(n) are

as follows: For every nonnegative integer n,

p(5n+4)=0 (mod 5), (1.6)
p(7n+5) =0 (mod 7), (1.7)
p(11n+6)=0 (mod 11). (1.8)

In [64,65], Ramanujan gave a proof of above three congruences. He made a remarks
in [64] that “It appears that there are no equally simple properties for any moduli in-
volving primes other than 5, 7 and 11”. In a posthumously published papers [66] and
[67], Hardy has collected different proof of (1.6)-(1.8) from an unpublished manuscript
of Ramanujan on p(n) and t(n) ( [68]).

Ramanujan [65] has noticed a more general conjecture. Let { = 577°11¢ and let
be an integer such that 24x = 1 (mod C). Then

p(Cn+x) =0 (mod C). (1.9)

In [68], Ramanujan gave a proof of (1.9) for arbitrary a and b = ¢ = 0. He also sketch
a proof of his conjecture for arbitrary b and a = ¢ = 0, but he did not complete it.
After Ramanujan died, H. Gupta extended MacMahon’s table up to n = 300. Chowla
[19] after observing the Gupta’s table, found that p(243) is not divisible by 72, despite
the fact that 24 - 243 = 1 (mod 73). To correct Ramanujan’s conjecture, define {’ =
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59711, where b’ = b,if b= 0,1,2, and b’ = [(b + 2)/2], if b > 2. Then
p(C’'n+x) =0 (mod C’). (1.10)

Watson [73] published a proof of (1.10) for 2 = ¢ = 0 and noticed a more detailed
version of Ramanujan’s proof of (1.10) in case b = ¢ = 0. Finally, Atkin [6] proved (1.10)
for arbitrary cand a = b = 0.

We study several congruence properties of restricted partition functions such as: k-
color overpartition functions, Andrews’ singular overpartitions, Designated summands,
{-regular cubic partition pairs, (¢, m)-regular bipartition triples and Partition quadruple
with ¢-cores.

A bipartition of a positive integer # is a pair of partitions (vy, v;) such that the sum
of all the parts is equal to n, where v; and v, are allowed to be empty partition. Let

p_»(n) denote the number of bipartitions of n. The generating function for p_,(n) is

given by
- 1 1
Zp—z(n)q" " (1.11)
n=0 71 eo

Atkin [7] has proved the Ramanujan type congruences for p_,(n) modulo 5. Ra-
manathan [63] has established congruences modulo 5 for p_,(n) which are analogues
to the classical congruences of Ramanujan.

Let pi(n) be two color partition function with one of the color is multiple of k, the

generating function is given by

o0

. 1 _ 1
;pk(ﬂ)q (D059 Sk (112

Ahmed, Baruah and Dastidar [2] have found some interesting congruences modulo 5
for pi(n) for k € {2,3,4}. Chern [18] has established some congruences modulo 7 for
pa(n). Tang [70] has proved some infinite families of Ramanujan-type congruences
modulo powers of 5 for py(n) with k = 2,6,7.

Corteel and Lovejoy [20] have introduced the combinatorial object known as over-
partition of a nonnegative integer n, which is a non-increasing sequence of a natural
number, whose sum is n and the first (equivalently, the final) occurrence of parts of

each size may be over lined. We denote the number of overpartitions of n by p(n) and
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p(0) = 1. As noted in [20], the generating function for p(n) is given by

RPN T b IO
E p(n)q" = —-—=. (1.13)
— @GD%  f

For example: The eight overpartitions of 3 are
3, 3, 2+1, 2+1, 2+1, 2+1, 1+1+1, T+1+1.

Mahlburg [47] has proved that p(n) is divisible by 64 for almost all positive integers #.
He also conjectured that for a particular positive integer k, p(n) is divisible by 2% for
almost all positive integers n. Kim [38] has proved the k = 7 case of the conjecture by
using the techniques of Mahlburg. Hirschhorn and Sellers [34] have established some
congruence modulo small powers of 2 for p(n) and also proved 2-, 3- and 4-dissections
of the generating function for overpartition function.

In chapter (2), we establish several infinite families of congruences modulo powers
of 2 and 3 for p5(n), where p;(n) denote the number of overpartitions of n with 2-color
in which one of the colors appears only in parts that are multiples of 3.

For any positive integer £ > 1, a partition is said to be £-regular if none of its parts
is divisible by €. Let dy(n) denote the number of such partitions of n, with d,(0) = 1.
The generating function for dy(n) is given by

g = (454 _ fe
Zd S @GDe A (114

Many authors have obtained several infinite families of congruences satisfied by d,(n).
See [4,13,21,25,37,50, 55,58, 74,79].
Let By(n) denote the number of €-regular bipartitions of n. The generating function

for By(n) is given by

o (a590% fF
By(n)g" = -2 = £, (1.15)
ZO A= gz TR

n=

Lin [43, 44] has proved infinite family of congruences modulo 3 for B;(n) using Ra-
manujan’s two modular equations of degree 7. Mahadeva Naika and Hemanthku-
mar [50] have established several infinite families of congruences modulo powers of
2 and 5 for Bs(n).
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Andrews, Lewis and Lovejoy [5] have investigated a new class of partition with des-
ignated summands, are constructed by taking ordinary partitions and tagging exactly
one of each part size. The total number of partitions of n with designated summands is
denoted by PD(n). The authors [5] have derived the following generating function of
PD(n):

y " (9% 9°%)e0 B
nZ:dPD(n)q = (459)0 (0% 82 0(3% 9% - b (1.16)

For example: PD(4) = 10, namely

4 3 +1, 2742, 242/, 27+1'+1, 274+1+1", V+1+1+1, 1+1/+1+1,
1+14+17+1, 1+1+1+1

Andrews et al. [5] and Baruah and Ojah [10] have also studied PDO(n), the number of
partitions of n with designated summands in which all parts are odd and the generating

function is given by

c n f4f62
O = . .
)_Ppotm’ =g (17

In chapter (3), we obtain several infinite families of congruences modulo 3, 4, 8,

16 and 32 for PD, 3(n), where PD, 3(n) denote the number of partitions of n with

designated summands in which parts are not multiples of 2 or 3. Also establish several
congruences modulo 3 and 4 for PBD3(n), where PBD3(n) denote the number of 3-
regular bipartitions of n with designated summands.

Andrews [3] introduced singular overpartitions. To introduce singular overparti-

tions, first he defined some properties of the entries in a Frobenius symbol for n, which

a; 4dpy .., 4y
by by, .., b))

where ) (a; +b; +1) =nand a; >a, > ... >a, > 0,by > by >...> b, > 0. There

is of the form

is a natural mapping that reveals a one-to-one correspondence between the Frobenius
symbols for 7 and the ordinary partitions of n. “Singular overpartitions” are Frobenius

symbols for n with at most one overlined entry in each row. More precisely, for two

a

positive integers k and i, a column [b] ] in a Frobenius symbol is (k,7)-positive if a; —
j

b]- >k—-i-1and (k,i)—negativeifaj—bj <—-i+1.If-i+1 <aj—b]~ <k-i+1, then

we say the column is (k, i)-neutral. Two columns have the same parity if they are both

(k,i)-positive or (k,i)-negative. We can divide the Frobenius symbol into (k, i)-blocks
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such that all the entries in each block have either the same (k, 7)—parity or (k, i)-neutral.
The first non-neutral column in each parity block is called the anchor of the block. A
(k,i)—-parity block is neutral if all columns in it are neutral and a (k, i)—parity block is
positive (resp. negative) if it contains no (k, 7)-negative (resp. positive) columns.

A Frobenius symbol is (k, 7)-singular if
(1) there are no overlined entries, or
(2) the one overlined entry on the top row occurs in the anchor of a (k,i)—positive
block, or
(3) the one overlined entry on the bottom row occurs in an anchor of a (k, i)-negative
block, and
(4) if there is one overlined entry in each row, then they occur in adjacent (k, i)-parity
blocks.

Let ak,i(”) denote the number of such singular overpartitions for 1 <i < L%J An-
drews proved that ak,i(n) = Ek,z- (n), where Ek,i(n) counts the number of overpartitions
of n in which no part is divisible by k and only parts congruent to +i modulo k may be

overlined. Therefore for k >3 and 1 <i < L%J, the generating function for Ek,i(n) is

given by
) Quilma" =) Crinq"
n=0 n=0
ko ky (_nqi.oky (_ k=il ok
_ (454)0(=0"0%) 0 (4" 4 ). (1.18)

For example: Ten singular overpartitions counted by 63,1 (4) are
4,4, 2+2,2+2,24+1+1, 2+1+1,2+1+1, 2+1+1, 1+1+1+1, T+1+1+1.

Andrews [3] proves that, for all n > 0, 63’1 (n) = As(n), where As(n) is the number
of overpartitions of # into parts not divisible by 3. The function A(n), which counts
the number of overpartitions of # into parts not divisible by ¢, plays a key role in the
work of Lovejoy [45].

In [3], Andrews found the following congruences:
C31(9n+3)=C3,(9n+6)=0 (mod 3). (1.19)

In chapter (4), we establish several infinite families of congruences for @3,1(11)

modulo 6, 8 and 16, where @5’1-(71) denote the number of singular overpartitions of
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n into odd parts. We obtain congruence and infinite families of congruences modulo
4 for Zil(n) and modulo 8 for Zil(n), where Zg’i(n) denote the number of singular
overpartitions of n without multiples of k. Also we deduce some new infinite families
of congruences for E?’z(n) modulo 27 and congruences modulo 4 for E}i(ﬂ), 62’3(11)
and 6255( n), where Ei ]-( n) denote the number of Andrews’ singular overpatition pairs
of n.

Kim [39] studied overcubic partition function a(7), which is analogous to overpar-

tition function
o0

a(n)q
=0

i C0D(-0%4%) _ _fa (1.20)
(49

D@97 f2fo

Hirschhorn [28] has obtained the results of Kim [39] using Jacobi’s triple product iden-

n

tity. Sellers [69] has proved a number of arithmetic properties of a(n). Zhao and
Zhong [82] have studied cubic partition pairs denoted by b(n) and the generating func-
tion is
ib(n)q” = ! _ ! (1.21)
oy (@9%4%9%)%  f2f}

In chapter (5), we establish some infinite families of congruences modulo 4, 8, 27
and 81 for by(n), where by(n) denote the number of ¢- regular cubic partition pairs of a
positive integer n and the values of £ € {2, 3,5,9}.

A partition k-tuple of 7 is a k-tuple of partitions (v, V5,..., V§) such that n = |v{| +
... +|Vk|. We will call a partition 2-tuple a bipartition and a partition 3-tuple a partition
triple. A partition triple (vq, v, v3) of a positive integer n is called £-regular partition
triple if none of v;, i = 1,2 and 3, is divisible by . The number of {-regular partition
triple of positive integer # is denoted by Ty(n). The generating function for T,(n) is

given by
e l. 0\3 f3
Y Ti(n)q" = (?L;“ =L (1.22)
n=0 q'q)‘x’ fl

Wang [71,72] has established infinite families of arithmetic properties and congruences
for overpartition triples and partition triples with 3-cores.

A (¢, m)-regular bipartition of n is a bipartition (v, v,) of n such that v; is £-regular
partition and v, is a m-regular partition. Let By, (1) denote the number of (¢, m)-

regular bipartitions of 7. The generating function for By ,,(n) is

s . 0 m. ,m
Y Biu(ng" = (959)00(9™9™)e0 _ féJ;m. (1.23)
n=0

- (4:9)2 £
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Lin [42-44] has proved several infinite families of congruences modulo 3 for By 4(n),
B; 7(n) and By313(n) and gave characterizations of By 4(1) modulo 2 and 4. Dai [22]
examined the behavior of B4 4(1) modulo 8 and found several infinite families of con-
gruences modulo 8 for By 4(n).

In chapter (6), we obtain some arithmetic identities and congruences modulo 3, 9
and 27 for BTy ,,(n), where BT, ,,(n) denote the number of (£, m)-regular bipartition
triples of a positive integer n, here (¢,m) € {(2,9),(3,3),(3,5),(3,7),(3,9),(9,9)}.

The Ferrers-Young diagram of the partition v of n is obtained by arranging n nodes
in k left aligned rows so that the i*" row has v; nodes. The nodes are labeled by row
and column coordinates as one would label the entries of a matrix. Let V; denote the
number of nodes in column j. The hook number H(i,j) of the (i, ) node is defined
as the number of nodes directly below and to the right of the node including the node
itself. i. e. H(i,j) = v; + v; —j—i+1. A t-core is a partition with no hook number that
are divisible by t.

For example: In Figure (1.1) represents the Ferrers-Young diagram of the partition
v =(5,3,2,2,1) of 13. The nodes (1, 1), (1, 2), (1, 3), (1, 4), (1,5), (2, 1), (2, 2), (2, 3), (3,
1), (3, 2), (4, 1), (4, 2) and (5, 1) have hook numbers 9, 7, 4, 2, 1, 6, 4, 1, 4, 2, 3, 1 and 1,
respectively. Therefore v is a t-core partition for t = 5 and for all t > 10.

Let a;(n) be the number of partitions of n that are ¢-cores, then its generating func-
tion is given by [ [29], Eq. (2.1)]

. o @bk f
;at(ﬂ)q @D S (129

Garvan, Kim and Stanton [26] have proved that if « is a positive integer and ¢ = 5,7, 11,
then
ar(€*n—06,)=0 (mod £%)

for all nonnegative integer n, where o, = 822—21. Kolitsch and Sellers [41], Hischhorn and
Sellers [33] have established parity results for ag(#) and a; (7). Granville and Ono [27]
have obtained Ramanujan type congruences for a;(n), when ¢ is power of 5, 7 or 11.

A partition k-tuple of n with t-cores is a partition k-tuple (vq, v, ..., V) of n where

each v; is t-core for i = 1,2, 3,...k. If C;(n) denotes the number of partition quadruple
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of n with t-cores, then the generating function for C;(n) is given by

. o (ghehd i
C = ==, .
; t(n)q (q}q)go f14 (1 25)

In chapter (7), we establish several infinite families of congruences modulo 8 for

C3(n), congruences modulo 5 and 7 for Cs(n), C;(n) and Cys5(n).

1.1.3 Ramanujan’s theta functions

Ramanujan’s general theta function f(x,v) is defined as

[Se]

f(x:y) - Z xn(n+l)/2yn(n—l)/2, |xy| <1 (1.26)

n=—oo

The product representation of f(x,y) arises from Jacobi’s triple product identity [11, p.
35, Entry 19] as

F(x9) = (=6%9) 00 (=5 X9) o0 (X95 XV o (1.27)

Special cases of f(x,y) are

sy 5
P =@ = Y 4" = o) = s, (1.29)
n=-—o00 fl f4
— 3\ — . n(n+1)/2 _ (qz;qz)oo _ f_22
$(q):= f(a.4) ;q T (1.29)
and .
f-a)i=f(-4.-4)= ) (-1)"q"*" V2 = (g;9) = fr. (1.30)

1.2 Preliminaries

In this section, we collect few results which are useful in proving our main results.

Lemma 1.2.1. For each primep andn > 1,

flp Efppn_ (mod p"). (1.31)

It easily follows from the binomial theorem.



Chapter 1. INTRODUCTION

Lemma 1.2.2. [11, pp. 40-49] We have

©(q) = p(a’)+24f(9°,q"),
P(q) = f(q°,4°) + qip(q°).

Lemma 1.2.3. [67, p. 212] We have the following 5-dissection

h :f25(a—q—q2/a),

where

10 ,15. 25
a(q): (9 5 ,qzo ,qzs oo

(4°,4%%9%)co
Lemma 1.2.4. [11, p. 303, Entry 17(v)] We have

_ . (B@)  AQ)
f1 = fao C) qB(q7) qg +4

5C(q7)
Aq) )

where

_3 _4
A(q):f( q’ q)

(4%~
Bl = Ja% =) ac

f(=a?)

f(=4%)
Lemma 1.2.5. [21, Theorem 2.2] For any prime p > 5,
p-1
2
3k24k 3p2+(6k+1)p 3p2—(6k+1)p tp-1 p2-1
fi= ) (DT f(—q s T |+ ()T S
k=12
k2t

where

—e ifp=-1 (mod 6)
Furthermore, for @ <k< % and k = (J—fP6—1)’

a4 _6
(q):f( q’ q)

12

(1.32)
(1.33)

(1.34)

(1.35)
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Lemma 1.2.6. [21, Theorem 2.1] For any odd prime p,

p=3
z m2+m Pz+(2m+1)P pz—(2m+1)p 1727—1 2
Plg)=) q 7 f(q > 7 |+q (e, (1.37)
m=0
Furthermore, m22+’” ES 1027_1 (mod p) for0 <m < %.
Lemma 1.2.7. The following 2-dissections hold:
5 2
2 Jofy ffis
= -2 , (1.38)
fi ir ! fs
1R ) fEfs
— = 4200, (1.39)
i Rfe s
10 2 c4
f fs
fit= 22— —4q7228 (1.40)
fifs fi
1 14 2 r4
fa 4qf4l{§ . (1.41)

- = +
4 14 c4
fl 2 f8 f2
Lemma (1.2.7) is a consequence of dissection formulas of Ramanujan, collected in Berndt’s
book [11, p. 40, Entry 25].

Lemma 1.2.8. The following 2-dissections hold:

f33 _ ]‘-43f62 + f132

P (1.42)
]{—133 = }Z‘;g + 3qf42;z7f122, (1.43)
P_B S o

A T

Hirschhorn, Garvan and Borwein [29] have proved the equation (1.42). For proof of
(1.43), see [9]. Proofs of equations (1.44) and (1.45) follow by changing g to —g in
_f
- f1f4‘

equations (1.42) and (1.43) respectively with (-g;—4q) s
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Lemma 1.2.9. The following 2-dissection holds:

f_ fafsfiefsa N fof fus

= q . (1.46)
h f22f8f12f48 f22f16f24
Xia and Yao [81] gave a proof of Lemma (1.2.9).
Lemma 1.2.10. The following 2-dissections hold:
£ _fifefis . 2qf4f62f8f24 (1.47)
& ffah 3 fiz
[ _ DS, S hsfofu o
f& S fsf fafs
Xia and Yao [78] proved (1.47) and (1.48) follows from (1.47).
Lemma 1.2.11. The following 2-dissection formulas hold:
2 r4 4 2
fifs= fzzf : flzz - qf4 fng;, (1.49)
fifeha  fafshh
LRy, S w50
his fhfifh  BIEfkhe
1 _ f85f254 n 2qf44f142 n 4q4f42f122f1%f4%' (1.51)
fff Bffisfis  £fs £ 18 fs foa
Baruah and Ojah [10] have proved last Lemma.
Lemma 1.2.12. The following 2-dissections hold:
2 3
f5 _ fsfao +qf4 frofa0 (1.52)
h fifw " ffsho
fi_ flsfn  fifw (1.53)

5 faffao qf8f120.

Equation (1.52) was proved by Hirschhorn and Sellers [30]. Replacing g by —¢ in (1.52),
we obtain (1.53).
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Lemma 1.2.13. The following 2-dissections hold:
1 fisks fifis 6 fofih
=~ 9553 9 000 24 0 (1.54)
hfr o Bhfiafsfie B 3 fi fiafiefse
2 £5 5 2
fif7 = —f2f14j;16];56 —qfafos+ q6—f23f82fl4f112- (1.55)
f4f8f28f112 f4 f16f28f56
Equation (1.54) and (1.55) was proved by Xia and Yao [76].
Lemma 1.2.14. The following 2-dissections hold:
3 2
fo _ lezfls +qf4 {6f36’ (1.56)
h f5 fef36 f3 fia
ﬁ _ f2f132 _qf4f6f326. (1.57)
fo f4f6f128 f12f138
Lemma 1.2.14 was proved by Xia and Yao [77].
Lemma 1.2.15. [50, Lemma 2.3] The following 2-dissection formulas hold:
fifihio  fHivho
AfS =20 fafso + £3 fio— 297 402 -q= }O , (1.58)
fafs 4
f46f420f10 22f4f120 3 3
ffs =29 + +2qf5 fa0 = 59211 (1.59)
fzfngzzo fa0
Ramanujan’s cubic continued fraction w is given by
1/3 2 2 4 3 6
w:=1 174 174 974 oo (1.60)

1 + 1 + 1 + 1 +

We define the function x(q), a(q), b(q) and c(q) as follows:

x(q)=q "o,

a(q) = x(i])2 —2qx(q),
b(q) = %q) +44x(q)%,
clq) = — - 8q°x(q)".
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From the definition of a(q), b(q) c(q), we get the following results
a(q)b(q) = c(q) +2q, (1.61)
a(q)’ +qb(q)* = c(q)? - 59¢(q) + 404°. (1.62)
Lemma 1.2.16. [14] We have
f1f2:f9f18(%_q_2q2x(q3))z (1.63)
x(q°)
1 Bfi 3 3 2
— = a(q®) +qb(g°)+3q°), (1.64)
7 f34f64( 9°) +qb(q) + 39%)
4,4
c(q) = f 14f 2 +74. (1.65)
3 /6
Lemma 1.2.17. Let
= 1
h(n)g" = . (1.66)
L= 57
Then
00 f4f4 f8 8
) h(3n+2)g" =1826 481955 (mod 243) (1.67)
n=0 v f hh
Proof. Consider
= 1
h(n)g" = . (1.68)
T
Employing (1.64) into (1.68), we obtain
. £ hs s 3137, .3 2 (3127 3\2
) h(m)g" =2z R (a(q®) + 49a(q°)°b(g°) + 64°a(a°)b(q°)
n=0 f3 6
+12q%a(q°) + 364°a(9°)*b(9°) + 4q°a(q°)b(q°)
+49*b(q°)* +364*a(q°)b(q°) + 54q%a(q’)?
+1084°a(q°)b(q°) + 124°b(¢°)° + 544°b(¢°)?
+108g%a(q%) + 10847 b(q%) + 814%) (mod 243). (1.69)

Extracting the terms involving g°"*2 from (1.69), dividing g and replacing g° by g, we
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get
o0 12
) hBn+2)g" =32 <6a<q>2b<q>2+12<a<q>3+qb<q>3>
n=0 f 2
+108qga(q)b(q) + 81g%) (mod 243). (1.70)
In view of (1.61), (1.62) and (1.70), it follows that
0 12 12
Zh(3n +2)q" = 316 T (18¢(q)> +72q¢(q) + 72¢°) (mod 243). (1.71)
n=0 1 f2
Substituting (1.65) into (1.71), we arrive at (1.67). O]
Lemma 1.2.18. The following 3-dissection holds:
f fofs fofi
f—22 - +2q72 2 4+ 4718 (1.72)
i f18 f3 f3
Equation (1.72) was proved by Hirschhorn and Sellers [35].
Lemma 1.2.19. [10, Lemma 2.6] The following 3-dissection formula holds:
4
fa _ f132f128 e fe £9 J36 2q2f6f183f36 (1.73)
h ffs £ f3
Lemma 1.2.20. [36] The following 3-dissection formula holds:
f6f94 2f3f148
fif2= —dqfofis—29"——- (1.74)
fafis fofs
Lemma 1.2.21. [11, p. 345, Entry 1 (iv)] We have the following 3-dissection
R =£C" -3q+44°C), (1.75)

where

ffis

C= .
fofs
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Lemma 1.2.22. [11, p. 345, Entry 1] We have

12

ﬁ +27q = (17" +4qn°)°, (1.76)
3
where
63
ni=—".
f2f33

Lemma 1.2.23. [12] The following 3-dissection holds:

h_fehhis  Bfis  ofohofs
fa f132 f132f92 f142f128

(1.77)

Let p > 3 be a prime and a be an integer. The Legendre symbol (E) is defined by
p

1, ifaisa quadratic residue modulo p and p {4,

a
(—):= 0, ifpla

—1, if ais a quadratic nonresidue modulo p.



Chapter 2

2-COLOR OVERPARTITION
FUNCTION

2.1 Introduction

In the introductory chapter, we have defined the k-color partition function py(n). Love-
joy and Mallet [46] have defined the basic notions associated with #n-color overparti-

tions and also determined some basic generating functions. Motivated by above works,

we define,
" (25 9)eo (-9 9%) o
) Ps(ma" = : (2.1.1)
nzopg 1 (439)0(9%9%) oo

Let p5(n) denote the number of overpartitions of n with 2-color in which one of the
colors appears only in parts that are multiples of 3. For example, there are ten partitions
of 2-color overpartitions of 3:

3,, 34 3p, 3y 2.+1, 2,41, 2,+1, 2,+1, 1,+1,+1, 1,+1,+1,.

2.2 Infinite families of congruences for 2-color overpar-
titions

In this section, we establish several infinite families of congruences modulo powers of
2 and 3 for p5(n).

References [59] is belongs to this chapter

19
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2.2.1 Congruences modulo 9 and 18

Theorem 2.2.1. Fora >0 andn > 0,

p5(12-2%
1—33(4.3a+3n+2 30l+3

p3(6n) (mod 9),
P5(36n+18) (mod 9),
6-ps(6n+3) (mod 9),

)
)
P5(12n+6)
P5(108n+18) =p;(36n+6) (mod 9),
P5(36n+30)=0 (mod 9),
)=0 (mod 18).

pi(6n+4

Proof. We have

) "= .

n=0
Substituting (1.72) in (2.2.7), we obtain

p3(n)q" = +29

S L B
)Pl = iy 207 4T

(2.2.1
(2.2.2
(223
(2.2.4
(2.25

~— N~ N~ N~ ~—~—

(2.2.6

(2.2.7)

(2.2.8)

Extracting the terms involving ¢3"*!, dividing by ¢ and replacing ¢> by g, we get

0 4r3
) PBn+1)q" = 2f2f]9f3 .

n=0 1
Invoking (1.31) into (2.2.9), we deduce that

(¢]

Zp B3n+1)g"=2£} (mod 18).

n=0

Extracting the terms involving g>"*! from (2.2.10), we obtain (2.2.6).

From (2.2.8), we have

0 576
Zﬁs@”)qn = fz—f33

(2.2.9)

(2.2.10)

(2.2.11)
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Invoking (1.31) into (2.2.11), we obtain

) 3
D.(3n)g" = —— d 9). 2.2.12
;m( Wg"= T (mod 9) (22.12)

Employing (1.42) into (2.2.12), we deduce that

" I 70 A A
3 == — d 9). 2.
;m( n)q T (mod 9) (2.2.13)

Extracting the terms involving g" from (2.2.13) and replacing g2 by g, we have

Zp3 (6n)q" = fz];f (mod 9). (2.2.14)

6

Invoking (1.31) into (2.2.14), we find that

Zp3 (6n)q" = ]}32 (mod 9). (2.2.15)

Employing (1.45) into (2.2.15), we have

0 5
21_73(611) o 2 f4 f2 f” (mod 9). (2.2.16)
Extracting the terms involving g*"*! from (2.2.16), dividing by g and replacing g° by g,
we obtain
Zp3 (12n+6)q fl fofs (mod 9). (2.2.17)
f2f3
Invoking (1.31) into (2.2.17), we get
i— n_ f12f63
ps3(12n+6)g" =6—— (mod 9). (2.2.18)
n=0 f2f3

Replacing g by —g in (1.32) and using the fact that

f
£’

P(-q) = (2.2.19)
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we find that
2 2 2
v _ b 2qf3f18. (2.2.20)
L hs 7 fefo
Again employing (2.2.20) into (2.2.18), we obtain
0 372 22
Z;_a3(12n+ 6)q" = 6f62f9 - 12qf6 Jis (mod 9). (2.2.21)

Congruence (2.2.5) follows by extracting the terms involving g3"*? on both sides of
(2.2.21).

Extracting the terms involving g3"*! from (2.2.21) and dividing by g, then replacing
g° by g, we have

c 1718
Zﬁ3(36n+ 18)g" = 62225 (mod 9). (2.2.22)
It follows from (1.33) that
2 2 2
fr_Jeks q@. (2.2.23)
h s fo
Employing (2.2.23) into (2.2.22), we obtain
%) 372 22
Z;‘a3(36n +18)g" = 6f62f9 + 6qf6 Jis (mod 9). (2.2.24)
=0 f5 s f3fo

Extracting the terms involving g3"*! from (2.2.24) and dividing by g, then replacing g°

by g, we have
c — n_ f22f62
P5(108n+54)q" =6 (mod 9). (2.2.25)
L i
In view of congruences (2.2.22) and (2.2.25), we have
P5(108n+54) =p5(36n+18) (mod 9). (2.2.26)

Utilizing (2.2.26) and by mathematical induction on «, we get (2.2.2).
Extracting the terms involving 3" from (2.2.21) and replacing g° by g, we have

. — n f23f32
36n+6)g" = 62223
;Pa( n+6)q 25,

(mod 9). (2.2.27)
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Extracting the terms involving 3" from (2.2.24) and replacing g° by g, we have

s w_ S 13
) P5(108n+18)q" = 652
n=0 1/6

(mod 9). (2.2.28)

In view of congruences (2.2.27) and (2.2.28), we arrive at (2.2.4).
Extracting the terms involving g>" from both sides of (2.2.16) and then replacing g°
by g, we obtain

- fifs

In view of congruences (2.2.15) and (2.2.29), we have

0 373
Zmumqn _Jih (mod 9). (2.2.29)
n=0

P3(12n) =p3(6n) (mod 9). (2.2.30)

Utilizing (2.2.30) and by mathematical induction on «, we arrive at (2.2.1).
Extracting the terms involving g?"*! from (2.2.13) and dividing by g, then replacing

q° by q, we obtain

. — n f63
6 3 = d 9). 2.2.31
;%( n+3)q 7, (mod 9) ( )

Extracting the terms involving g2"*! from (2.2.16) and dividing by g, then replacing g2
by g, we obtain

i— n_ f15f63
p3(12n+6)g" =6—— (mod 9). (2.2.32)
n=0 f2f3
Invoking (1.31) into (2.2.32), we have
253(12n+ 6)4" = 62— (mod 9). (2.2.33)
n=0 fl f2
In view of congruences (2.2.31) and (2.2.33), we arrive at (2.2.3). O]

2.2.2 Infinite family of congruence modulo 18

Theorem 2.2.2. Foraa >0 andn > 0,

P5(6-5°*" 1+ (30i +25)5°**2) =0 (mod 18), (2.2.34)
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wherei =1, 2, 3, 4.

Proof. Extracting the terms involving g?" from (2.2.10) and replacing g2 by g, we have

Y Bs(6n+1)q"=2f; (mod 1) (2.2.35)
n=0
Employing (1.34) into (2.2.35) and extracting the terms involving g°"*4, we get
253(3071 +25)q" = 8f% (mod 18), (2.2.36)
n=0
which implies,
21—93(15011 +25)9" =8£* (mod 18). (2.2.37)
n=0
From (2.2.35) and (2.2.37), we find that
P5(150n+25) = 4p,(6n+1) (mod 18). (2.2.38)
Utilizing (2.2.38) and by mathematical induction on «, we obtain
P3(6-52%"2n+5%072) = 49%15 (6n+1) (mod 18). (2.2.39)
From (2.2.36), we get
p5(150n+30i+25)=0 (mod 18), i=1,234. (2.2.40)
Using (2.2.39) and (2.2.40), we obtain (2.2.34). O]
2.2.3 Congruences modulo 27
Theorem 2.2.3. Fora >0 andn >0,
P5(121+10)=0 (mod 27), (2.2.41)
P5(3-4%"2n+10-4%") =0 (mod 27). (2.2.42)



Chapter 2. 2-COLOR OVERPARTITION FUNCTION 25

Proof. From (2.2.9), we have

Zp (3n+1)q" = 2, (f3) . (2.2.43)
n=0 fl
Employing (1.43) into (2.2.43) and invoking (1.31), we obtain
o 18 14 7
21‘73(311 +1)g" = f423f6 +184 f421f62 (mod 27). (2.2.44)
=0 /3 f12 f
Extracting the terms involving g*"*! from (2.2.44), dividing by g and replacing ¢ by g,
we get
Z f214f3
ps(6n+4)q" =18—=—= (mod 27). (2.2.45)
n=0 fl 6
Invoking (1.31) into (2.2.45), we deduce that
Zﬁ3(6n +4)g" = 18f2f, (mod 27). (2.2.46)
n=0

Congruence (2.2.41) follows by extracting the terms involving g?"*! from both sides of
(2.2.46).
From (2.2.46), we have

21—93(12;1 +4)q"=18f7f; (mod 27). (2.2.47)
n=0
Using (1.31) into (2.2.47), we obtain
Zp (12n+4)q" = 18£8 (mod 27). (2.2.48)
n=0

Invoking (1.40) into (2.2.48), we find that

00 4
) Bs(12n+4)q" —18f 7 +18qu2 I§ +18qf8 (mod 27). (2.2.49)
n=0

2J8 4

Extracting the terms involving g*"*! from (2.2.49), dividing by ¢ and replacing g by g,
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we get
[o0]

Zp (24n+16)g" = 18fF (mod 27).
n=0

We can rewrite the above equation as

[o0]

Zﬁ3(24n+ 16)g" =187 f; (mod 27).
n=0

In view of congruences (2.2.46) and (2.2.51), we have
ps(6n+4)=p;(24n+16) (mod 27).
Utilizing (2.2.52) and by mathematical induction on «a, we arrive at
D361 +4)=p3(6-4 ' n+4972)  (mod 27).

Using (2.2.53) and (2.2.41), we get (2.2.42).

2.2.4 Congruences modulo 8, 16 and 32

Theorem 2.2.4. For eacha > 0 andn > 0,

P3(31) = F(n) (mod 8)
P5(18n+6) =2p;(9n+3) (mod 8),
P5(3-4*"'1+10-4%)=0 (mod 16)
P3(6-4°"1n+5.49"1) =0 (mod 32)
P5(6n+5)=0 (mod 32)
p3(18n+15)=0 (mod 8)

Proof. Invoking (1.31) into (2.2.11), we deduce that

;ﬁ3(3n)q” = j{;—{[} (mod 8).

In view of congruences (2.2.7) and (2.2.60), we have

P5(3n) =ps(n) (mod 8).

(2.2.50)

(2.2.51)

(2.2.52)

(2.2.53)

(2.2.54
(2.2.55
(2.2.56
(2.2.57
(2.2.58

~— N~ N~ ~—— ~— ~—

(2.2.59

(2.2.60)

(2.2.61)
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Utilizing (2.2.61) and by mathematical induction on «, we arrive at (2.2.54).
Invoking (1.31) into (2.2.9), we deduce that

o 3
253(3;1 +1)q" = o3 (mod 16). (2.2.62)
n=0 fl
Using (1.42) in (2.2.62) and extracting the terms involving g>"*!, we get
. = n_ f63
Zp3(6n +4)q" =22 (mod 16), (2.2.63)
n=0 f2
which implies that
P5(12n+10)=0 (mod 16) (2.2.64)
and
Z (12n+4)g" =222 (mod 16). (2.2.65)
1
Using (2.2.62) and (2.2.65), we find that
P3(12n+4)=p5;(3n+1) (mod 16). (2.2.66)
By mathematical induction on a, we get
p3(3-4*"n+ 4 =5,(3n+1) (mod 16). (2.2.67)

Congruence (2.2.56) follows from (2.2.64) and (2.2.67).
Equating the terms containing g2 from both sides of (2.2.8), dividing by g and
then replacing ¢> by g, we obtain

iP (3n+2)q" = L2k (2.2.68)
n=0 fl

Invoking (1.31) into (2.2.68), we deduce that

e 3
2?3(311 +2)q" = fe (mod 32), (2.2.69)
n=0 f2
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which implies,

ps(6n+5)=0 (mod 32) (2.2.70)
and - 5
Xﬁ3(6n +2)q" = 4fi (mod 32). (2.2.71)
Employing (1.42) into (2.2.71), we obtain
00 3,2 3
2;73(611 +2)q" = 4f42f6 + 4q@ (mod 32). (2.2.72)
n=0 2 f12 f4
Extracting the terms involving g%"*! from (2.2.72), dividing by ¢ and replacing g° by g,
we get
Z;_?3(12n+ 8)g" =425  (mod 32), (2.2.73)
n=0 f2
which implies that
P5(24n+20)=0 (mod 32) (2.2.74)

and 5
£
fi

In view of congruences (2.2.71) and (2.2.75), and by mathematical induction on «, we
find that

253(2471 +8)g" =42%  (mod 32). (2.2.75)
n=0

P3(6-4%n+ 2.4 =5 (6n+2) (mod 32). (2.2.76)

Congruence (2.2.57) follows from (2.2.74) and (2.2.76).
Invoking (1.31) into (2.2.11), we deduce that

ZOO _ w_ oSS
3 = d 8). 2.2.77
n:0p3( n)q f12f63 (mo ) ( )

Employing (1.72) into (2.2.77), we obtain

00 6 3 3
Z%Bn)q” = ]{2;93 + qu[i3 + 4q2% (mod 8). (2.2.78)
n=0 3 /18

Extracting the terms involving ¢>"*2 from (2.2.78), dividing by g2 and replacing ¢> by
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q, we get
[ss] f3
) Fon+6)" =42 (mod s)
n=0 f2

which implies,
P3(18n+15)=0 (mod 8)

and
3

i173(18” +6)q" = 4fi (mod 8).
n=0 fl

(2.2.79)

(2.2.80)

Again extracting the terms involving ¢3"*! from (2.2.78), dividing by g and replacing

q° by g, we get
I
h

Congruence (2.2.55) follows from (2.2.80) and (2.2.81).

Y B5(9n+3)g" =22 (mod 8).
n=0

2.2.5 Infinite families of congruences modulo 4

Theorem 2.2.5. Fora > 0 andn > 0,

wherei =1, 2, 3.
P5(24-25%"2n+ (1205 +25)-25*) =0 (mod 4),

wherej=1,2,3,4.

P52 n+ 222y =0 (mod 4),
P5(2:3"2n+5.3%"1)=0 (mod 16),
ps3(6n+5)=0 (mod 16).

(2.2.81)

]

(2.2.82)

(2.2.83)

(2.2.84)

(2.2.85)
(2.2.86)
(2.2.87)
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Proof. Employing (1.51) into (2.2.7), we obtain

R S RS
;p U= e M s s A e

(2.2.88)

Extracting the terms involving g*"*! from (2.2.88), dividing by g and replacing ¢ by g,
we get
00 4 r4
) Pi2n+1)g" = 2f25f65. (2.2.89)
n=0 fl f3

Invoking (1.31) into (2.2.89), we deduce that

(o]

Zﬁ3(2n+ 1)g"=2f3f (mod 16). (2.2.90)
n=0

Employing (1.75) into (2.2.90), we obtain

00 2¢ 6 5£6
253(211 +1)g" = 2@ + 8q3f32f138 ~6qf;fs (mod 16). (2.2.91)
n=0 fis fe 15

Congruence (2.2.87) follows by extracting the terms involving g2 on both sides of
(2.2.91).
Extracting the terms involving g3**! from (2.2.91), dividing by g and replacing ¢°
by g, we get
Ps(6n+3)g" =10£’f (mod 16). (2.2.92)

Using (2.2.90) and (2.2.92), we have
ps(6n+3)=5p;(2n+1) (mod 16). (2.2.93)
Utilizing (2.2.93) and by mathematical induction on «a, we get
P5(6-3%n+3%") =515 (2n+1) (mod 16). (2.2.94)

Using (2.2.94) and (2.2.87), we get (2.2.86).
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Extracting the terms involving g2" from (2.2.88) and replacing g2 by g, we get

i_ w_ Sify B

ps(2n)q" = , (2.2.95)
n=0 iy 34 § foa ’ 34f4f12
which implies that
" 21
p5(2n)g" = 7=—=>— (mod 4). (2.2.96)
% f14f34f82f224
Invoking (1.31) into (2.2.96), we deduce that
21—73(2;1)(;" = f42f 2 (mod 4). (2.2.97)
n=0 f2 f6
Extracting the terms involving g2"*! from (2.2.97), we obtain
P5(4n+2)=0 (mod 4). (2.2.98)

Again extracting the terms involving g" from (2.2.97) and replacing g2 by g, we get

;;—73(4n)q”5 ;I;;} (mod 4). (2.2.99)

In view of congruences (2.2.7) and (2.2.99), we have
p3(4n) =ps(n) (mod 4). (2.2.100)

Utilizing (2.2.100) and by mathematical induction on a, we get (2.2.82). Using (2.2.98)
in (2.2.82), we obtain (2.2.85).
Extracting the terms involving 3" from (2.2.91) and replacing g° by g, we get

ey 2 6 5¢6
Zﬁ (6n+1)q" = SLIRLIEN 8qf1 Je (mod 16), (2.2.101)
3 3 2r3
n=0 f6 f2 f3
which implies,
c Chfy
Z;_)3(6n +1)g" =222 (mod 4). (2.2.102)

n=0
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Invoking (1.31) into (2.2.102), we deduce that

o0

253(611 +1)q" =2f; (mod 4). (2.2.103)
n=0

Congruence (2.2.83) follows by extracting the terms involving ¢***' on both sides of
(2.2.103).
Extracting the terms involving g*" from (2.2.103) and replacing g* by g, we get

253(24;1 +1)g"=2f; (mod 4). (2.2.104)
n=0
Employing (1.34) into (2.2.104) and extracting the term g°"*!, we obtain
Z]_a3(120n +25)g" =2f; (mod 4). (2.2.105)
n=0
Extracting the terms involving ¢>**' from (2.2.105), we get
55(600n+120i+25)=0 (mod 4), i=1,2,34 (2.2.106)

Extracting the terms involving ¢°" from (2.2.105) and replacing g° by g, we get

[Se]

21_73(60011 +25)g" =2f, (mod 4). (2.2.107)
n=0

Using (2.2.104) and (2.2.107), we get
75(6007 +25) = 5(24n+1) (mod 4). (2.2.108)
Utilizing (2.2.108) and by mathematical induction on «a, we get
P5(600-25%1+25%) =5,(24n+1) (mod 4). (2.2.109)

Utilizing (2.2.106) and (2.2.109), we get (2.2.84). ]



Chapter 3

DESIGNATED SUMMANDS

3.1 Introduction

In chapter (1), we defined partition with designated summands PD(#n). Chen, Ji, Jin and
Shen [17] have established Ramanujan type identity for the partition function PD(3n+
2), they also gave a combinatorial interpretation of the congruence for PD(3n + 2)
by introducing a rank for partitions with designated summands. Recently Xia [75]
extended the work of deriving congruence properties of PD(n) by employing the gen-
erating functions of PD(3n) and PD(3n+2) due to Chen et al. [17]. Naika et al. [48,60]
have found generating function identities and congruences modulo 4, 9, 12, 36, 48
and 144 for PD;(n) and studied various arithmetic properties of PD,(n) modulo 3 and

powers of 2.

3.2 Congruences for (2, 3)-regular partition with desig-

nated summands

In this section, we define PD, 5(1), the number of partitions of n with designated sum-
mands in which parts are not multiples of 2 or 3. The generating function of PD, 3(n)

is given by

S 2 Pfe
PD =2 3.2.
) PDusma" =" e G20

For example: PD, 3(4) = 4, namely

V+1+1+1, 14+17+1+1, 1+1+1/+1, 1+1+1+1"

References [55] and [58] are based on this chapter

33
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3.2.1 Congruences modulo 4
Theorem 3.2.1. Forn>1 and a > 0,
PD,3(18n)=0 (mod 4), (3.2.2)
PD,3(2-37n)=0 (mod 4). (3.2.3)
Proof. We have
) 2
ZPD2,3(n)q” _ fife fofss 2f 9];36. (3.2.4)
n=0 il
Substituting (1.56) into (3.2.4), we obtain
Y PDys(n)q" = f4]2(6f12 +q file f36. (3.2.5)
=0 f3 fis fz f12f18
Extracting the even terms in the above equation
ZPD2 5(2n)g" f2];3f6 (3.2.6)
fi'fo
Substituting (1.72) into (3.2.6), we find that
4r2 3
ZPD232n w_ Il 4 2gle f9 +4q 2f6f18 (3.2.7)

TR s 5t

Extracting the terms involving g3" from both sides of (3.2.7) and replacing g° by g, we

get

C n f2 f35
PD, ;(6 .
; 2,3(6m)q" = f1 f6

Invoking (1.31) into (3.2.8), we find that that

iPD2,3(6n)q” = W3 (mod 8).

(3.2.8)

(3.2.9)
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Employing (1.74) into (3.2.9), we get

q q
62f 128 f 63 64f 92

(3.2.10)

o 44 5 6 4
ZPD2,3(6n)q” S Jo fsfohs 2 2J3is (mod 8).

Extracting the terms involving g3" from both sides of (3.2.10) and replacing g°> by g, we

have

Eoo PD,5(18 IV
2,3(181)q = (mod 8). (3.2.11)
= 2J6

Congruence (3.2.2) follows from (1.31) and (3.2.11).

Equation (3.2.11) can be rewritten as
4 122
ZPD23 (18n)q" = f3 (f1 ) (mod 8). (3.2.12)

Replacing g by —¢g in (1.32) and using the fact that

2
$(-q) = % (3.2.13)
we find that that
f_lz_f_gz_ f3f18
R e (219
Employing (3.2.14) into (3.2.12), we get
. w_ il o ffis , fifohis
PD,3(18n)q" = +4q -4 d 8). (3.2.15)
) PPaal1Bne’ = g 4 4g* i ~4amgg (mod )

Extracting the terms involving g3" from both sides of (3.2.15) and replacing g°> by g, we

obtain

4
ZPD2354;1 = ?2 (mod 8). (3.2.16)

In view of the congruences (3.2.11) and (3.2.16), we get

PD2’3(54:1’1) = PD2’3(181’1) (mod 8) (3217)
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Utilizing (3.2.17) and by mathematical induction on «, we arrive at
PD,3(2-3%3n) = PD,3(18n) (mod 8). (3.2.18)

Using (3.2.2) into (3.2.18), we get (3.2.3). ]

3.2.2 Congruences and Internal congruence modulo 4 and 8

Theorem 3.2.2. Forn >0 and a > 0,

PD,5(72n+42)=0 (mod 4), (3.2.19)
PD,5(36n+30)=0 (mod 4), (3.2.20)
PD,5(144n+120)=0 (mod 4), (3.2.21)
PD,3(9-4%7n+30-49"2)=0 (mod 4), (3.2.22)
PD,5(54n+18)=4-PD,3(18n+6) (mod 8), (3.2.23)
PD,5(54n+36)=2-PD;3(18n+12) (mod 8), (3.2.24)
PD,5(36n+30)=2-PD,3(72n+60) (mod 8). (3.2.25)

Proof. Extracting the terms involving ¢3"*! from (3.2.15), dividing by g and then re-
placing ¢° by g, we have

ZPD23 (54n+18)q" =
n=0

f1;3f6 (mod 8). (3.2.26)

Extracting the terms involving g3"*! from (3.2.10), dividing by ¢ and then replacing g°
by g, we obtain

0o 5
ZPD2,3(1811 +6)q" = —flffgf6 (mod 8). (3.2.27)

n=0 2
From (3.2.26) and (3.2.27), we arrive at (3.2.23).
Extracting the terms involving g%"*2 from (3.2.15), dividing by g and then replacing
q° by g, we find that

6
ZPD23 54n +36)q" = i o (mod 8). (3.2.28)

n=0 f3

Extracting the terms involving q3"*? from (3.2.10), dividing by g? and then replacing
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q° by g, we obtain

6
ZPD23 18n+12)g" = f14f6
n=0 f2f3

In view of the congruences (3.2.28) and (3.2.29), we get (3.2.24).
From (3.2.27), we have

(mod 8). (3.2.29)

ZPD23 181 +6)q" = f1 fi/e (mod 8). (3.2.30)

3
n=0 f

Invoking (1.31) into (3.2.30), we get

ZPD23 (18n+6)q" = f2;3f6 (mod 8). (3.2.31)
=0 1

Employing (1.43) into (3.2.31), we obtain

00 2,22
ZPD2,3(1811+ 6)q" =7 f48f6 1qf4 f66f12 (mod 8). (3.2.32)
= fr fia f
Extracting the terms involving g2" from (3.2.32) and then replacing g° by g, we have
N n _ f26f34
) PDy3(36n+6)g" =723 (mod 8). (3.2.33)
n=0 fl f6
Invoking (1.31) into (3.2.33), we get
ZPD2 5(36n+6)q" =3f (mod 4). (3.2.34)

n=0

Extracting the terms involving g2"*! from (3.2.34), we get (3.2.19).
Extracting the terms involving g?"*! from (3.2.32), dividing by g and then replacing
g by g, we obtain

ZPD23 (36m+24)g" = : 3 s (mod 8). (3.2.35)

n=0 1
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Invoking (1.31) into (3.2.35), we get

o0 2

PD,5(36n+24)q" = 5%( fifs)* (mod 8). (3.2.36)
n=0

Employing (1.49) into (3.2.36), we obtain

00 48 8 ¢4 4 2022
ZPD2 5(36m+24)q" = slsa 5q2JM - 1OqM (mod 8). (3.2.37)
, 4 r4 4,44 2
ey fofoa f fs fia f3
Extracting the terms involving g2"*! from (3.2.37), dividing by g and then replacing g°
by g, we get
N LS
ZPD2’3(7211 +60)g" = 622227%  (mod 8). (3.2.38)
n=0 1
Invoking (1.31) into equation (3.2.29), we find that that
ZPD2,3<18n+ 12)¢" = 655 (mod 8). (3.2.39)
n=0 fl f3
Invoking (1.31) into (3.2.39), we get
0 f3
PD,5(18n+12)q" =25  (mod 4). (3.2.40)
= f2

Congruence (3.2.20) follows by extracting the terms involving g?"*! from (3.2.40).
From (3.2.40),

o 3
ZPD2,3(36n +12)q" = o (mod 4). (3.2.41)
Substituting (1.42) into (3.2.41), we have
) 372 3
ZPD2 5(36n+12)g" = oJile 2q@ (mod 4), (3.2.42)
y 2 f
= f3 fiz 4
which implies,
ZPD2,3(72n+ 48)g" =275 (mod 4). (3.2.43)

Congruence (3.2.21) fellows by extracting the terms involving g2"*! from (3.2.43).
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From equations (3.2.43) and (3.2.40), we have
PD2’3(721’1+48) = PD2’3(181’1+ 12) (mod 4) (3244)
By mathematical induction on «, we arrive at
PD,5(18-4%! +3.49%2) = PD, 5(18n+12) (mod 4). (3.2.45)
Using (3.2.21) into (3.2.45), we get (3.2.22).
Equation (3.2.39) can rewritten as
00 3,2
ZPD2,3(1811 +12)" = 6(1) (mod 8). (3.2.46)
— h
Employing (1.42) into (3.2.46), we obtain
oo 27202
ZPD2,3(18n +12)3" =6 fifﬁ 6q2@ +12q i f62f12 (mod 8).  (3.2.47)
=0 £ fi fi f3
Extracting the terms involving g>"*! from (3.2.47), dividing by g and then replacing g°
by g, we get
c 2 3 f6
ZPD273(3611 +30)g" = 12222325 (mod 8). (3.2.48)
n=0 1
From (3.2.38) and (3.2.48), we get (3.2.25). ]
3.2.3 Congruences modulo 4
Theorem 3.2.3. Foreachn >0 and a > 0,
PD,5(72-25* ' n+6-25%"") = PD, 5(72n+6) (mod 4), (3.2.49)
PD,3(360(5n+1)+150) =0 (mod 4), (3.2.50)

wherei =1, 2, 3, 4.
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Proof. From the equation (3.2.34), we have
211)132,3(7271 +6)g" =3f?2 (mod 4). (3.2.51)

n=0

Employing (1.34) in the above equation, and then extracting the terms containing g°"*2,

dividing by g2 and replacing g° by g, we get
Y PDy3(360n+150)g" = 3f2 (mod 4), (3.2.52)
n=0
which yields
ZPD2,3(180011 +150)q" = 3f2 = ZPD2,3(72n +6)g" (mod 4).  (3.2.53)
n=0 n=0

By induction on «a, we obtain (3.2.49). The congruence (3.2.50) follows by extracting
the terms involving q5”+i fori =1, 2, 3, 4 from both sides of (3.2.52). O]

3.2.4 Congruences modulo 16

Theorem 3.2.4. Foreachn >0 and a > 0,

PD2’3(247’Z + 20) =
PD,3(6-4%2n+5-4%2) =

0 (mod 16), (3.2.54)
0 (mod 16). (3.2.55)

Proof. Extracting the terms involving ¢! from (3.2.7), dividing by g and then replac-
ing ¢° by g, we get

. n_ ﬁffg
ZPD2,3(6n+2)q =223 (3.2.56)

n=0 .ﬁ

Invoking (1.31) into equation (3.2.56), we get

ZPDm(én +2)9" =2(fif5)> (mod 16). (3.2.57)
n=0
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Substituting (1.49) into (3.2.57), we arrive at

0 2748 2
Zpo(én +2)q" = 2f24f82f142 +2 2f42f64f24 4qf42f122 (mod 16).  (3.2.58)
n=0 faf¢ faa f5 15 fis
Extracting the terms involving g2"*! from (3.2.58), dividing by ¢ and then replacing g?
by g, we get
ZPD23 (12n+8)g" = 12f2f? (mod 16). (3.2.59)
n=0

Extracting the terms involving g2"*! from (3.2.59), we get (3.2.54).
Extracting the terms involving 2" from (3.2.59) and replacing g2 by g, we get

ZPD23 (24n+8)g" =12(fi5)* (mod 16). (3.2.60)
n=0

In view of the congruences (3.2.57) and (3.2.60), we get
PD;,5(24n+8)=6-PD,3(6n+2) (mod 16). (3.2.61)
Utilizing (3.2.61) and by mathematical induction on «, we arrive at
PD,3(6-4%* +2.4%") = 6" . PD, 5(6n+2) (mod 16). (3.2.62)

Using (3.2.54) into (3.2.62), we arrive at (3.2.55). ]

Theorem 3.2.5. Foreachn >0 and a > 0,
PD,3(6-4%'n+4%*2) = PD,3(6n+4) (mod 32). (3.2.63)

Proof. Extracting the terms involving g>"*2 from (3.2.7), dividing by g2 and then re-
placing g3 by g, we get

. n f2 f6
PD,3(6n+4)g" = .
; 23(6n+4)g" = fl 1

(3.2.64)
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Invoking (1.31) into (3.2.64), we arrive at

ZPDZ s(6n+4)g" = f ife (mod 32). (3.2.65)
Employing (1.45) into (3.2.65), we find that
oo 3
ZPD2,3(611 +4)q" = f4 f6 - 1261f2f6f12 (mod 32). (3.2.66)
e f2f12 Ja

Extracting the terms involving 2" from (3.2.66) and replacing g° by g, we get

ZPD2312n+4)q f2f3 (mod 32). (3.2.67)

oy f1f6

Employing (1.42) into (3.2.67), we get

ZPD23 12n+4)q" = f2f4f6 f2f12

d 32). 2.
A ) f4f6 (mod 32) (3.2.68)

Extracting the terms involving g2"*! from (3.2.68), dividing by g and then replacing g?
by g, we get

f1 fe
;PD23 (24n+16)q" = f2f3

In view of the congruences (3.2.65) and (3.2.69), we obtain

(mod 32). (3.2.69)

PD,5(24n+16)=PD,3(6n+4) (mod 32). (3.2.70)

Utilizing (3.2.70) and by mathematical induction on a, we get (3.2.63). ]
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3.2.5 Congruences and Infinite families of congruences modulo 8

Theorem 3.2.6. Forn > 0,

PD,;(48n+34)=0 (mod 8), (3.2.71)
PD,3(48n+46)=0 (mod 8), (3.2.72)
PD,5(96n+52)=0 (mod 8), (3.2.73)
PD,5(96n+76)=0 (mod 8). (3.2.74)

2n+1

Proof. Extracting the terms involving g from (3.2.66), dividing by g and then re-

placing g° by g, we get

0 3
ZPD2,3(12n +10)g" = 2001536 (mod 32). (3.2.75)

0 f

n=

Substituting (1.49) into (3.2.75), we obtain

ZPD23(12n+ 10)q" = 20f6 s fi2 ~20q fifo s (mod 32). (3.2.76)

= fifs f22f82f12

Extracting the terms involving q" from (3.2.76) and replacing g by g, we get

f32f4 f6
ZPD2 5(24n+10)q" = 20 (mod 32). (3.2.77)
2 12
Invoking (1.31) into (3.2.77), we find that
ZPD2,3(2411 +10)q" = 4f2f2 (mod 16). (3.2.78)
n=0
Invoking (1.31) into (3.2.78), we get
ZPD2,3(z4n +10)g" = 4fsf, (mod 8). (3.2.79)

n=0

Congruence (3.2.71) follows by extracting the terms involving g*"*! from (3.2.79).

2n+1

Extracting the terms involving g from (3.2.76), dividing by g and then replacing
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q° by g, we get

. LB
ZPD2,3(24n+ 22)¢" =12°2°2712 (mod 32). (3.2.80)
L 12f2f.
Invoking (1.31) into (3.2.80), we have
. 58
PD,5(24n+22)q" = 122>  (mod 16). (3.2.81)
n=0 1
Invoking (1.31) into (3.2.81), we obtain
. fého
Zpo(zzm +22)q" = 4f— (mod 8). (3.2.82)
n=0 2

Extracting the terms involving g2"*! from (3.2.82), we get (3.2.72).
Extracting the terms involving g2" from (3.2.68) and replacing g2 by g, we get

oo 3
PD2’3(2411 + 4)qn = 4M

(mod 32). (3.2.83)
— Je

Substituting (1.49) into (3.2.83), we find that

o 402 4 27472
ZPD2,3(24n+4)q"z4f2 fs fiz fifafaa (mod 32). (3.2.84)

20272 272
=0 4 6f24 8f12

Extracting the terms involving 2" from (3.2.84) and replacing g° by g, we get

0 4f2f4
ZPD2,3(48n+4)q"E4 L7476 (mod 32). (3.2.85)

27272
n=0 f2f3f12

Invoking (1.31) into (3.2.85), we have

o0 2
ZPD2,3(48n+ 4)q" = % (mod 16). (3.2.86)
n=0 3
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Invoking (1.31) into (3.2.86), we obtain

[oe]

PD,5(48n+4)q" = 4578 (mod 8). (3.2.87)
n=0 6

Congruence (3.2.73) obtained by extracting the term involving g*"*! from (3.2.87).
Extracting the terms involving g?"*! from (3.2.84), dividing by g and then replacing
q°% by g, we get

00 27472
ZPD2,3(48n +28)q" = 28%{12 (mod 32). (3.2.88)
n=0 f4 6
Invoking (1.31) into (3.2.88), we have
ZPD2,3(4811 +28)g" = 12f2f2 (mod 16). (3.2.89)
n=0
Invoking (1.31) into (3.2.89), we have
ZPD2,3(48n +28)g" =4ffi, (mod 8). (3.2.90)
n=0
Extracting the terms involving g2"*! from (3.2.90), we get (3.2.74). [

Theorem 3.2.7. For any primep=5,a>1 andn >0,
ZPD2,3(48p2“n +10p2)g" = 4f,f; (mod 8). (3.2.91)
n=0
Proof. Extracting the terms involving %" from (3.2.79) and replacing g2 by g, we get
ZPD2,3(48n +10)g" =4ff; (mod 8). (3.2.92)
n=0

Define .
Y fmq"=ffs (mod 8). (3.2.9)
n=0
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Combining (3.2.92) and (3.2.93), we find that

o0 [oo]

PD, ;(48n+10)q" = 4 Z F(n)g" (mod 8). (3.2.94)
n=0 n=0

Now, we consider the congruence equation

3k? +k 3 3m*+m _ 5p*-5

2
2 2 24

(mod p), (3.2.95)
which is equivalent to

(2-(6k+1))>+6-(6m+1)>=0 (mod p),

where —(p2—l) <k m< % and p is a prime such that (_76) = —1. Since (‘Tf) = -1 for
p =5 (mod 6), the congruence relation (3.2.95) holds if and only if both k = m = ip6_1 .

Therefore, if we substitute (1.36) into (3.2.93) and then extracting the terms in which

2 -1
the powers of g are congruent to 5 - % modulo p and then divide by qs'pT, we find
that

=Y p2—1
Zf(p”+ > T)qpn = fapfaps
n=0

which implies,

- 2 p*-1
Zf(p AR )q”:f2f3 (3.2.96)
n=0
and for n > 0, ,
f(p2n+pi +5.2 2; ) =0, (3.2.97)

where i is an integer and 1 <i < p — 1. By induction, we see that for n > 0 and a > 0,

20(_1
f(p2“n+5-p Y )

= f(n). (3.2.98)

2a0 _
Replacing 1 by p?*n+5- % in (3.2.94), we arrive at (3.2.91). ]



Chapter 3. DESIGNATED SUMMANDS 47
Corollary 3.2.1. Foreachn >0 and a > 0,
PD,5(3-4%Pn+34-4"1) =0 (mod 8), (3.2.99)
PD,3(3-4°7n+46-4"1) =0 (mod 8), (3.2.100)
PD,, 3(6 49731 +13-4"2)=0 (mod 8), (3.2.101)
23(6-49%1+19-4%*2)=0 (mod 8). (3.2.102)
Proof. Corollary (3.2.1) follows from the Theorem (3.2.5) and Theorem (3.2.6). ]
3.2.6 Congruences and Internal congruence modulo 4
Theorem 3.2.8. Forn > 0,
PD,5(12n+11)=0 (mod 4), (3.2.103)
PD,3(24n+19)=0 (mod 4), (3.2.104)
PD2 3 24n + 17) 0 (mod 4), (32105)
PD2 3(108714‘63) =0 (mod 4), (32106)
PD2 3(108” + 99) =0 (mod 4), (32107)
ZPD2,3(21 6n+27)q" = 21p(q) (mod 4), (3.2.108)
n=0
PD,5(72n+6) = PD, 3(36n+3) (mod 4), (3.2.109)
PD2]3(967’1 + 28) =2- PD2’3(24TZ + 7) (mOd 4:) (32110)
Proof. Extracting the odd terms in (3.2.5), we get
00 3,372
) PDys(2n+1)q" l2 )3 )is (3.2.111)
f3f3 2
n=0 1J6 J9
Invoking (1.31) into (3.2.111), we obtain
ZPD23 (2n+1)q" = 2122309 f1f2f3 Js (mod 4) (3.2.112)
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Substituting (1.74) into (3.2.112), we find that

0 216 3¢3 4 r4
ZPDM(Z;H 1)q" = f32f92 —qf3 f93f18 —2q2f3 J}S (mod 4). (3.2.113)
6f18 f6 f6

Extracting the terms involving 3" from (3.2.113) and replacing g by g, we get

c n_ f12f36
ZPDM(ﬁn +1)g" =12 (mod 4). (3.2.114)
fi %
Invoking (1.31) into (3.2.114), we have
00 fZ
ZPD2’3(671 +1)g" = iz (mod 4). (3.2.115)
n=0 fl

Employing (1.47) into (3.2.115), we get

4
ZPD23 (6n+1)g _ filsfis qf4f6 fafos (mod 4). (3.2.116)
5 f8f24 frrfi2

Extracting the terms involving g?"*! from (3.2.116), dividing by g and then replacing
9 by g, we get

©0 2
ZPD2,3(12n +7)q" = ZM (mod 4). (3.2.117)
n=0 fl f6
Invoking (1.31) into (3.2.117), we obtain
ZPD2,3(12” +7)9" =2f,fi» (mod 4). (3.2.118)

n=0

Extracting the terms involving g2"*! from (3.2.118), we obtain (3.2.103).
From (3.2.118), we get

XPD2,3(24n +7)q" = 2f,fs (mod 4). (3.2.119)
n=0
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Extracting the terms involving g" from (3.2.90) and replacing g2 by g, we get

ZPD2,3(9611 +28)g" =4f,f, (mod 8). (3.2.120)
n=0

In view of congruences (3.2.120) and (3.2.119), we obtain (3.2.110).

3n+1

Extracting the terms involving g from (3.2.113), dividing by g and then replac-

ing q° by g, we have

ZPD23 (6n+3)q" = fl f5 fo (mod 4). (3.2.121)
n=0 fé
Invoking (1.31) into (3.2.121), we find that
. ffs
ZPD2,3(6n+ 3)g" =325 (mod 4). (3.2.122)
= fif
Employing (1.42) into (3.2.122), we get
ZPD23 6n+3)q" = f4 I +3 f6f12 (mod 4). (3.2.123)
= fz fi2 f2f4

Extracting the terms involving g2" from (3.2.123) and replacing g2 by g, we obtain

ZPD23 (12n+3)q" = fz K (mod 4). (3.2.124)
n=0 fij%

Invoking (1.31) into (3.2.124), we have
ZPDZ 3(12n+3)q" = f1f2f3 (mod 4). (3.2.125)

Substituting (1.74) into (3.2.125), we find that

00 2r4 4
ZPD23(12H+3)q”E3f3f9— I fohe 62][3’](18 (mod 4).  (3.2.126)

, q
n=0 f?% jé fé
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Extracting the terms involving 3" from (3.2.126) and replacing g by g, we obtain

. n_ f12f34
ZPDM(%n +3)g" =322 (mod 4). (3.2.127)
n=0 f6
Invoking (1.31) into (3.2.127), we have
ZPD2,3(36n +3)g" = 3f% (mod 4). (3.2.128)

n=0

Extracting the terms involving g2" from (3.2.34) and replacing g° by g, we obtain

o0

PD,3(72n+6)g" =3f7% (mod 4). (3.2.129)
n=0
In view of congruences (3.2.129) and (3.2.128), we obtain (3.2.109).
Extracting the terms involving g3"*? from (3.2.126), dividing by g2 and then replac-
ing q3 by g, we have

- fitfe
ZPD2,3(3611 +27)q" = 2f12f62 (mod 4). (3.2.130)
n=0 2J3
Invoking (1.31) into (3.2.130), we have
) f4
ZPDM(%n +27)q" = 2}% (mod 4). (3.2.131)
n=0 3

Congruences (3.2.106) and (3.2.107) follow by extracting the terms involving g3"*! and
g>"*? from (3.2.131).
Invoking (1.31) into (3.2.131), we get

) 2
ZPD2’3(3611 +27)q" = 2& (mod 4). (3.2.132)

n=0 f6

Extracting the terms involving q%" from (3.2.132) and replacing q° by g, we get (3.2.108).
Extracting the terms involving g3+ from (3.2.113), dividing by g and then replac-
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ing q° by g, we have

Z,PD (6 f14f6
2, 3 n+ 5)q (mod 4) (32133)
n=0 2
Invoking (1.31) into (3.2.133), we have
ZPD2,3(6n +5)g9" = fi (mod 4). (3.2.134)
n=0 f2

Congruence (3.2.103) follows by extracting the terms involving g>**! from (3.2.134).
Extracting the terms involving 2" from (3.2.134) and replacing g2 by g, we get

0o 4
ZPDZ 3(12n+5)q" = 2fi (mod 4). (3.2.135)

4 2
n=0 fl

Substitute (1.42) and (1.46) in (3.2.135)

iPDm(lZn—k 5)qn
n=0
f44f6 f16f24+ f4f6f82f48 +2 f6f12f16f24+ q f6f8 f12f48 (mOd 4)
> fefiafus fz fizfi6foa f5 fs fas 17 frefoa
(3.2.136)

Extracting the terms involving q?"*! from (3.2.136), dividing by g and then replacing
g by g, we have

Y PDy3(24n+17)q" = 2l o fofs fofi (mod 4). (3.2.137)
=0 f1 Jefsfi2 11 fafo
Invoking (1.31) into (3.2.137), we get
) PDy5(24n+17)q" = 2fofsfia+2f2fsfiz  (mod 4), (3.2.138)

n=0

which implies (3.2.105). [
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3.2.7 Congruences modulo 4

Theorem 3.2.9. Forn>0 and a > 0,

PD,3(648n+459)=0 (mod 4), (3.2.139)
PD,5(8-9%"n+51-99"%)=0 (mod 4). (3.2.140)

Proof. Employing (1.33) into (3.2.108), we get
PD,3(216n+27)q" = 2f(q°,4°) + 2q¢(q°) (mod 4). (3.2.141)

Congruence (3.2.139) follows by extracting the terms involving g3"*? from (3.2.141).
Extracting the terms involving g>"**! from (3.2.141), dividing by g and then replac-
ing g° by g, we have

PD, 5(648n+243)q" = 2i(q %) (mod 4). (3.2.142)
Extracting the terms involving 3" from (3.2.142) and replacing g° by g, we obtain
PD,;(1944n+243)q" =2¢(q) (mod 4). (3.2.143)
In view of congruences (3.2.108) and (3.2.143), we have
PD, 5(1944n+243) = PD, 5(216n+27) (mod 4). (3.2.144)
Utilizing (3.2.144) and by mathematical induction on «a, we get
PD,3(24-9%"2n+3-99"2) = PD, 3(216n+27) (mod 4). (3.2.145)

Using (3.2.139) into (3.2.145), we obtain (3.2.140). ]
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3.2.8 Congruences modulo 3

Theorem 3.2.10. Forn >0 and a > 0,

PD,;(6n+3)=0 (mod 3), (3.2.146)
PD;,3(6n+5)=0 (mod 3), (3.2.147)
PD,5(36n+30)=0 (mod 3), (3.2.148)
PD,3(4-3*7n+10-39"%)=0 (mod 3) (3.2.149)

Proof. Substituting (1.73) into (3.2.4), we obtain

N w_ Sobfs | fifofss o 2 fofofis
PD = 2g7 22
; 220 Bfofe  fifafs T Ffhs

(3.2.150)

Extracting the terms involving 3" from (3.2.150) and replacing g° by g, we get

ey 2 2
ZPD2,3(3n)q” = —féﬁfﬁ . (3.2.151)
n=0 fl f4f12
Invoking (1.31) into (3.2.151), we have
y PD,5(3n)q" = fy d3
Z 2,3(3n)q" == (mod 3). (3.2.152)
n=0 f4

Extracting the terms involving g2" from (3.2.152) and replacing g2 by g, we get

0 8
ZPD2,3(6n)q" =L (mod 3). (3.2.153)

n=0 2

But

18 f12 32

— - (3.2.154)
2 2
0o 22

ZPD2,3(6n)q” = j f (mod 3). (3.2.155)
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Substituting (1.49) into (3.2.155), we obtain

f 42 f 122
'

fafy | ofifohu

24204 9 76,404
> fife faa 1 s

ZPD2,3(6n)q” = 2q (mod 3).  (3.2.156)
n=0
Extracting the terms involving g?"*! from (3.2.156), dividing by g and then replacing

q° by g, we get

. 58
ZPD2,3(12n+6)q” =-2-°  (mod 3). (3.2.157)
n=0 fl
Invoking (1.31) into (3.2.157), we obtain
0 22
ZPD2,3(12n+6)q” =726 (mod 3), (3.2.158)
= hfs
which implies that
ZPD2,3(1211 +6)9" = P(q)P(g°) (mod 3). (3.2.159)
n=0

Employing (1.33) into (3.2.159), we have
Y PDys3(12n+6)g" = ¥(q°)f (4°,9°) + q(*)P(¢°) (mod 3).  (3.2.160)
n=0

Congruence (3.2.148) follows by extracting the terms involving g3"*? from (3.2.160).
Extracting the terms involving g>"**! from (3.2.160), dividing by ¢ and then replac-
ing g° by g, we get

iPD2,3(36n +18)q" = gb(q)gb(cﬁ) (mod 3). (3.2.161)
n=0

In view of congruences (3.2.159) and (3.2.161), we obtain

PD,3(36n+18)q" = PD,3(12n+6) (mod 3). (3.2.162)
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Utilizing (3.2.162) and by mathematical induction on «, we get
PD,3(4-3%"2n+2-3%"2) = PD,5(12n+6) (mod 3). (3.2.163)

Using (3.2.148) into (3.2.163), we get (3.2.149).
Invoking (1.31) into (3.2.111), we get

00 4
ZPD2,3(2” +1)g" = % (mod 3). (3.2.164)
n=0 3

Congruences (3.2.146) and (3.2.147) follow by extracting the terms involving g3"*! and
q>"*? from (3.2.164). O

3.3 Arithmetic properties of 3-regular bipartitions with

designated summands

In this section, we study PBD3(n), the number of 3-regular bipartitions of n with des-

ignated summands and the generating function is given by

0 4f2
ZPBD3(n)q” =169 (3.3.1)
n=0

T r2p2p2°

f I3 fis
To be precise by a bipartition with designated summands, we mean a pair of partitions
(v1,v,) where in partitions v, and v, are partitions with designated summands. Thus
PBD3(4) = 35 are

(4,0), (27+2,0), (2+27,0), (2’+1"+1,0), (2’+1+17,0), (I'+1+1+1,0),
(I+1"+1+1,0), (1+1+1"+1,0), (1+1+1+17,0), (2,2), (2,1"+1),
(2,1+1), (I,17+1+1), (1, 1+1"+1), (1, 1+1+1"), (I'"+1,1"+1),

(UV'+1,1+1"), (1+1,17+1), (1+1,1+1"), (2’+1/,17), (1,27+1’), (1"+1,2)),
(1+1,2), (I’+1+1,1), (1+1"+1,1'), (1+1+1,1"), (0,4"), (0,2"+2),
0,2+2), (0,27+1"+1), (0,27+1+1"), 0,1"+1+1+1), (0,1+1"+1+1),
@0,1+1+1"+1), 0, 1+1+1+1").
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3.3.1 Generating function for PBD;(2n) and PBD;(2n + 1)

Theorem 3.3.1. We haven > 0,

ZPBD3 gt = 518 L AR
fl f18 fl f6 f9

Nisiviy
PBDs(2n+1)q" =
; 3 n+ )q f7f9

Proof. Substituting (1.56) into (3.3.1), we find that

iPBDa(n) n f64 ( f162f128 +2 f42f122f18+ 2f44f62f326 )

TR \pe g T TR
— f62f162 +2 f42f64f12 + 2f44f66f36
£ f fz fis R

(3.3.2)

(3.3.3)

(3.3.4)

Extracting the terms involving g% and g*"*! from the above equation, we obtain (3.3.2)

and (3.3.3).

3.3.2 Infinite families of congruences modulo 3

Theorem 3.3.2. For each nonnegative integer n and a > 0,

PBD;(4x3"?n+10x3"!)=0 (mod 3),
(mod 3),

PBD;(8x 3 2n+8x3%2) =0
PBD;5(2%">n) = 2°PBDs(4n) (mod 3),

) PBDs(4n+2)7" = p(q)p(q’) (mod 3),
n=1

) PBD;(8n+4)q" = 2p(q)p(q°) (mod 3)

n=1

Proof. Invoking (1.31) in (3.3.2), we find that

. . At
;PBD3(2n)q =1+ f}fz (mod 3),

O

(3.3.5)
(3.3.6)
(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)
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which implies,

6
ZPBD3 (2n)q qflf"’ (mod 3). (3.3.11)

Employing (1.44) into (3.3.11), we have

> o [ L BfS
;PBD3(2"M A AT

(mod 3). (3.3.12)

Extracting the terms containing g%"*!, dividing throughout by g and then replacing g°
2

by g from (3.3.12) and using the fact that {(q) = j}l, we get (3.3.8)
1

Substituting (1.33) into (3.3.8), we obtain

) _PBDs(4n+2)q" = f(¢°,4°)9(a°) + q(a°)¥(q°) (mod 3), (3.3.13)

n=1

which implies that

iPBD3(12n +6)g" = ¢(q)¢(q3) (mod 3). (3.3.14)

n=1

From equations (3.3.8) and (3.3.14), we get
PBD3(12n+6) = PBD3(4n+2) (mod 3). (3.3.15)
By using mathematical induction on « in (3.3.15), we have
PBD3(4x 3% n+2x3%"!) = PBDs(4n+2) (mod 3). (3.3.16)
Extracting the terms containing g°"*2 from (3.3.13) we obtain
PBD3(12n+10)=0 (mod 3). (3.3.17)

Using (3.3.17) in (3.3.16), we obtain (3.3.5).
Extracting the terms containing g% and replacing g° by q from (3.3.12), we get

i g
ZPBD3 (4n)q f212f63 (mod 3). (3.3.18)
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Employing (1.44) into (3.3.18), we obtain

‘Tﬁfj?z 2]&]&2
ffe T g

ZPBD3(4n)q” =2 (mod 3). (3.3.19)
n=1

Congruence (3.3.9) obtained by extracting the terms containing g>**! from (3.3.19) and

fz

Substituting (1.33) into (3.3.9), we have

using the fact that (q) =

) PBDs(8n+4)g" = 2f(4°,4°)9(q°) + 249(a°)(¢°) (mod 3).  (3:3.20)

3n+1

Extracting the terms containing g and ¢3"*? from the above equation, we obtain

iPBD3(24n +12)q" = 2¢(q)p(¢°) (mod 3) (3.3.21)
n=1

and
PBD5(24n+20)=0 (mod 3). (3.3.22)

In view of the congruences (3.3.9) and (3.3.21), we get
PBD3(24n+12)= PBD3(8n+4) (mod 3). (3.3.23)
Utilizing (3.3.23) and by mathematical induction on «, we arrive at
PBD;(8x 3% 'n+8x3%"!) = PBD;(8n+4) (mod 3). (3.3.24)

Using (3.3.22) in (3.3.24), we obtain (3.3.6).
Extracting the terms containing g% and replacing g2 by g from (3.3.19) , we have

6
ZPBD3 (8n)g qf1f6 (mod 3). (3.3.25)

In view of the congruences (3.3.25) and (3.3.18), we obtain

PBD3(8n)=2-PBD3(4n) (mod 3). (3.3.26)
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Utilizing (3.3.26) and by mathematical induction on «, we arrive at (3.3.7). ]

-3
Theorem 3.3.3. Let p be a prime with (?) = —1. Then for any nonnegative integers a,

ZPBD;; (4p2“n + ZpZ“)q” = (q)(g°) (mod 3), (3.3.27)

n=1

and forn>0,1<j<p-1,
PBD; (4p>** (pn+j) + 2p***?) =0 (mod 3). (3.3.28)

Proof. Equation (3.3.8) is the a = 0 case of (3.3.27). If we assume that (3.3.27) holds for
some «a > 0, then, substituting (1.37) in (3.3.27),

iPBD3 (4p2“n +2p2® ) q"

n=1

2

& wlem [ pZmelp  pPmelp)\  p2l
E[ qu(q 2,9 2 )+6181P(qp)

=a m2+m 21 (2m+1) 2_(2m+ 2_
X( q3 2 f(q3p 22 lP’q3p (22 1)P)+q3pgl¢(q3p2)] (mod 3) (3329)
m=0

For any odd prime p, and 0 < my, m, < (p — 3)/2, consider the congruence

2 2
my +m; mj5 + my 4p -4

dp),
which implies that
(2m; +1)>+3(2my+1)>=0 (mod p). (3.3.30)
-1
Since (_73) = —1, the only solution of the congruence (3.3.30) is my = my = pT

Therefore, equatmg the coefficients of qp”+ a from both sides of (3.3.29), dividing

2

throughout by q 5 and then replacing g” by g, we obtain

2

= 4p? -4
ZPBD3(4p2“(pn+ p8

n=1

)+ 2p2”‘)q” = ¢(qp)¢(q3p) (mod 3). (3.3.31)
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Equating the coefficients of g”" on both sides of (3.3.31) and then replacing g” by g, we

obtain

) PBDs(4p>**2n+2p2)q" = P(q)(q’) (mod 3), (3.3.32)
n=1

which is the a + 1 case of (3.3.27).
Extracting the terms involving gP"*/ for 1 < j < p—1in (3.3.31), we get (3.3.28). [J

-3
Theorem 3.3.4. Let p be a prime with (7) = —1. Then for any nonnegative integers «,

y PBD; (sz"‘n + 4p2“)q” = 21(q)(q®) (mod 3), (3.3.33)

n=1

and forn>0,1<j<p-1,
PBD;(8p***!(pn+j)+4p***?)=0 (mod 3). (3.3.34)

Proof. Equation (3.3.9) is the @ = 0 case of (3.3.33). If we assume that (3.3.33) holds for
some «a > 0, then, substituting (1.37) in (3.3.33),

y PBD; (sz"‘n + 4p2“)q”
=)

n

- m2+m p2+@mil)p  p2-m+l)p p2-1 2
EZ[ q 2f(q g 2 )+q8¢(q")

e 2 24 (2m+ 2_(2m+ 2_
><[ g2 f(ofp Rl l)p)+q3pslw(q3p2)) (mod 3).  (33.35)

m=0

For any odd prime p, and 0 < my,m, < (p — 3)/2, consider the congruence

2 2 2
my +my 3m2+m2 _4p -4

2 2~ g (medp)
which implies that
(2m; +1)>+3(2my+1)>=0 (mod p). (3.3.36)
-1
Since (‘Tf) = —1, the only solution of the congruence (3.3.36) is m; = m, = pT
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Therefore, equating the coefficients of gP m = from both sides of (3.3.35), dividing
2

throughout by qT and then replacing g” by g, we obtain
2a 4[72 4 n 3
ZPBD 8p~ | pn+ —— 5 +4p%*)q" = 2i(qP)P(g°P) (mod 3).  (3.3.37)
n=1

Equating the coefficients of g”" on both sides of (3.3.37) and then replacing g” by g, we

obtain

ZPBD3 (8p2“+2n + 4p2“+2)q” =21(q)p(¢°) (mod 3), (3.3.38)

which is the a + 1 case of (3.3.33).
Extracting the terms involving gP"*/ for 1 < j < p — 1 in (3.3.37), we arrive at
(3.3.34). O

3.3.3 Congruences modulo 6

Theorem 3.3.5. For eachn > 0,

PBD5(18n+15)=0 (mod 6), (3.3.39)

z:PBDﬁ18n+3mnz4ﬁjg (mod 6). (3.3.40)
n=0

Proof. Invoking (1.31) in (3.3.3), we have

SIS

f (mod 18). (3.3.41)

E:PBD32n+1m

Employing (1.74) into (3.3.41) and extracting the terms containing g°"*!, dividing through-
out by g and then replacing g° by g from (3.3.41), we obtain

oo 3
E:PBDﬁ6n+3mnzl4ﬁfé+8q ife (mod 18). (3.3.42)
n=0 f6 f3
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Invoking (1.31) in (3.3.42), we see that

ZPBD3 (6n+3)q" = 4f; +4q§6

n=0

(mod 6). (3.3.43)

Congruence (3.3.39) follows by extracting the terms containing g2 from the above
equation.

Extracting the terms containing ¢>" and replacing g° by g from (3.3.43), we arrive

at
ZPBD3 (18n+3)q" = 4f* (mod 6), (3.3.44)
n=0
which implies,
ZPBD3 (18n+3)q" = 4f f7 (mod 6). (3.3.45)
n=0
Invoking (1.31) in (3.3.45) we get (3.3.40). ]

-3
Theorem 3.3.6. If p > 5 is a prime such that (—) = —1. Then for all integers a > 0,
p

ZPBD3 (18p°n+3p>)q" = 4fif; (mod 6). (3.3.46)
n=0

Proof. From (3.3.40), we have
For a prime p >5and —(p—1)/2 <k,m < (p—1)/2, consider

3k?+k 3 3m? +m 4p -

5 t3x— 1 (modp).

This is equivalent to
(6k +1)%+3(6m+1)% = 0 (mod p).

Since (_—3) = —1, the only solution of the above congruence is k = m = (+p — 1)/6.

p
Therefore, from Lemma (1.2.5),

0 2
ZPBD3 (18(p2n + 4 x P o ! ) + 3)q" =4f f; (mod 6). (3.3.47)
n=0

Using (3.3.40), (3.3.47), and induction on «, we arrive at (3.3.46). [



Chapter 3. DESIGNATED SUMMANDS 63

-3
Theorem 3.3.7. Letp > 5 be prime and(?) = —1. Then for all integersn > 0 and a > 1,

PBD;(18p* n+p>*~'(3p+18j)) =0 (mod 6), (3.3.48)

wherej=1,2,...,p—1.

Proof. From Lemma (1.2.5) and Theorem (3.3.6), for each a > 0,

[eS) 2 1
ZPBD3 (18(p2n +ax? -2 )+ 3)q” =4f f; (mod 6). (3.3.49)
n=0

That is,

PBD;(18p> ™ n+3p?**?)q" = 4f,f;, (mod 6). (3.3.50)
n=0

Since there are no terms on the right of (3.3.50) where the powers of g are congruent to

1,2,...,p—1 modulo p,
PBD;(18p>**! (pn+j) + 3p***?) =0 (mod 6), (3.3.51)

forj=1,2,...,p—1. Therefore,for j =1,2,...,p—1 and a > 1, we obtain (3.3.48). L[]
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3.3.4 Congruences and Infinite families of congruences modulo 4

Theorem 3.3.8. For eachn > 0,

PBD3(12n+7)=0 (mod 4), (3.3.52)
PBD;3(12n+11)=0 (mod 4), (3.3.53)
PBD3(24n+17)=0 (mod 4), (3.3.54)
PBD3(36n+27)=0 (mod 4), (3.3.55)
PBD;(72n+39)=0 (mod 4), (3.3.56)
PBD3(72n+57)=0 (mod 4), (3.3.57)

PBD3(216n+153)=0 (mod 4), (3.3.58)

EE:PBLk (72n+3)g" =2f; (mod 4), (3.3.59)
n=0

ZPBD3(72n +15)¢" =2fifs (mod 4). (3.3.60)

n=0

Proof. Invoking (1.31) in (3.3.3), we find that

ZPBDg(Zn +1)g"=2 f12f6 (mod 8). (3.3.61)
n=0 f2 f9

Employing (1.57) into (3.3.61), we obtain

ZPBD3 2n+1)q" = f6 f12 f4f6 f36

d 8). 3.3.62
A PoafE g et ® (3362

Extracting the terms containing g*"*!, dividing throughout by ¢ and then replacing >

by g from the above equation, we get

fos f18
E PBD3(4n+3 d 8). 3.3.63
n=0 3 " )q fl f6f93 (mo ) ( )
But
f2f3 f18 f2f3 fo (mod 8). (3.3.64)

ﬂké i fs
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Invoking (1.31) in (3.3.64), we get

o

PBD3(4:71 + 3)[]” = 2f3f6f9 (mod 4:) (3365)
n=0

Congruences (3.3.52) and (3.3.53) follow by extracting the terms containing g>"*! and
g>"*2 from (3.3.65).
Extracting the terms containing g°" and replacing g> by g from (3.3.65). we obtain

[S¢]

PBD3(121/1 + 3)qn = 2f1f2f3 (mod 4) (3366)
n=0

Substituting (1.74) into (3.3.66), we find that

00 4
PBD3(127”Z + 3)qn = 2]‘% - 2‘]f3f9f18 (mOd 4:) (3367)
n=0 18

Congruence (3.3.55) obtained by extracting the terms containing g3"*? from (3.3.67).
Extracting the terms containing %" and replacing g° by g from the above equation.

we arrive at

%) 4
ZPBD3(36n+ 3)q" = % (mod 4). (3.3.68)
n=0 f6
Using (1.31) in (3.3.68), we obtain
ZPBD3(36n +3)g" =2f, (mod 4). (3.3.69)

n=0

Congruences (3.3.56) and (3.3.59) follow by extracting the terms containing g>" and
g*™*! from (3.3.69).

Extracting the terms containing g°"+!

, dividing throughout by g and then replacing
g° by g from (3.3.67), we obtain

ZPBD3(36n +15)g" = 2fifsfs (mod 4). (3.3.70)
n=0
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Employing (1.49) into (3.3.70), we find that

4 r2
ZPBD3 361+ 15)" = f2f8f12 f4f6f24 (mod 4). (3.3.71)

=0 f4 f24 fzf f12

Extracting the terms containing g>" and then replacing g° by g from (3.3.71), we obtain

iPBD n _ f1f42f64
n=0 2 f12

Using (1.31) in (3.3.72) we arrive at (3.3.60).
Extracting the terms containing %" and replacing g° by g from (3.3.62), we get

ZPBD3(4n +1)q" = f s (mod 8). (3.3.73)
n=0 f1f2f9
Using (1.31) in (3.3.73), we have
. n_ f33f63
ZPBD3(4n+ 1)g" =225 (mod 4). (3.3.74)
L fifofis
Substituting (1.42) into (3.3.74), we arrive at
ZPBD3 (4n+1)q" =2 54 fe +2q o/ (mod 4). (3.3.75)
= f5 fiafis T fafis
Extracting the terms containing g% and replacing g° by g from (3.3.75), we obtain
o0 3¢5
ZPBD3(811 +1)g" = 2& (mod 4). (3.3.76)
n=0 fl 6J9
But 3.5 5
fg K _fihfe (mod 2). (3.3.77)
fofefo  fifs
Which yields
ZPBD3 (8n+1)g" = fz fofs (mod 4). (3.3.78)

p—t fifo
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Using Jacobi’s triple product identity and (q) = /;2 in (1.33), we arrive at

f22 _ f6f92 f18

L= +q 3.3.79
hRAs TR (3379
Employing (3.3.79) into (3.3.78), we get
00 2
ZPBD3(8n +1)g" =2 f 6 /o, f3f62f 18 (mod 4). (3.3.80)
L fis T

Congruence (3.3.54) obtained by extracting the terms containing q>"*? from the above

equation.

3n+1

Extracting the terms containing g°"**, dividing throughout by g and then replacing

q° by g from (3.3.80), we obtain

ZPBD3 (24n+9)q" = 1 oo (mod 4). (3.3.81)
n=0 fé
Using (1.31) in (3.3.81), we have
ZPBD3(2411 +9)q" =2, fofs (mod 4). (3.3.82)
Substituting (1.74) into (3.3.82), we obtain
f62f9
ZPBD3 (24n+9)q" = —24fsfofis (mod 4). (3.3.83)
=0 f3f18

Congruence (3.3.57) follows from (3.3.83) and extracting the terms containing ¢°" and

replacing g> by g from the above equation. we find that

. 25
ZPBD3(72n +9)g" =222 (mod 4). (3.3.84)
n=0 L/6
Using (1.31) in (3.3.84), we get
N n_ .ﬁ; _
ZPBD3(72n +9)g" = zf— =2(q) (mod 4). (3.3.85)
1

n=0
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3n+2

Substituting (1.33) into (3.3.85) and extracting the terms containing g , We arrive at

(3.3.58). O

Theorem 3.3.9. For any primep > 5, a >0 andn >0,

) _PBDs(72p**n+3p>)q" =2f; (mod 4) (3.3.86)
n=0

Proof. Employing Lemma (1.2.5) into (3.3.59), it can be see that

ZPBD3(72(pn+ 4 i )+ 3)q” =2f, (mod 4), (3.3.87)
n=0
which implies that

PBD;(72p’n+3p%)q" =2f; (mod 4). (3.3.88)

n=0
Therefore,
PBD;(72p”n+3p®) = PBDs(72n+3) (mod 4).

Using the above relation and by induction on «, we arrive at (3.3.86). ]

Theorem 3.3.10. For any primep >5,« >0,n>0andl=1,2,..p—1,
PBD;(72p*(pn+1)+3p**)=0 (mod 4). (3.3.89)

Proof. Combining (3.3.87) with Theorem (3.3.9), we derive that for a > 0,

PBD;(72p***'n+3p>*) = 2f, (mod 4).
n=0

Therefore, it follows that
) _PBD;(72p***!(pn+1)+3p>*) =0 (mod 4).
n=0

where [ = 1,2,...,p — 1, we obtain (3.3.89). O]
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-4
Theorem 3.3.11. Ifp > 5 is a prime such that (?) = —1. Then for all integers a > 0,

ZPBD3 (72p20‘n + 15p2“)q” =2f1fs (mod 4). (3.3.90)
n=0
Proof. From (3.3.60), we have
For a prime p > 5and —(p—1)/2 <k,m < (p—1)/2, consider
3k% +k 3m>+m _5p°-5

5 + 4 x > =~ (mod p).

This is equivalent to
(6k +1)%+4(6m+1)? =0 (mod p).

Since (_’74) = —1, the only solution of the above congruence is k = m = (xp — 1)/6.

Therefore, from Lemma (1.2.5),

PBD; (72(p2n +5xP 2 ) + 15)q” =2f1fs (mod 4). (3.3.91)
n=0
Using (3.3.60), (3.3.91), and induction on a, we get (3.3.90). O]

-4
Theorem 3.3.12. Let p > 5 be prime and (?) = —1. Then for all integers n > 0 and

a>1,
PBD;(72p*n+p** ! (15p + 72j))=0 (mod 4), (3.3.92)

wherej=1,2,...,p—1.

Proof. From Lemma (1.2.5) and Theorem (3.3.11), for each a > 0,

00 2 1
ZPBD3(72(p2n+ 5x P - )+ 15)q” =2f,fi (mod 4). (3.3.93)
n=0
That is,
) _PBD;(72p***'n+15p*2)q" = 2, fy, (mod 4) (3.3.94)
n=0

Since there are no terms on the right of (3.3.94) where the powers of g are congruent to
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1,2,...,p—1 modulo p,
PBD; (72p20‘+1(pn +j)+ 15p2“+2) =0 (mod 4), (3.3.95)

forj=1,2,...,p—1. Therefore, forj =1,2,...,p—1 and @ > 1, we arrive at (3.3.92). [



Chapter 4

ANDREWS’ SINGULAR
OVERPARTITIONS

4.1 Introduction

In the introductory chapter, we defined the definition of Andrews’ singular overparti-
tion functions denoted by Ek,i (n). Chen et al. [16] have proved some congruences mod-
ulo 2, 3, 4, and 8 for C3(n). They also proved some congruence for C4 (1), Cg (1)
and 66,2(11) modulo powers of 2 and 3. More recently Ahmed and Baruah [1] have
found some new congruences for 63,1(11), E&Q(n), 612,4(11), 624,8(11) and 648,16(n)
modulo 18, 36. Chen [15] has also found some congruences modulo powers of 2 for
63’1(11), 64’1(11). Yao [80] has proved congruences modulo 16, 32, 64 for 63,1(11).
Naika at el. [49] have found some congruences modulo 6, 12, 16, 18, 24, 48, and 72
for 63,1 (n).

4.2 Andrews’ singular overpartitions with odd parts

In this section, we define the function mé,i(n), the number of singular overpartitions
of n into odd parts such that no part is divisible by ¢ and only parts = +i (mod 6) may
be overlined. For 0 < i < 9, the generating function of @M(n) is define by

© 8. 20\ (_ie 0\ (_0—i. 0
ZCOa,i(ﬂ)q”Z <q2’q )mg.qz,éq o zé_i)'qz);" . (4.2.1)
= (4:9%)00(=97347°) 0o (=773 47) o

Reference [56], [57] and [54] is based on this chapter

71
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4.2.1 Congruences modulo 8 and 16

Theorem 4.2.1. For each integer n > 0,

CO3,(12n+7)=0 (mod 8), (4.2.2)

CO3,(24n+19)=0 (mod 16), (4.2.3)

Zﬁal(zzm +7)q" = (q)fs (mod 16). (4.2.4)
n=0

Proof. Setting 6 = 3 and i = 1 in (4.2.1), we find that

S == n (a%59)35(0% %)% (0% 4"
Zcom(n)q =t ol T ol 10 (4.2.5)
= (4°:9°)%(4%9%) o (0 95

Substituting (1.47) into (4.2.5), we obtain

N5 n fofd fafoa
co = 2q 4.2.6
Zo U= g (4:2.6)

which yields, for each n > 0,

253,1(2” +1)q" = ALYEY (4.2.7)

Employing (1.73) into (4.2.7), we have

0 2,3
Z [(2n+1)g f1:f18 n 2qf6 f5' f2f36 14 2f6f12]28f36 (4.2.8)
n=0 f3 f36 f3 f18 f3
Extracting the terms involving %" in the above equation and replacing g> by g, we get
) 2
Z [(6n+1)g _oJi Js . (4.2.9)
=y 1o

Using (1.31) in (4.2.9), we obtain

Z@M(én +1)g" =22 (mod 8). (4.2.10)
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Congruence (4.2.2) follows by extracting the terms involving g*"*! from (4.2.10).
Collecting the terms involving q" from (4.2.10) and replacing g by g, we get
Z@m(lzn +1)=2f% (mod 8). (4.2.11)
n=0
Substituting (1.41) into (4.2.9), we find that
o0 16
Z (6n+1)q 4 f +8g7it fg (4.2.12)
"= f 2 fs fia f 2 f 12
which implies that
of 3
ZCO31 12n+7)q" = ;uff;l. (4.2.13)
n=0
Using (1.31) in (4.2.13), we get
XE3,1(12;1 +7)q" = 8f/ (mod 16). (4.2.14)

n=0

Extracting the terms involving g>"*! from (4.2.14) we get (4.2.3).

Collecting the terms involving q" from (4.2.14) and replacing g by g, reduces to

Zm3,1(24n +7)g" =8f (mod 16),
n=0

Using (1.31) in (4.2.15), we get

Using (1.37) in (4.2.16), we arrive at (4.2.4).

Theorem 4.2.2. For any primep =5 (mod 6),a > 1, andn >0,

) CO31(2p™ n+p*)g" = 2(q)(q”) (mod 4).

n=0

(4.2.15)

(4.2.16)

(4.2.17)
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Proof. Using (1.31) in (4.2.7), we obtain

- C n_ f;fg
E 31(2n+1)q" =2 (mod 4). (4.2.18)
n=0 7 fifé

Using (1.37) in (4.2.18), we get

) TOs1(2n+1)3" = 29(q)p(g’)  (mod 4) (4.2.19)
n=0
Define -
) _&ma" =p@p(q’). (4.2.20)
n=0

Combining (4.2.19) and (4.2.20), we find that

Z@M(zn +1)g" =2 Z ¢(n)g" (mod 4). (4.2.21)
n=0 n=0

Now, we consider the congruence equation

2 2 4 2__4
k ;k +3.2 2”” = p8 (mod p), (4.2.22)

which is equivalent to

(2k+1)*+3-2m+1)>=0 (mod p),

where 0 < k,m < % and p is a prime such that (_?3) = —1. Since (_T;’) = —1 for

_ . . . _ _ p-
p =5 (mod 6), the congruence relation (4.2.22) holds if and only if both k = m = ~—-~.

Therefore, if we substitute (1.37) into (4.2.20) and then extracting the terms in which

2 2
the powers of g are congruent to % modulo p and then divide by qu, we find that

- 2_ 2 2
Zg(zm + pTl)qp” =p(a" (g,
n=0

which implies that

2 P2 -1\ , 3
E g\pin+——1a =1(q)P(q7) (4.2.23)
0
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and for n > 0,

p’-1
g(p2n+pi+ > ):0, (4.2.24)

where i is an integer and 1 <i < p — 1. By induction, we see that for n > 0 and a > 0,

pZa -1
g(pzan + T) = g(n). (4.2.25)
Replacing 1 by p?®n + I# in (4.2.21), we arrive at (4.2.17). ]

Theorem 4.2.3. For any primep =5 (mod 6),a > 1, andn >0,

ZEM (24p%n + 7p2)g" = (-1)* 5 w(q)fs (mod 16). (4.2.26)
n=0
Proof. Define
Za(n)q” =1(q)fs- (4.2.27)
n=0
Combining (4.2.4) and (4.2.27), we see that
Z [(24n+7)q" = Za " (mod 16). (4.2.28)
n=0 n=0

Now, we consider the congruence equation

k2+k+4 3m?+m 7p -
2 2 24

(mod p), (4.2.29)
which is equivalent to
3.(2k+1)2+(12m+2)*>=0 (mod p),

where # <m< p%l, 0<kc< % and p is a prime such that (‘73) = —1. Since
(_Tf) = —1 for p = 5 (mod 6), the congruence relation (4.2.29) holds if and only if
%1 and k = %. Therefore, if we substitute (1.37) and (1.36) into (4.2.27) and

2_
then extracting the terms in which the powers of g are pn + 4 o7 7. we arrive at

00 2

7pc -7 2 z
Za(pn_,_ 172—4)an+7”247 =(-1) p61q7p2471’[) qp f4p (4.2.30)

n=0
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7p2-7
Dividing by qu on both sides of (4.2.30) and on simplification, we find that

which implies that

. 2 +p-1
Za(p2n+ 7p24 7)qn =(-1)" 9(q)fs (4.2.31)

and for n > 0,

7p* -7
a(pzn +pi+ 4 ) =0, (4.2.32)

where i is an integer and 1 <i < p — 1. Combining (4.2.27) and (4.2.31), we see that for
n >0,

2 +p-1
a(p2n+ 7p24_7) = (-1)"% a(n). (4.2.33)

By (4.2.33) and mathematical induction, we deduce that for n > 0 and a > 0,

7p*@ -7 p-1
alp?@n+ 20 = 1) agn). (4.2.34)
24
200 _
Replacing 1 by p?%n + 7p24 7 in (4.2.28), we arrive at (4.2.26). O]

4.2.2 Congruences modulo 8

Theorem 4.2.4. Foralln >0 anda > 0,

CO3,(36n+21)=0 (mod 8), (4.2.35)
E3,1(36n +3)=CO 31(12n+1) (mod 8), (4.2.36)
CO3,(4-3*n+7-3"%)=0 (mod 8), (4.2.37)
CO3,(36n+33)=0 (mod 8), (4.2.38)
CO3,(18n+15)=CO3,(6n+5) (mod 8). (4.2.39)

Proof. Equating the coefficients of g>**! from both sides of (4.2.8), dividing by g and
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then replacing g3 by g, we arrive at

i (61 +3)q f2 f5 f4f12. (4.2.40)
oy f

Using (1.31) in (4.2.40), we obtain

253,1(6n+3)q” = f4f12

A i (mod 8). (4.2.41)

Substituting (1.73) into (4.2.41), we get

(mod 8), (4.2.42)

f12f18 f6f9f12f36 2f6f12f18f36
CO;5(6n+3 2 4
; L =7 e - S

which implies that for all n > 0,

%) 2
Z (181 +3)q" = fif6 (mod 8). (4.2.43)
"0 At
Using (1.31) in (4.2.43), we have
Zc_3, (18n+3)g" =2f2 (mod 8). (4.2.44)

Il
o

n

Equating the coefficients of g2"*! from both sides of (4.2.44), dividing by g and then
replacing g° by g, we arrive at (4.2.35).
From (4.2.44), we get

CO3,(36n+3)g 2f1 (mod 8). (4.2.45)

gk

I
o

n

In view of congruences (4.2.45) and (4.2.11), we obtain (4.2.36).
Extracting the terms involving g3"*! from (4.2.42), dividing by g and then replacing
g° by g, we have

i 1(18n+9)g" = fzfj}f” (mod 8). (4.2.46)
_ 176
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Using (1.31) in (4.2.46), we get

2@3,1(1811 +9)g" = o Jafo (mod 8). (4.2.47)
— fifs

In view of congruences (4.2.47) and (4.2.41), we get
CO3,(18n+9)=COj3,(6n+3) (mod 8). (4.2.48)
Utilizing (4.2.48) and by mathematical induction on «, we arrive at
CO3(2-3%"?1n+3%"%) = CO3,(6n+3) (mod 8). (4.2.49)

Using (4.2.35) in (4.2.49), we obtain (4.2.37).
From (4.2.42), we have

2@3,1(1811 +15)q" = 4% (mod 8). (4.2.50)
n=0 1

Using (1.31) in (4.2.50), we get

o0

COs3,(18n+15)q" =4f,fsfi» (mod 8). (4.2.51)
n=0

Congruence (4.2.38) follows by extracting the terms involving g?"*! from (4.2.51).
Extracting the terms involving q3"*? from (4.2.8), dividing by g and then replacing
q° by g, we obtain
COs3,(61+5)q" = 4—f2f4J:ff12. (4.2.52)
n=0 f 1
Using (1.31) in (4.2.52), we have

[Se]

@3,1(61/1 + 5)6]” = 4f2f6f12 (mod 8) (4.2.53)
n=0

Combining (4.2.51) and (4.2.53), we arrive at (4.2.39). O]
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Theorem 4.2.5. Foralln >0 anda >0,

CO3,(12n+7)=0 (mod 8), (4.2.54)

CO3,1(12n +11)=0 (mod 8), (4.2.55)
CO3,(108n+63)=0 (mod 8), (4.2.56)
CO3,(1087+99)=0 (mod 8), (4.2.57)
CO3,(972n+567)=0 (mod 8), (4.2.58)
CO3,(972n+891)=0 (mod 8), (4.2.59)
CO31(12-9%"21n+3.9%*2) = CO3,(108n+27) (mod 8). (4.2.60)

Proof. Substituting (1.50) into (4.2.7), we obtain

. f2f6 f6f2
ZC 3,1(2n+ 1)q” =2 28 41;2 +2q 44 22421 (4261)
=0 2J6 J24 2J6 /8
which implies,
00 6
Z (4n+3)q ];2 J;” (4.2.62)
n=0 f f3 f4
Using (1.31) in (4.2.62), we get
Z [(4n+3)q" = % (mod 8). (4.2.63)
n= 3

Extracting the terms involving g%"*! and %"+ from (4.2.63) we get (4.2.54) and (4.2.55).
Extracting the terms involving 3" from (4.2.63) and replacing g° by g, we have

00 2
ZE3,1(12n +3)q" = 2f—42 (mod 8). (4.2.64)
n=0 fl
Substituting (1.73) into (4.2.64) and equating the terms g3"*2, we obtain
00 4762
Z [(36n+27)q" = PLLEEVT! (mod 8). (4.2.65)

fifs
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Using (1.31) in (4.2.65), we have

[oo]

CO3,(36n+27)q" =22 (mod 8). (4.2.66)
n=0

3n+1 and

Congruences (4.2.56) and (4.2.57) follow by extracting the terms involving g
g>"*? from (4.2.65).

Extracting the terms involving 3" from (4.2.66) and replacing g> by g, we have

CO3,(108n+27)g" =2ff (mod 8), (4.2.67)
n=0
which implies,
CO5,(108n+27)g" = 2f2f# (mod 8). (4.2.68)
n=0
Employing (1.74) into (4.2.68) and equating the terms involving g3"*2, we obtain
Zﬁ3,1(3z4n +243)q" = 2f2f2  (mod 8). (4.2.69)
n=0
Using (1.31) in (4.2.69), we get
2@3,1(324;1 +243)g" = 2f5  (mod 8). (4.2.70)

n=0

Extracting the terms involving ¢3"*! and ¢3"*?from (4.2.70), we arrive at (4.2.58) and
(4.2.59).
Extracting the terms involving ¢3" from (4.2.70) and replacing g° by g, we obtain

2@3,1(972;1 +243)¢" = 2f5  (mod 8). (4.2.71)
n=0

In view of congruences (4.2.71) and (4.2.67), we get

CO3,1(972n+243) = CO3,,(108n+27) (mod 8). (4.2.72)
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Utilizing (4.2.72) and by mathematical induction on «, we arrive at (4.2.60). ]

Theorem 4.2.6. Foralln >0 and o > 0,

CO3 1(24n+14)=0 (mod 8), (4.2.73)
CO3,(4-3%"n+2-3%"2)=3%"1C0O;3(12n+6) (mod 8), (4.2.74)
CO3,(108n+27) =3C03,(24n+6) (mod 8), (4.2.75)
CO3,(72n+6)=3C03,(24n+2) (mod 8), (4.2.76)
CO3 1(7271 + 42) =0 (mod 8), (4277)
CO3,1(72n +66)=0 (mod 8), (4.2.78)
CO3,(24n+22)=0 (mod 8), (4.2.79)
CO3,(36n+30)=CO3,(12n+10) (mod 8). (4.2.80)
Proof. From (4.2.6), we have
Zco31 (2n)q" = Sk (4.2.81)
P fifafir
Substituting (1.50) into (4.2.81) and equating the terms g>"*!, we get
Zco31 (4n+2)q" = 22 23f6 (4.2.82)
n=0 f f3
Using (1.31) in (4.2.82), we obtain
> €0, an+ 21" = 2251
n=0

Employing (1.74) into (4.2.83), we have

© w_Jofs L fhfis , ofefis
CO;5+(4 2 =2 -2 —4q
; saldn+ 2 f34f128 ! f33 f32f9

(mod 8), (4.2.84)

which implies that

4f34
CO3 1 12n+ 2)q =2
; fifg

(mod 8). (4.2.85)
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Using (1.31) in (4.2.85), we have
2@31(1211 +2)q" =2} (mod 8). (4.2.86)
n=0

Congruence (4.2.73) follows by extracting the terms involving g?"*! from (4.2.86).

Extracting the terms involving g2" from (4.2.86), we arrive at
Z@m(zzm +2)=2f% (mod 8). (4.2.87)
n=0

Extracting the terms involving g3"*! from (4.2.84), dividing by g and then replacing
3°" by g, we have

0 3
Z@M(lzn +6)q" = 62t ;f ®  (mod 8). (4.2.88)
n=0 1
Using (1.31) in (4.2.88), we get
Z 121+ 6)g" = 6(f,f,)fsfs (mod 8). (4.2.89)
n=0
Substituting (1.74) into (4.2.89), we arrive at
. n_ f6 f9 _ _ 2/3/)18 f18
) TOs1(12n+6)q" = 6=~ 6qfsfafofis— 12 (mod 8),  (4.2.90)
n=0 f18 f9

which implies that for all n > 0

2@3,1(36n+ 18)g" = 2f, /o fsfs (mod 8). (4.2.91)
n=0

In the view of congruences (4.2.91) and (4.2.89), we have
CO3,(36n+18)=3CO03,(12n+6) (mod 8). (4.2.92)

Utilizing (4.2.92) and by mathematical induction on «, we arrive at (4.2.74).
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Employing (1.49) into (4.2.89), we get

[ 2 42
Z@M(lzn +6)g" = f2 ]2[8 fis — 6 fifs o (mod 8). (4.2.93)
=0 fifi f&
Extracting the terms involving g" from (4.2.93) and replacing g2 by g, we obtain
e 272
Z [(24n+6)g" = 6 iviv/y o (mod 8). (4.2.94)
=0 fL s
Using (1.31) in (4.2.94), we have
Zco31 (24n+6)q" = 6f2f (mod 8). (4.2.95)

n=0

Combining (4.2.95) and (4.2.68), we obtain (4.2.75).
Extracting the terms involving 3" from (4.2.90) and then replacing g> by g, we get

—— 5
ZCO3 1 36n + 6)(] =0—7— (mod 8) (4296)
0 fe
Using (1.31) in (4.2.96), we have
Z (361 +6)g" =6f2 (mod 8). (4.2.97)

n=0

Congruence (4.2.77) follows by extracting the terms involving g*"*! from (4.2.97).

Extracting the terms involving g2" from (4.2.97) and then replacing g° by g, we get

Zco31 (72n+6)q" = 6f% (mod 8). (4.2.98)
n=0
Combining the equations (4.2.98) and (4.2.87), we arrive at (4.2.76).

Equating the coefficients of q3"*? from both sides of (4.2.90), dividing by g* and
then replacing ¢> by g, we have

Zco31 36n+30)g" = fl fo
= 3

(mod 8). (4.2.99)
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Using (1.31) in (4.2.99), we obtain

[ee]

CO5,1(36n+30)q" = 4f,f; (mod 8). (4.2.100)
n=0

Extracting the terms involving g2"*! from (4.2.100), we arrive at (4.2.78).
Equating the coefficients of q3"*? from both sides of (4.2.84), dividing by g* and
then replacing ¢° by g,

Nraret v S 1
ZCO3,1(12n+10)q = 47276 (mod 8). (4.2.101)

n=0 f12f32
Using (1.31) in (4.2.101), we have

2@3,1(2411 +22)q" = 4f,f> (mod 8). (4.2.102)

n=0

Congruence (4.2.79) follows by extracting the terms involving g>**! from (4.2.102).
In the view of congruences (4.2.102) and (4.2.100), we get (4.2.80). O

4.2.3 Congruences modulo 6

Theorem 4.2.7. For all integers n > 0,

CO3,(12n+6)=0 (mod 6), (4.2.103)
CO3(12n+10)=0 (mod 6). (4.2.104)
Proof. Using (1.31) in (4.2.82), we obtain
© 4
COs,1(4n+2)q" =275 (4.2.105)
n=0 f3

Extracting the terms involving g>*! and ¢"*2 from (4.2.105), we arrive at (4.2.103) and
(4.2.104). O
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4.3 Congruences for Andrews’ singular overpartitions with-

out multiples of k

—k
In this section, we define the function A ;(n), the number of singular overpartitions of
n without multiples of k in which no part divisible by 6 and only parts = +i (mod 0)
. —k
may be overlined. For 0 <i < 9, the generating function of Ay ;(n) is

k
5 (m)g" fla'q° )(q 19 )oo 431
Z o (@5 q*00)(q59) o (43

4.3.1 Congruences modulo 2 for Zil(n)

Theorem 4.3.1. For each integer n > 0,
Ay1(4n+3)=0 (mod 22), (4.3.2)

Y Ai(4n+1)g" =2fof; (mod 22), (4.3.3)
n=0

Proof. Setting 0 =4,i =1 and k = 3 in (4.3.1), we find that

. (959559 9%)%
A . 4.3.4
Z i (4:9)%(9%4°%)% (434)

Substituting (1.47) into (4.3.4), we obtain

(o) 4 r2
T gt = a2 f4f8f24 435
Zo = P (433

which yields, for each n > 0,

ZA“ (2n+1)q" = f;}}ﬁz (4.3.6)

Using (1.31) in (4.3.6), we find that

ZZil(Zn+ 1)q" = 2fifs (mod 22). (4.3.7)
n=0
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Congruence (4.3.2) follows by extracting the terms involving g*"*! from (4.3.7).

Collecting the terms involving g% from (4.3.7) and replacing q° by g, we get (4.3.3).

O
Theorem 4.3.2. For any prime p > 5 with (_76) =-1l,a>1andn >0,
ZA4 X (4 p2py 2T p )q =2ff; (mod 22). (4.3.8)
Proof. Define
Y fmq"=fofs (mod 2?). (43.9)
n=0
Combining (4.3.3) and (4.3.9), we find that
S Api(an+1)g"=2) f(n)q"  (mod 22). (4.3.10)
n=0 n=0
Now, we consider the congruence equation
3k? +k 3m? +m 5p -
2. > +3- 5 24 (mod p), (4.3.11)
which is equivalent to
(2-(6k+1))>+6-(6m+1)>=0 (mod p).
where _(p— <km< p L and p is a prime such that ( 6) = —1. Since (_Tf) =-1
+p-1

for p > 5, the congruence relation (4.3.11) holds if and only if both k = m = ——.
Therefore, if we substitute (1. 36) into (4.3.9) and then extracting the terms in which the

powers of g are congruent to 5 - 2 I L modulo p and then divide by g° b , we find that

Zf(PTHS p24 )qp”:fzpj%p, (4.3.12)
n=0
which implies that

- 2 p>-1

Zf(p n+5- )q”:f2f3 (4.3.13)
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and for n > 0, ,

-1
f(P2”+Pi+5'p24 ): 0, (4.3.14)

where i is an integer and 1 <i < p — 1. By induction, we see that for n > 0 and a > 0,
P _
f p “n+5- 1 _f(n). (4.3.15)

Replacing 1 by p?*n+5- p in (4.3.10), we arrive at (4.3.8). ]

Theorem 4.3.3. For any prime p > 5 with (_76) =-l,a>1andn>0,

5.p20(+2_+_ 1

Zi,l (4.p2a+2n+4_p2a+1i+ -

)E 0 (mod 23).

wherei=1,2,..,p—1.

Proof. Replacing n by p?n + pi +2
n>0and a >0,

in (4.3.15) and using (4.3.14), we find that for

5. 2a+2 _ 5

f (p2“+2n +p2@tli 4 pT) =0. (4.3.16)

Comparing the coefficients of 4" from the both sides of (4.3.10), we see that for n > 0,
A41 (4n+1)=2f(n) (mod 22). (4.3.17)

The result follows from (4.3.16) and (4.3.17). ]

—5
4.3.2 Infinite families of congruences modulo 22 and 2° for A, (n)

Theorem 4.3.4. Foralln >0 anda >0,

Zil 22“+5n+7'22a3$ =0 (mod 2%), (4.3.18)
A4 ((8n1+5)=0 (mod 2?), (4.3.19)

A4 ((161+9)=0 (mod 22), (4.3.20)

A, (8(4n+i)+7)=0 (mod 2), (4.3.21)
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wherei=1, 2, 3.
A5,(32(5n+i)+15)=0 (mod 22), (4.3.22)
wherei=1, 2, 3, 4.
Ay1(160n+7)=A, (16n+1) (mod 27). (4.3.23)
Proof. Setting 6 =4,i =1 and k =5 in (4.3.1), we find that
e
19%)%(9° 4 oo
A4 = . (4.3.24)
Z : 9% %00)%
Employing (1.52) into (4.3.24), we get
) 274 6 2
Z_S = J8f0 o JiTio +2g o/ (4.3.25)

A =
n=0 11t f22f120f420 ! f24f82f22o fz flO

Extracting the terms involving g2"*! from (4.3.25), dividing by ¢ and then replacing g?

by g, we obtain

OOZ5 2 1" =2 f2f10
ZO a1(2n+1)g o

Using (1.31) in (4.3.26), we find that

ZAM 2n+1)g"=2ff; (mod 22).

Employing (1.59) into (4.3.27), we obtain

ZAM (2n+1)q fz}i}flo +2qfafip (mod 2%),
which implies that

ZAM (4n+3)q" =2£f> (mod 22).

(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)
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Substituting (1.58) into (4.3.29), we get

Zi,l(4n +3)q" = 2f;) fio + 2972222 (mod 22). (4.3.30)

c f22f120f20
= fa

Extracting the terms involving g?" from (4.3.30) and then replacing g2 by g, we obtain

S Ayi(8n+3)g"=2ffs (mod 22). (4.331)
n=0

In view of congruences (4.3.27) and (4.3.31), we arrive at

—5 —5

Ay1(8n+3)=A,,(2n+1) (mod 27). (4.3.32)
Utilizing (4.3.32) and by mathematical induction on a, we get

— 2.4+ 41\ —
Ail(z-4“+1n+—) ;

3 =Ay(2n+1) (mod 2. (4.3.33)

Utilizing (4.3.19) and (4.3.33), we obtain (4.3.18).
Collecting the terms involving q" from (4.3.28) and replacing g2 by g, we have

c0 27 f2
ZZZJ(% +1)q" = 2f1f—2f5 (mod 22). (4.3.34)
n=0 flO
Using (1.31) in (4.3.34), we find that
ZZZJ(‘M +1)q" =2f; (mod 2), (4.3.35)

n=0

2n+1 and

Congruences (4.3.19) and (4.3.20) follow by extracting the terms involving g
g*"*? from both sides of (4.3.35).

Collecting the terms involving g*" from (4.3.35) and replacing g* by g, we have

[o¢]

Ay (16n+1)g"=2f (mod 22), (4.3.36)
n=0

Extracting the terms involving g2"*! from (4.3.30), dividing by ¢ and then replacing g2
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by g, we obtain

ZA41 (8n+7)g" = fl ];i’ fio (mod 22). (4.3.37)
Using (1.31) in (4.3.37), we get
ZZil(Sn +7)q" = 2f2fio (mod 22), (4.3.38)
n=0
which implies,
Y Ai(8n+7)0"=2f5 (mod 22) (4.3.39)
n=0

Congruence (4.3.21) follows by extracting the terms involving g*"** from both sides of
(4.3.39).
Extracting the terms involving g*" from (4.3.39) and then replacing g* by g, we
obtain .
Y Ai(32n+7)g" =2f5 (mod 22) (4.3.40)
n=0
Congruence (4.3.22) follows by extracting the terms involving g>"** from both sides of
(4.3.40).
Extracting the terms involving ¢°" from (4.3.40) and then replacing g° by g, we get

Y A31(160n+7)g" =2f; (mod 22) (4:3.41)
n=0
In view of congruences (4.3.36) and (4.3.41), we obtain (4.3.23). O]

Theorem 4.3.5. Foralln >0 and a > 0,

_ 14. 520(+2 1
Ail (2 52043, 4 % =0 (mod 2%), (4.3.42)
A41 10n+5)=0 (mod 2?), (4.3.43)
A41(10n+ 9)=0 (mod 22), (4.3.44)
A41(10(5n+z)+7) 0 (mod 22), (4.3.45)

wherei=1, 2, 3, 4.
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Proof. Employing (1.34) into (4.3.27), we get

o 5 6

ZAil(zn )" =250 =3a%q+5¢° -3 - L) (mod 2%).  (43.40)
a a

n=0

Congruences (4.3.43) and (4.3.44) follow by extracting the terms involving g°>"*? and
g>"** from both sides of (4.3.46).

Extracting the terms involving g°"*3 from (4.3.46), dividing by q° and then replacing
g° by g, we obtain

Y A3 (10n+7)" =10/, f7 (mod 2?)

n=0
2

=212 fs (a —q- %) (mod 22). (4.3.47)

Congruence (4.3.45) follows by extracting the terms involving g>"** from both sides of
(4.3.47).

Extracting the terms involving g°"*! from (4.3.47), dividing by g and then replacing
q° by g, we obtain

Zi,l(SOH +17)g" =2f’f5 (mod 2). (4.3.48)
n=0

In view of congruences (4.3.27) and (4.3.48), we obtain
Ay 1(50n+17)g" = A, (2n+1)  (mod 22). (4.3.49)

Utilizing (4.3.49) and by mathematical induction on «a, we get

2.25a+1 4

- =7A,,(2n+1) (mod 22). (4.3.50)

Ay (2257 0+

Utilizing (4.3.43) and (4.3.50), we get (4.3.42). O]
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Theorem 4.3.6. For alln > 0,

A5,(32n+31)=0 (mod 2%), (4.3.51)

Ay,(32n+15)" = 4fi fiy  (mod 2°). (4.3.52)
n=0

Proof. Using (1.31) in (4.3.26), we obtain

iziﬂ% +1)g" = 2@ (mod 23). (4.3.53)
n=0 5

Substituting (1.53) into (4.3.53), we arrive at

f5 fsfo , fofi fao

d 2%). 3.
f4f120 fio q o (mo ) (4.3.54)

Y Aii(2n+1)g" =2
n=0

Extracting the terms involving g2"*! from (4.3.54), dividing by ¢ and then replacing g2
by g, we obtain

6f1f22fzo
fafs

ZZZJ (4n+3)q" = (mod 23). (4.3.55)
n=0

Employing (1.53) in (4.3.55), we get

Bhfh . f2hifafi

fi fiofao 1 fofis (mod 2°). (4.3.56)

Y Aii(4n+3)" =6
n=0

Extracting the terms involving g2"*! from (4.3.56), dividing by ¢ and then replacing g2
by g, we obtain

©0 2
ZZZJ(% +7)q" = 2@ (mod 2°). (4.3.57)
n=0 f4f5
Again substituting (1.53) in (4.3.57), we find that
00 274
22,1(16% 15)q" = 4f1 J1o (mod 23). (4.3.58)

4
n=0 fS
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Using (1.31) in (4.3.58), we arrive at

[o¢]

Ay 1(16n+15)g" =4f,fy (mod 23), (4.3.59)
n=0

Congruence (4.3.51) follows by extracting the terms involving g>"*! from (4.3.59).
Collecting the terms involving g?" from (4.3.59) and replacing g* by g, we get
(4.3.52). O

Theorem 4.3.7. Foralln>0anda > 0,

Ay (325207250 + i)+ w =0 (mod 2%, (4.3.60)
where 1=3, 4.
A5,(32(5n+i)+15)=0 (mod 23), (4.3.61)
where 1=3, 4.
Ay,(160(5n+j)+47)=0 (mod 2%), (4.3.62)
where j=1, 3.
Proof. Substituting (1.34) into (4.3.52), we find that
iZil(ﬂn +15)9" = 4fi0fos (a - %2) (mod 23). (4.3.63)
n=0

Congruence (4.3.61) follows by extracting the terms involving g>"** from both sides of
(4.3.63).

Extracting the terms involving g°"*! from (4.3.63), dividing by g and then replacing
g° by g, we obtain

ZZZJ(MOn +47)g" = 4f,fs (mod 2°)
n=0

4

=2f, fSO(a(qz) e a(qqz)) (mod 23). (4.3.64)
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Congruence (4.3.62) follows by extracting the terms involving g>"*/ from both sides of

(4.3.64).

Extracting the terms involving g°"*? from (4.3.64), dividing by g and then replacing

g° by g, we obtain

ZZZ,I(SOOn 1367)q" = 4f, fiy (mod 2°).
n=0

In view of congruences (4.3.52) and (4.3.65), we obtain
Z451,1(80071 +367)g9" = 22’1(3211 +15) (mod 2°).

Utilizing (4.3.66) and by mathematical induction on a, we get

44.259+1 41

Aq, (32-25“+1n+ .

Utilizing (4.3.61) and (4.3.67), we get (4.3.60).

Theorem 4.3.8. For any prime p > 5 with (_710) =-l,a>1andn>0,

= _ 44.p%@ 41
ZAZ’1(32-p2an+ ijL)q” =4f fip (mod 23).
n=0

Proof. Define
) 8mq"=fific (mod 2°).
n=0

Combining (4.3.52) and (4.3.69), we find that

A;,(32n+15)¢" =4 gm)g" (mod 2°)
n=0 n=0

Now, we consider the congruence equation

3k? +k 3m?+m _ 11p?-11
5 +10- 5 = >4 (mod p),

) =A,,(32n+15) (mod 2°).

(4.3.65)

(4.3.66)

(4.3.67)

(4.3.68)

(4.3.69)

(4.3.70)

(4.3.71)
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which is equivalent to

(6k+1)>+10-(6m+1)>=0 (mod p).

where # <km< % and p is a prime such that (%) = —1. Since (‘T}O) =-1
for p > 5, the congruence relation (4.3.71) holds if and only if both k = m = P 6_1‘
Therefore, if we substitute (1.36) into (4.3.69) and then extracting the terms in which

2_ 24
the powers of g are congruent to 11 - % modulo p and then divide by qll'pT, we

find that

Zg(pn+ 1.7 o7 )q”” = fofiops (4.3.72)
n=0
which implies that

(2 p>-1

ZS(P n+ll-—7 )qn:flflo (4.3.73)

n=0
and for n > 0,

p’-1
g(p2n+pi+11- o1 ):0, (4.3.74)

where i is an integer and 1 <i < p — 1. By induction, we see that for n > 0 and a > 0,

pZO( -1
glp*n+11. = g(n). (4.3.75)
24
Replacing 1 by p?%n+11 - pz;% in (4.3.70), we arrive at (4.3.52). O]

Theorem 4.3.9. For any prime p > 5 with (‘T}O) =-l,a>1andn>0,

=0 (mod 2°).

— 44.p2at2 41
Ail (32-p2“+2n+32-p2“+1i+—p )

3

wherei=1,2,..,p—1.

P2
Proof. Replacing n by p?n + pi + 1 p24 U in (4.3.75) and using (4.3.74), we find that for

n>0and a >0,

11- 200+2 _ 11
2a+1; P ) 0. (4.3.76)

20+2
g(p Vl+p + 24

Comparing the coefficients of q" from the both sides of (4.3.70), we see that for n > 0,

Ay 1(32n+15)=4g(n) (mod 2). (4.3.77)
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The result follows from (4.3.76) and (4.3.77). ]

Theorem 4.3.10. For alln > 0,
Ay, (16n+13)=0 (mod 23), (4.3.78)

Y Ayi(16n+5)g" =4ff5  (mod 2°) (4.3.79)
n=0

Proof. Equation (4.3.26) can be rewritten as

h

ZA‘“ 2n+1)q" = 2f2 flo—2 (4.3.80)
fsfit
Substituting (1.41) and (1.53) into (4.3.80), we obtain
0 13 3 4r3
ZZZJ(ZTI+1)Q”:2 1{43f220 _8q2f4.§8 f40 2 féi f40 +8 f4f8 f20 (4381)
f2 g fofao f3 fio fz f8 fio fz fiofao
Collecting the terms involving g" from (4.3.81) and replacing g2 by g, we get
13 4
ZA‘“ (4n+1)q" =2 mfz flzo ~8q 1P fa0 (4.3.82)
AL foo fifs
Using (1.31) in (4.3.82), we obtain
ZA41 (4n+1)q f2f4f5 fio (mod 8). (4.3.83)

fho

Employing (1.52) into (4.3.83), we arrive at

00 3 73 (2 472
222,1(411-1- 1)q"=2 f4f fofz + 2q2 45](13%0 +4q 4 J;w (mod 8).  (4.3.84)
=0 £ fio 1515 Fo b

Extracting the terms involving g2"*! from (4.3.84), dividing by ¢ and then replacing g?
by g, we obtain

4
ZAM (8n+5)q fo 5 (mod 8). (4.3.85)
1
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Using (1.31) in (4.3.85), we get

o

Ay, (8n+5)" = 4f,fis (mod 8). (4.3.86)
n=0

Congruence (4.3.78) follows by extracting the terms involving g?"*! from (4.3.86).
Collecting the terms involving g?" from (4.3.86) and replacing g> by g, we get
(4.3.79). O

Theorem 4.3.11. Foralln >0 and a > 0,

Ay, (1652072504 i)+ w =0 (mod 2%, (4.3.87)
where i=1, 3.
Ay, (16(5n+i)+5)=0 (mod 2°), (4.3.88)
where i=1, 3.
A, ,(80(5n+)+37)=0 (mod 2%, (4.3.89)
where j=3, 4.
Proof. Employing (1.34) into (4.3.79), we arrive at
S 5 n_ 2 4 3
;A4'1(16n+5)q = 4fsfso(ala’) ~4* ) (mod 23). (4.3.90)

Congruence (4.3.88) follows by extracting the terms involving g>"** from both sides of
(4.3.90).

Extracting the terms involving g°"*2 from (4.3.90), dividing by g2 and then replac-
ing g° by g, we obtain

Y Ay1(80n+37)q" = 4fi fip (mod 2°)

n=0
2

=4f10f25 (a—q—%) (mod 23). (4.3.91)
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Congruence (4.3.89) follows by extracting the terms involving g>"*/ from both sides of

(4.3.91).

Extracting the terms involving g°"*! from (4.3.91), dividing by g and then replacing

g° by g, we obtain

Y A, 1(400n+117)g" =4ff5  (mod 2°).
n=0

In view of congruences (4.3.79) and (4.3.92), we obtain
Zi,l(4oon +117)9" = 22,1(1671 +5) (mod 23).

Utilizing (4.3.93) and by mathematical induction on «a, we get

14-259t1 41

22’1(16-25“+1n+ .

Using (4.3.88) in (4.3.94), we get (4.3.87).

Theorem 4.3.12. For any prime p > 5 with (‘T}O) =-1,a>1andn >0,

ZA41(16 p*n+ a p ) "=4f,fs; (mod 2%).

Proof. Define
) h(mq"=fofs (mod 2°)

n=0
Combining (4.3.79) and (4.3.96), we find that

Y Ai(16n+5)g" =4 h(n)q" (mod 2°).
n=0

Now, we consider the congruence equation

3k2+k+5 3m? +m 7p —~

2.
2 2 24

(mod p),

) =A,,(16n+5) (mod 2).

(4.3.92)

(4.3.93)

(4.3.94)

(4.3.95)

(4.3.96)

(4.3.97)

(4.3.98)
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which is equivalent to

(12k+2)?+10-(6m+1)>=0 (mod p).

where # <km< % and p is a prime such that (%) = —1. Since (‘T}O) =-1
for p > 5, the congruence relation (4.3.98) holds if and only if both k = m = P 6_1‘

Therefore, if we substitute (1.36) into (4.3.96) and then extracting the terms in which
2_ 24
the powers of g are congruent to 7 - % modulo p and then divide by q7'p7, we find

that

Zh(pn”' 24 )qpn = fapfsp

n=0
which implies that
Zh(p2n+ 75 )q” = ffs (4.3.99)
n=0
and for n > 0,
p’-1
h(p2n+pi+7- -1 ):0, (4.3.100)

where i is an integer and 1 <i < p — 1. By induction, we see that for n > 0 and a > 0,

p2a -1
h(p*®n+7- = h(n). (4.3.101)
24
Replacing n by p?%n+7 - pz;% in (4.3.97), we arrive at (4.3.95). O]

Theorem 4.3.13. For any prime p > 5 with (‘T}O) =-1,a>1andn >0,

Zil (16-p2“+2n +16-p>*+li4

wherei=1,2,..,p—1.

P2
Proof. Replacing n by p?n + pi + % in (4.3.101) and using (4.3.100), we find that for
n>0and a >0,

7 . 200+2 _ '7
h(pz‘”zn n p2a+1i + pT) =0. (4.3.102)

Comparing the coefficients of q" from the both sides of (4.3.97), we see that for n > 0,

Ay, (16n+5)=4h(n) (mod 2%). (4.3.103)
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The result follows from (4.3.102) and (4.3.103). ]

4.4 Some new congruences for Andrews’ singular over-
partition pairs

In this section, Mahadeva Naika and Shivashankar [61] have defined the Andrews’
singular overpatition pairs of n. Let Eij(n) denote the number of Andrews’ singular
overpatition pairs of n in which no part is divisible by 6 and only parts congruent to

+j modulo 6 may be overlined. Andrews’ singular overpatition pair 7 of n is a pair
of Andrews’ singular overpatitions (v, v,) such that the sum of all of the parts is #.

Foro>3and1<1i,j< Lg], the generating function for Ef](n) is

i . flaa*)f(@.a"7)

(4.4.1)
— (49)%
—6
4.4.1 Infinite family of congruence modulo 27 for C, ,(n)
Theorem 4.4.1. Forany a >0 andn >0,
=6 a+2 4a+2 -1 a+l =6
C1’2 4 n+ T =7 . C1’2(4n + 1) (mOd 27) (442)
Proof. Settingi =1, j=2and 6 = 6 in (4.4.1), we see that
g = fla.9°)f (4 q%)
ch S(n (4.4.3)
(9%

By the definition of f(a,b) and the well-known Jacobi triple product identity, we get

ifiz(n)q” = f2f33f6. (4.4.4)
n=0 fl

Substituting (1.43) into (4.4.4), we have

2 2
) Tt = ot 5 2L, (649
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Equating odd parts of the above equation, we obtain
00 27272
ZE?J(% +1)g" = 35;;6][6. (4.4.6)
~0 1

Employing (1.43) into (4.4.6), we arrive at

12 4 r4
ch (2n+1)g f4 fo +184 fifs +274 2f4f6f12.

(4.4.7)
f ey e fa?
Extracting the terms involving g2" from both sides of (4.4.7), we have
12 4r4r4
ch ,(4n+1)q f216f34 27qf2 f§2f6 , (4.4.8)
fi°fs fi
which implies,
&0 —6 f12f8
Y Tlodn+1)g" =322 (mod 27). (4.4.9)
o fs
Invoking (1.31) in (4.4.9), we see that
& 2,372
fo,z(z;n +1)g" = JIh Sy (mod 27). (4.4.10)
n=0 f6

Substituting (1.49) into (4.4.10), we obtain

0o 3,22
66 dn+1)a" =3 fz f12 +3 2f2f4 f6f24 318 d 27). (4411
L Craldn D" =35 pspd # 30° g 6 G T (mod 27).(adt)

Extracting the terms involving g*"*! from (4.4.11), dividing by ¢ and replacing g by g,

we get
ZET,2(8n+ 5)" = 21f1 2 fe (mod 27). (4.4.12)
n=0 f
Employing (1.45) into (4.4.12), the equation reduces to
fs i
chz 8n+5)q" = 21222426 2 fils +18¢22212  (mod 27), (4.4.13)

=0 f12 f4



Chapter 4. ANDREWS’ SINGULAR OVERPARTITIONS

102

which implies that

i 1}2 5 (mod 27).

ZCIZ 16n+5)q =21
n=0

In view of congruences (4.4.10) and (4.4.14), we see that
—6 —6
Cio(l6n+5)=7-Cj,(4n+1) (mod 27).

Using the above relation and by induction on «, we arrive at (4.4.2).

4.4.2 Congruences modulo 4 for 6125(11)

Theorem 4.4.2. Forallao > 0 andn > 0,

if}iwn)q" _ fufsle 1;31(6 (mod 4),
n=0

f2f
ZCI 5(3n+1)g f}fj (mod 4),

ch (3n+2)g f}f;flz (mod 4),

6

E1,5(3a+1n +30 - 1) =341 -61,25(11) (mod 4).

Proof. Settingi=1,j=>5and 0 =12 in (4.4.1), we find that

T2 ()" f@.a"f (g q")
Z sl (4:9)%

RS
12 faf

Invoking (1.31) in (4.4.20), we see that

26125 "= fifsa (mod 4).

(4.4.14)

(4.4.15)

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)

(4.4.21)
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Substituting (1.77) into (4.4.21), we obtain

00 2 r4 3
ok nEf3f9f18_ f3f18_ 2 f310 136 mod 4). (4.4.22)
L Crst = e g ™Y

3n+1

Extracting the terms involving g", g and g%"*? from the above equation, we obtain

respectively (4.4.16), (4.4.17) and (4.4.18).
In view of congruences (4.4.18) and (4.4.21), we deduce that

C 5(3n+2)=3-C,5(n) (mod 4). (4.4.23)

Using the above relation and by induction on «a, we arrive at (4.4.19). ]

Theorem 4.4.3. For all integers &« > 0 and n > 0,

C5(12n+6)=0 (mod 4), (4.4.24)
51?5(4811 +27)=0 (mod 4), (4.4.25)
C15(96n+87)=0 (mod 4), (4.4.26)
61,25(3 49304+ 7.4%2_1)=0 (mod 4). (4.4.27)
Proof. Substituting (1.49) in (4.4.16), we find that
0 2r4 40272
=12 fis 1 J6 foa
C15(3n)g" = 8712 _, (mod 4). (4.4.28)
; fifh BRfG
Collecting the terms involving q" from (4.4.28) and replacing g2 by g, we get
0 2 r4
—12 fif
zcm(m)q" = f42f62 (mod 4). (4.4.29)
n=0 2J12

Using (1.31) in (4.4.29), we have
261?5(611)6]” = f? (mod 4). (4.4.30)
n=0

Extracting the terms involving g>"*! from (4.4.30), we obtain (4.4.24).
Extracting the terms involving g>"*! from (4.4.28), dividing by g and replacing g°
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by g, we arrive at
4r2
ch 61+ 3)q" = 37 22f 32f 12 (mod 4). (4.431)
f LIS
Invoking (1.31) in (4.4.31), we get
ch s(61+3)g" = f3ff6 (mod 4). (4.4.32)
Employing (1.47) into (4.4.32), we have
0o 4r3r2
ZE}%(61¢+ 3)g" = 3 45f6 2, f4f6 fafos (mod 4). (4.4.33)
=0 f2 f8f24 f2 f12
Collecting the even terms of the above equation, we find that
4
ch 5(12n+3)q" = fz f3 f6 (mod 4). (4.4.34)
f 1 fafi2
Using (1.31) in (4.4.34), we see that
f22f3 fé
Cis5(12n+3)q" = (mod 4). (4.4.35)
Z R 7 7
Substituting (1.42) into (4.4.35), we obtain
2 27272
ch s(1211+ 3)g _ 3/ f6 f2 f62f12 (mod 4), (4.4.36)
fis fi
which implies,
ch 5(24n+3)q 2 f3 (mod 4). (4.4.37)
fe
Invoking (1.31) in (4.4.37), we have
ch 5(24n+3)g" =37 (mod 4). (4.4.38)

Extracting the terms involving g2"*! from the above equation, we get (4.4.25).
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Extracting the terms involving g>"*! from (4.4.36), dividing by g and replacing g°
by g, we obtain

ch 5(24n +15)g" = 321 Vi (mod 4). (4.4.39)
n=0 f
Using (1.31) in (4.4.39), we see that
00 272
Y Crs(24n+15)" = 353 j;” (mod 4). (4.4.40)
n=0 1
Employing (1.47) into (4.4.40), we have
00 4
ZE},@(MM 15)9" = 3 sJifshis | 24 ffe fubos (mod 4), (4.4.41)
"o f5 fsfoa £ ho
which implies,
4
ch 5 5)" = _3h LRI (mod 4). (4.4.42)
f1 fahi2
Invoking (1.31) in (4.4.42), we get
f22f3 fe
C = mod 4). (4.4.43)
Z LS =3 |
In view of congruences (4.4.35) and (4.4.43), we obtain
—12 —12
C15(48n+15)=C; 5(12n+3) (mod 4). (4.4.44)

Using the above relation and by induction on a, we arrive at
C15(3-49 20+ 4.49°2_1)=C,5(12n+3) (mod 4). (4.4.45)

Using the congruence (4.4.25) in (4.4.45), we obtain (4.4.27).
Extracting the terms involving g>"*! from (4.4.41), dividing by g and replacing g°
by g, we have

if}i(48n+39)q”s f2f34f4f12 (mod 4). (4.4.46)
n=0 f f6



Chapter 4. ANDREWS’ SINGULAR OVERPARTITIONS 106

Invoking (1.31) in (4.4.46), we get
Y C15(48n+39)4" = 2fofsfi2 (mod 4). (4.4.47)
n=0

Congruence (4.4.26) follows by extracting the terms involving g*"*! from the above

equation. U

Theorem 4.4.4. Forallaa >0 andn >0,

C)5(24n+13)=0 (mod 4), (4.4.48)
C15(24n+3)=C 5(12n+1) (mod 4), (4.4.49)
C)5(24n+15)=C,5(12n+7) (mod 4). (4.4.50)

Proof. Employing (1.48) into (4.4.17), we have

q" = f4 f12 f63f8f12f24
ch s(3n+1)q" = fz i +2q 7 (mod 4). (4.4.51)

Extracting the terms involving g" from (4.4.51) and replacing g° by g, we obtain

. Ffs
ZC156 n+1)q" = S (mod 4). (4.4.52)

Substituting (1.50) into (4.4.52), we arrive at

2 4 r2
ZClS (6n+1)g _3fs fiz +3q fifs fai (mod 4). (4.4.53)
22 TR

Extracting the terms involving g2" from (4.4.53) and replacing g° by g, we deduce that

ch S(12n+1)q ifo (mod 4). (4.4.54)
2 f12

Invoking (1.31) in (4.4.54), we get

261?5(12” +1)g" =3f7 (mod 4). (4.4.55)
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Extracting the terms involving g*"*! from (4.4.55), we obtain (4.4.48) and combining
(4.4.38) and (4.4.55), we get (4.4.49).
From the equation (4.4.53), which implies that

4 r2
ZC1512n +7)q fzf”;” (mod 4). (4.4.56)
6

Using (1.31) in (4.4.56), we have

00 272
Zfii(lzn +7)q" = 3% (mod 4). (4.4.57)
n=0 fl
Combining (4.4.40) and (4.4.57), we arrive at (4.4.50). ]
Theorem 4.4.5. Foreachn >0 and a > 0,
=12 a+l a+l _ 12
C15(60(5n+i)+24)=0 (mod 4), (4.4.59)
wherei =1, 2, 3, 4.
Proof. From the equation (4.4.30), we have
ch 5(12n)g" = f#  (mod 4). (4.4.60)

Employing (1. 34) in the above equation and then extracting the terms containing g°"*?,

dividing by g2 and replacing g° by g, we get

ch 5(60n+24)¢" = 2 (mod 4), (4.4.61)
n=0
which yields
ch 5(300n+24)g" = f2 = ch 5(12n)g"  (mod 4). (4.4.62)

By induction on a, we obtain (4.4.58).
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5n+i

The congruence (4.4.59) follows by extracting the terms involving g for i =

1,2, 3,4 from both sides of (4.4.61). O

Theorem 4.4.6. Let p be a prime > 5, (%) = —1. Then for all integers « > 1, and n > 0,
Zc (192p%%n+39p2 —1)g" = 2f, f (mod 4). (4.4.63)

Proof. Extracting the terms involving g% from (4.4.47) and replacing q° by q we have

ZE}?S(%n 139)q" = 2f, fofs (mod 4). (4.4.64)
n=0

Substituting (1.49) into (4.4.64), we arrive at

%) 4
C12(961+39)g" = 2 Lffls _, fils fo d 4). 4.4.65
% 1,5( n+39)q f4 f24 2q f2f82f1z (mod 4) ( )

Extracting the even terms in the above equation, we obtain

2
ch 5(192n+39)g" = f1f4 f6 (mod 4). (4.4.66)
n=0 21
Using (1.31) in (4.4.66), we see that
Y C5(192n+39)¢" = 2fify  (mod 4). (4.4.67)
n=0
Define -
) _fng"=fifs (4.4.68)
n=0
Combining (4.4.67) and (4.4.68), we find that
ch 5(192n+39)q" =2 Zf(n)q” (mod 4). (4.4.69)
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: —(p-1) p-1 :
For a prime, p > 5or 5 <km< 5 consider

3k2+k+4.3m2+m _5p*-5
2 2 24

(mod p), (4.4.70)

therefore,
(6k+1)>+4-(6m+1)>=0 (mod p),

Since (%) = —1 the congruence relation (4.4.70) holds if and only if both k = m = =P 6_1

Therefore, if we substitute Lemma (1.36) into (4.4.68) and then extract the terms in

2_
which the powers of g are congruent to % modulo p and then divide by g~ 27, we

find that )
c 5p -3 n
) S (p SRR )qp = forfap
n=0

5p2-5

which implies that

= 5p2-5
) S (p2n+ = )q” = fifa (44.71)
n=0
and for n > 0, ,
f (pzn +pi + 5p24_ 5) =0, (4.4.72)

where i is an integer and 1 <i < p — 1. By induction, we see that for n > 0 and a > 0,

5p%® -5
Flpen+ 222 = f(n). (4.4.73)
24
Replacing 1 by p?%n + SPZ_F’ in (4.4.69), we arrive at (4.4.63). H

Theorem 4.4.7. Let p be a prime > 5, (%) = —1. Then for all integers « > 0, and n > 0,
C15(192p2 2 +192p%4*1j 4 40p?**2—1) =0 (mod 4), (4.4.74)

where i is an integerand 1 <i <p—1.

Proof. Replacing n by p?n + pi + 5172%5 in (4.4.73) and using (4.4.72), we find that for

n>0and a >0,
£(p2ee2 2asl; PP =5\
p n+p 1+ 1 = 0. (4.4.75)
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Comparing coefficients of q" from both sides of (4.4.69), we see that for n > 0,
C15(192n+39)=2f(n) (mod 4). (4.4.76)

The required result follows from (4.4.75) and (4.4.76). O]

—9
4.4.3 Infinite families of congruences modulo 4 for C; ;(n)

Theorem 4.4.8. Let p be a prime > 5, (‘Tf) = —1. Then for all integers a« > 1, and n > 0,

- =9 o 7pF -1\,
an,s(‘lpz n+pT)q =2fifs (mod 4). (4.4.77)
n=0

Proof. Setting i =3, ] =3 and 0 =9 in (4.4.1), we have

n_ f(q°.49%)f(q° q)
ZC” @0

After g-product manipulation, we see that

© 2 r4
=9 n f6 f9
C3’3(7’l)q = — . (4478)
;{ f12f32f128
Invoking (1.31) in (4.4.78), we have
x 2
ZC3’3(n)q” = % (mod 4). (4.4.79)
n=0 fl

Employing (1.47) into (4.4.79), we obtain

i69 n_ f44f6f122 42 f4f6 fafou

= mod 4). 4.4.80
L 3,3(1)q 5 fos q i (mod 4) ( )

Extracting the odd terms of the above equation, we find that

ZC3 3(2n+1)q f2f34f4f12 (mod 4). (4.4.81)
fi'fe
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Using (1.31) in (4.4.81), we get

o

E§’3(2n +1)4" =2f,f1, (mod 4), (4.4.82)
n=0

which implies,
52,3(4;1 +3)=0 (mod 4). (4.4.83)

Extracting the even terms from (4.4.82), we have

Y Caa(4n+1)g"=2fifs (mod 4). (4.4.84)
n=0
Define -
Zg(”)qn = fife (4.4.85)
n=0

Combining (4.4.84) and (4.4.85), we find that

262’3(411 +1)g" =2 Zg(n)q” (mod 4). (4.4.86)
n=0 n=0

. —(p-1 -1 .
For a prime, p > 5 or (p2 ) <k m< pT, consider

3k? +k 3m?>+m _ 7p*-7
5 +6- 5 iy (mod p), (4.4.87)

therefore,
(6k+1)>+6-(6m+1)>=0 (mod p),

Since (‘Tf) = —1 the congruence relation (4.4.87) holds if and only if both k = m = %.

Therefore, if we substitute Lemma (1.36) into (4.4.85) and then extract the terms in
2 7027
which the powers of g are congruent to % modulo p and then divide by ¢ i , we

find that
n:og p 24

)qpn = fp2f6p2'

which implies that

(o] 2
Zg(pzn + 22 > 7)q” =fifs (4.4.88)

n=0
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and for n > 0,

7p% -7
g(p2n+pi+ P ):0, (4.4.89)

where i is an integer and 1 <i < p — 1. By induction, we see that for n > 0 and a > 0,

7p** -7
glp*n+ P72 g(n). (4.4.90)
24
Replacing 1 by p?%n + 7p;1_7 in (4.4.86), we arrive at (4.4.77). ]

Theorem 4.4.9. Let p be a prime > 5, (=2 ) = —1. Then for all integers & > 0, and n > 0,
p P ) 8

200+2 1
—) =0 (mod 4), (4.4.91)

_ 7
Cgﬁ (4p2a+2n+4p2a+1i+ p -

where i is an integer and 1 <i <p—1.

Proof. Replacing n by p?n + pi + 7p224_7 in (4.4.90) and using (4.4.89), we find that for

n>0and a >0,

a+2
g(p2a+2n " pZ““i + %) =0. (4.4.92)

Comparing coefficients of q" from both sides of (4.4.86), we see that for n > 0,
Cys(4n+1)=2g(n) (mod 4). (4.4.93)
The required result follows from (4.4.92) and (4.4.93). O]

—15
4.4.4 Infinite families of congruences modulo 4 for C; 5(n)

Theorem 4.4.10. For eachn >0 and o > 0,

Css(16n+9)=0 (mod 4), (4.4.94)
E\}3,55(20” +3)= E;?S(Sn +1) (mod 4), (4.4.95)
Eé?s(lon +3) = al-f5(4n +1) (mod 4), (4.4.96)
— 4a+2 -1 .
Css(2-4% n+ =Css(2n+1) (mod 4), (4.4.97)

3
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— ] 2. 55a+6 -1

Céi (4 - 5%976(50 4+ 4) + 3 ) =0 (mod 4), (4.4.98)
wherei=1, 2, 3, 4.

— ) 4. 52a+4 -1

Cs (2 520+ (5 4 ) 4 f) =0 (mod 4), (4.4.99)

where j=3, 4.

Proof. Putting i =5, j =5 and 6 = 15 in (4.4.1), we find that
5 ,10\2
—15 f(g°,9"")
C =,
Z sl (@92

After g-product manipulation, we see that

00 2 r4
fos(n)q” = ];105152 . (4.4.100)
=0 f 15 f3o

Invoking (1.31) in (4.4.100), we have

2
ZE;SS n z% (mod 4). (4.4.101)
1

Substituting (1.52) into (4.4.101), we get

00615 ”z(f8f2° f2fofao) d 4), 4.4.102
) Costmd"=( il vats e ) (mod 4 (64102

which implies that

Y Cix(2n+1)q" =2/ £ (mod 4) (4.4.103)

Employing (1.58) into (4.4.103), we obtain

(mod 4). (4.4.104)

ZCSS 2n+1 q —2f2f1 +2qf2f10f20
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Extracting the terms involving g2" from (4.4.104) and replacing g2 by g, we arrive at

Y Cos(dn+1)g"=2f2f; (mod 4) (4.4.105)
n=0

Substituting (1.59) into (4.4.105), the equation reduces to

o0 24 (2
ZE;SS(M +1)g" = PLERLYITIN 20f,f3  (mod 4), (4.4.106)
n=0 20
which implies that
Zalsi)(S” +5)9" =2fif; (mod 4). (4.4.107)
n=0

Combining (4.4.103) and (4.4.107), we get
—15 —15
C5’5(8n + 5) = C5’5(2n + 1) (mOd 4) (44108)

Using the above relation and by induction on «, we arrive at (4.4.97).
Extracting the terms involving g*"*! from (4.4.104), dividing by g and replacing g°
by g, we obtain

00 272
ZEéf"S(an 1 3)g" = 2@ (mod 4). (4.4.109)
2

Using (1.31), the above equation reduces to

Y Cax(4n+3)q" =2£¢ (mod 4). (4.4.110)
n=0

Collecting the terms involving g>"** on both sides of (4.4.110), we find that
Css(4(5n+i)+3)q"=0 (mod 4), i=1,234 (4.4.111)
Extracting the terms involving g°" from (4.4.110), we obtain

ZE;QO” +3)q" =2f;* (mod 4). (4.4.112)
n=0

Employing (1.34) into (4.4.112) and extracting the terms involving g°"** in the resultant
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equation, we have
Zc5 5(100n+83)g" = 2£*  (mod 4). (4.4.113)
n=0
In the view of congruences (4.4.110) and (4.4.113), we obtain
—15 . =15
Cs5,5(100n+83)q" = C55(4n+3) (mod 4). (4.4.114)
Using the above relation and by induction on a, we have
. 2. 55a+6 -1 _
Cs (4 5 2 ) =Css(4n+3) (mod 4). (4.4.115)
Using congruence (4.4.111) in the above equation, we get (4.4.98).
Extracting the even terms of the equation (4.4.106), we obtain
) 2 2
ZEéf"S(Sn +1)q" = PUREL (mod 4). (4.4.116)
Invoking (1.31) in (4.4.116), we deduce
ZE;Z(Sn +1)g" =2f2 (mod 4). (4.4.117)

Congruence (4.4.94) follows by extracting the terms involving g*"*! from the above

equation.
Using (1.31) in (4.4.117) implies

ZCSS (8n+1)g" = 2f% (mod 4).

Combining (4.4.112) and (4.4.118), we obtain (4.4.95).
Substituting (1.34) into (4.4.103), we arrive at

ZC55 2n+1)q" —2f5f25( —q-

(4.4.118)

(4.4.119)
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Extracting the terms involving g>**/ on both sides of (4.4.119), we obtain
o —15
Zc5,5(2(5n+]’) +1)=0 (mod 4), j=3,4 (4.4.120)
n=0

Extracting the terms involving g>"*! from (4.4.119), dividing by g and replacing g° by

q, we obtain
— —15
Y Ts5(10n+3)g" =2f3f5  (mod 4).
n=0
From (4.4.105) and (4.4.121), we obtain (4.4.96).
Employing (1.34) into (4.4.121), we arrive at

ZE;Z(lOn +3)g"
n=0
_ 3(.3/.5 2,5 3 3‘15 ‘16 d

which implies,
Eé,ss (10(5n+k)+3)=0 (mod 4), k=2,4.

(4.4.121)

(4.4.122)

(4.4.123)

Extracting the terms involving g°"*3 from (4.4.122), dividing by ¢> and replacing g° by

q, we have

Y Csa(50n+33)g" =2£ £ (mod 4)
n=0

Combining (4.4.103) and (4.4.124), we get
—15 —15
Cs5;5(50n+33)=Cs55(2n+1) (mod 4).

Using the above relation and by induction on «a, we have

4.52a+4 1\ _5

Csa[2-5% 0+ . =Cs5(2n+1) (mod 4).

Using (4.4.120) in (4.4.126), we obtain (4.4.99).

(4.4.124)

(4.4.125)

(4.4.126)

]



Chapter 5

{-REGULAR CUBIC PARTITION PAIRS

5.1 Introduction

In chapter (1), we defined the ¢-regular cubic partition. Kim [40] has studied congru-
ence properties of b(n), which denotes overcubic partition pairs of n and generating

function is given by

RN G 1 | P o ot o PO
b B = : I N
; 0 (9:9)%,(9%:9%)% Fif2 (5.1.1)

Recently, Naika et al. [62] have established some new Ramanujan like congruences and
infinite families of congruences modulo powers of 2 for b(n). Motivated by the above
works, we study b;(n), the number of ¢- regular cubic partition pairs and the generating

function is given by

0o 6; 6)2 25; 20\2 f2f2
Zbg(”)qn:(q q ;o(q q )oo_ )20

- , (5.1.2)
— (@:9)3%a%59)% 2

5.2 Congruences for {- regular cubic partition pairs

In this section, we obtain some congruences and infinite families of congruences mod-

ulo 4, 8, 27 and 81 for by(n) for various values of £.

Reference [51] is based on this chapter

117
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5.2.1 Congruences modulo 4 for b,(n)

Theorem 5.2.1. Foreacha >0 andn > 1,

b,(18n+8)=0 (mod 4), (5.2.1)
by(18n+14)=0 (mod 4), (5.2.2)
. R2a+3 _
b, (2 32atdy %) =0 (mod 4). (5.2.3)
1 200+2 _ 2
b2(2p2“+1(pn +7)+ OPT) =0 (mod 4), (5.2.4)
andforn>0,1<j<p-1.
Proof. Setting € = 2 in (5.1.2), we have
o0 2
sz(n)q” =4 (5.2.5)
n=0 fl

> bafn)g” = 22 =
) bamq" =5 =) (mod 4)

where t,(n) is the number of ways to write 1 as a sum of two triangular numbers. But
tr(n) = %52(811 + 2), where s,(n) is the number of ways to write n as the sum of two

squares. This gives the following: if 8n + 2 = 2n;n,, where

ny = ]_[ i ny = ]_[ P’

p=1 (mod 4) p=3 (mod 4)

then
by(n) d1(8n+2)—d;(8n+3) (mod 4) ifalls areeven,
2\n) =
0 (mod 4) else,
where d;(n) is the number of divisors of # that are congruent to 1 modulo 4 and d3(n)
is the number of divisors of n that are congruent to 3 modulo 4.
This implies the congruences (5.2.1), (5.2.2), (5.2.3) and (5.2.4) follow since 3 sharply
divides 144n + 66, 144n + 114, 16 - 32¢*45 4 22 . 320%3 and p2¢+*! sharply divides
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16 'P2a+1(Pﬂ +]) + 10'P2a+2'
O
5.2.2 Infinite families of congruence modulo 27 for b;(n)
Theorem 5.2.2. For eachn > 1,
b3(9n+4) =2b5(3n+1)+27bs(n) (mod 81). (5.2.6)
Proof. Setting € = 3 in (5.1.2), we have
0 272
Zb3(n)q” - f32f62. (5.2.7)
n=0 1 f2
Substituting (1.64) into (5.2.7), we obtain
G
n=0
fo £
= 96][168 (a(g®)> +29a(4®)b(q°) + 4°b(q°)* + 64%a(4%) + 64°b(q°) + 9¢*).  (5.2.8)
3J6

Extracting the terms involving g3"*! from (5.2.8), dividing g and replacing ¢> by g, we

have

_Bf

;bs(fm +1)g" = f16f26 (2a(g)b(q) +99).

Using (1.61) in (5.2.9), we arrive at

s

;b3(3n+ 1)g" = Firs (2¢(q) + 13q).

Employing (1.65) into (5.2.10), we get

0 272
Zb3(3n+ 1)q" = 21316

22
n=0 fl fZ

+27q

(5.2.9)

(5.2.10)

(5.2.11)
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Invoking (1.31) in (5.2.11), we obtain

0 22 272
) by(Bn+1)q" = 2f32f62 - z7qf92f1§ (mod 81). (5.2.12)
n=0 1 f2 3 f6
From (5.2.7) it follows that
Zb3(3n +1)g" =2 Zb3(n)q” +274 Zb3(n)q3” (mod 81). (5.2.13)
n=0 n=0 n=0

Extracting the terms involving ¢3"*! from (5.2.13), dividing g and replacing ¢° by g, we
get (5.2.6). O

Corollary 5.2.1. Foreacha >0 andn > 1,

3a+1 -1

by|39 n+ ) =2%*1ps(n) (mod 27). (5.2.14)

Proof. Equation (5.2.13) implies (5.2.14). ]

5.2.3 Congruences modulo 8 for bs(n)

Theorem 5.2.3. Foreacha >0 andn > 1,

b5(8n+5)=0 (mod 8), (5.2.15)
bs(16n+11)=0 (mod 8), (5.2.16)
bs(22**®n+3-220"4-1)=0 (mod 8). (5.2.17)
Proof. Setting £ =5 in (5.1.2), we have
N £ fiy
bs(n)q" = . (5.2.18)
Lo =g

Employing (1.52) into (5.2.18),we get

(5.2.19)

$ byt S o SoR o SEFE
n=0 £ fio £y AU
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which implies that

0 3,3
Zb5(2n +1)q" = 2%7](10. (5.2.20)
n=0 .ﬂ

Invoking (1.31) in (5.2.20), we obtain

0 3
Zb5(2n +1)q" = 2 J1s o (mod 16). (5.2.21)
n=0 fé

Substituting (1.58) into (5.2.21), we arrive at

00 4
Zb (2n+1)q" =4 2f4f}0f20 +2f2f2 +12 3f‘*flof‘m+14qufl3()f2° (mod 16).

=0 2 f§ fa
(5.2.22)
Extracting the terms involving g2"*! from (5.2.22), dividing by ¢ and then replacing g2
by g, we have
. .ﬁfj% féO fifgafio
Zb5(4n +3)9" = 129727 (mod 16). (5.2.23)
n=0 f fé fé
Using (1.31) in (5.2.23), we have
0o 3
Zb5(4n+ 3)q" = 12922220 5 /2o 1140155 S0 (mod 16). (5.2.24)
n=0 fi fé

Substituting (1.52) and (1.58) into (5.2.24), we find that

ib5(4n+3)q"5 fs fan 82](4][101(20Jr 3f4f1of4o 12q2f4f10f20

f24f4o ! 5 g £ f fa
+14f7 2 +4q 3f4f10f4°+2qf2f13°f2° (mod 16).  (5.2.25)
f8 fa

2n+1

Extracting the terms involving g from (5.2.25), dividing ¢ and replacing g by g, we

get

0 2 2 4722 3
Zb (8n+7)q" _12f4f1° 12 f2f5f2°+4 fofs T, o115 fro (mod 16).

=0 f1 fzo L f4 L 12f42 f2
(5.2.26)
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Invoking (1.31) in (5.2.26), we obtain

0 22 22 3
Zb5(8n+7)q”z 12f22f120+12qf5 fx0 +4qf5 S, o J1Ss o (mod 16), (5.2.27)

n=0 f12 fl2 fZ
which implies,
0 3
Zb5(8n +7)q" = 12f2f + 2 J1S5ho (mod 16), (5.2.28)
n=0 f2
Employing (1.58) into the second term of the above equation, we get
ZbS(Sn +7)q"
n=0
4 3
f2 fz f§ fa
(5.2.29)

Extracting the terms involving g>"*! from (5.2.29), dividing q and replacing g2 by g, we

get
00 4,2 3
Zb5(16n+ 15)g" = 129 ffs f2° 1401S5 0 (mod 16). (5.2.30)
=0 fPfi f2
Using the congruences (5.2.30) and (5.2.23), we can see that
b5(167’l + 15) = b5(41”l + 3) (mOd 16) (5231)
By mathematical induction on «, we obtain
bs(229 4 + 2294 _ 1) = bs(4n+3) (mod 16). (5.2.32)

Using (5.2.16) in (5.2.32) we get (5.2.17).
Extracting the terms involving g" from (5.2.22), replacing g° by g, we have

ib (4n+1)q" = fzfjflo 2f2f2  (mod 16). (5.2.33)
n=0



Chapter 5. {-REGULAR CUBIC PARTITION PAIRS 123

But
2ffE = f5 f2 (mod 4), (5.2.34)
1
which implies,
Zb (4n+1)q" = f2f5f10 +2 +f3 (mod 8). (5.2.35)
n=0 fl fl

Substituting (1.52) into (5.2.35), we find that

Zb (4n+1)g9"
n=0

fsflofzo 4 2f4f10f40 f82f20 4 f43f10f20 ) 2f46f120f420
f2f40 f2f8f20 " f2f40+ k f23 T 24 82f120

(mod 8).

(5.2.36)

Extracting the terms involving g?"*! from (5.2.36), dividing g and replacing g° by g, we

get
0o 3
;b5(8n+5)q” = f‘}{;ﬁ" 42 }{}f 19 (mod 8). (5.2.37)
Using (1.31) in (5.2.37), we get
0o 2 2
st(Sn +5)g" = i fsho 4 J2 fsho (mod 8). (5.2.38)
f— fi fi

Congruence (5.2.15) can be easily obtained from (5.2.38).
Extracting the terms involving g" from (5.2.25), replacing g° by g, we have

ib (8n+3)q" = fz’;fm +6f2f2 (mod 8),
n=0

which implies,

) 3 4 r2
Zb5(8n +3)q" = 4qf2f5f10 + 6f1 Js (mod 8), (5.2.39)

n=0 fl f12
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Substituting (1.52) into (5.2.39), we find that
) bs(8n+3)q"
n=0
2 3 6,2 2
f8f10f20 +4 2f4 f10f40 16 fs fzo +46[f4 flgfzo +6q2f44f13f420 (mod 8).
i fFfsfo LS > 2 fs fao
(5.2.40)

Extracting the terms involving g?"*! from (5.2.40), dividing q and replacing g2 by g, we

have

0 3
Zb5(16n+11)q” = f4f5 i 4 425500 (mod 8).

oy fif20 ;P

Using (1.31) in (5.2.41), we get

ib (16n+11)g _ Jafsho | fafshio (mod 8).
— h h

Congruence (5.2.16) follows from (5.2.42).

5.2.4 Congruences modulo 27 and 81 for by(n)

Theorem 5.2.4. Foreacha >0 andn > 1,

bo(27n + 25) =
b9 (30(+4n + 3(X+4 _ 2) =

(mod 81),

0
0 (mod 27).

Proof. Setting £ =9 in (5.1.2), we have
o 2f2

bo(n)q" = 23

L= g

Substituting (1.64) into (5.2.45), we find that

(5.2.41)

(5.2.42)

(5.2.43)
(5.2.44)

(5.2.45)

) bo(n)q" = ks flg( a(q)’ +2qa(q°)b(q”) + 4°b(4°)” + 647a(q”) + 6q°D(q°) + 94*).

n=0 f3f6

(5.2.46)
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Extracting the terms involving ¢3! from (5.2.46), dividing ¢ and replacing ¢° by

q, we have
0 f8 8
) be(3n+1)q" = 25 (2a(q)b(q) + 99)
n=0 fi 2

ib9(3n +1)q" f3z 62 (2¢c(g) + 13q)
n=0 fijé

Employing (1.65) into (5.2.48), we get

= MR
bo(3n+1 27 )
)_bo(om e ! =25 274

Using (1.31) in (5.2.49), we have

N Nivis
) bo(3n+1)q" = 22 -+ 27qf o ffE (mod 243).
n=0

1 /)2
Employing (1.63) and (1.66) into (5.2.50), we can see that

Zbg(sm 1)q"

n=0

=2f'f Zh n)q +2711f3f6f9f18(

which implies that

ibg(% +7)q" = 2f £ ih(Sn +2)q" = 27f>f5 fsfs (mod 243).
n=0 n=0

Substituting (1.67) into (5.2.52), we obtain

[ 4 r4
Zb9(9n+7)q”536f3f6 +1624 S5 s

—27F2F mod 243).
- fﬁff fifé fijij%f% ( )

It follows from (1.31), we have

—q-2q°x(¢°)] (mod 243),

(5.2.47)

(5.2.48)

(5.2.49)

(5.2.50)

(5.2.51)

(5.2.52)

(5.2.53)
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575 f34f64
1/)2
In view of (5.2.54), we can express (5.2.53) as
0 44 8 8
Zb9(9n +7)q"=9 34f64 + 162qf38f68 (mod 243)
n=0 fifﬁ fifﬁ
44
= 9](34f64 (mod 81). (5.2.55)
fi'h
Invoking (1.31) in (5.2.55), we get
Y bo(9n+7)q" = 9fsfsff;  (mod 81). (5.2.56)
n=0
Employing (1.63) into (5.2.56), we obtain
- 55 9 7 q
by(In+7)q" =9 (-5 +30 —-15
; 9 q f3fef5 fi x(%)" x(q3)? x(¢3)
+ 30x(q3)q6 + 120x(q3)2q7 - 80x(q3)4q9
1
3\5 10

Extracting the terms involving g3"*? from (5.2.57) to obtain the congruence (5.2.43).
From (5.2.50) and (5.2.55), we obtain

) by(9n+7)4" =18 ) by(3n+1)q" (mod 27). (5.2.58)
n=0 n=0

Equating the coefficients of g on both sides of the above equation, we get
bg(9n+7)=18by(3n+1) (mod 27). (5.2.59)
For each a > 0, we obtain by induction that
bo(3%*2n+ 32 =2) = 18" be(3n+1) (mod 27). (5.2.60)

Using (5.2.43) in (5.2.60), we obtain (5.2.44). ]



Chapter 6

(¢, m)-REGULAR BIPARTITION
TRIPLES

6.1 Introduction

In introductory chapter, we defined the (¢, m)-regular bipartition functions and denoted
by By ,(n). Recently Dou [23] has discovered an infinite family of congruences mod-
ulo 11 for Bj 11(n) and she gave several conjectures on B ;(1). Xia and Yao [76] have
confirmed three conjectures on Bj (1) and obtained several infinite families of con-
gruences modulo 3 and 5 for B; ;(n) and Bs s(1). In addition, also proved many infinite
families of congruences modulo 7 for B; 7(n). Motivated by the above works, we study
the function BTy ,,(n), the number of (¢, m)-regular bipartition triples of a positive in-

teger n. The generating function for BTy ,,,(n) is given by

) 373
ZBTg,m(n)q” _Je ng (6.1.1)
n=0 fl

6.2 On (¢, m)-regular bipartition triples

In this section, we establish some congruences and infinite families of congruences for

BT ,,,(n) modulo 3, 9 and 27 for various values of £ and m.

Reference [53] is based on this chapter
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6.2.1 Congruences modulo 3 for BT, ;(n)
Theorem 6.2.1. For eachn >0 and a > 0,
BT2'3(3T[ + 1) =0 (mod 3), (621)
BT2'3(31’1 + 2) =0 (mod 3), (622)
11-320+2_3
BT, 3 (32“+3n + T) =0 (mod 3). (6.2.3)
Proof. Setting (€, m) =(2,3) in (6.1.1), we have
o0 33
ZBTm(n)q” _f ];3 . (6.2.4)
n=0 fl
Using (1.31) in (6.2.4), we get
ZBTM(n)q" = fife (mod 3). (6.2.5)
n=0
Congruences (6.2.1) and (6.2.2) easily follow from (6.2.5).
From (6.2.5) yields
ZBT2,3(3n)q” =fifr (mod 3). (6.2.6)
n=0
Employing (1.74) in (6.2.6), we find that
. fofs' fihis
) BT5(3n)q" = 25 +2qfofis+ 2915 (mod 3), (6.2.7)
n=0 f3f18 f6f9
which yields
) BTy5(9n+3)q" =2fsfs (mod 3). (6.2.8)
n=0
By (6.2.8) and (6.2.5), we obtain
BT2’3(97’Z + 3) = 2BT2,3(1/1) (mOd 3) (629)
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Using (6.2.9) and by mathematical induction
a+l 3-97*1 -3 a+l
BT2’3 9 n+ T =2 BT2’3(TI) (mod 3) (6210)
Congruence (6.2.3) follows from (6.2.10) and (6.2.1). ]
6.2.2 Congruences modulo 3 for BT, ¢(n)
Theorem 6.2.2. For each nonnegative integer n and a > 0,
BT,9(3n+1)=0 (mod 3), (6.2.11)
BT2,9(31/1 + 2) =0 (mod 3), (6212)
BT,9(27n+15)=0 (mod 3), (6.2.13)
BT,9(27n+24)=0 (mod 3), (6.2.14)
7. 32a+4 -3
BT, (32‘”511 + T) =0 (mod 3) (6.2.15)
Proof. Setting (€, m) =(2,9) in (6.1.1), we have
) 33
ZBTz,g(n) w2 ];9 (6.2.16)
n=0 fl
By (1.31) in (6.2.16), we get
ZBTZ’g(n)q” = fé—fz“* (mod 3). (6.2.17)
n=0 f3
From the above equation we obtain the congruences (6.2.11) and (6.2.12).
Equation (6.2.17) can be written as
ZBTz,g(E‘m)q” = fZ—JZ% (mod 3). (6.2.18)
n=0 fl
Substituting (1.72) in (6.2.18), we find that
0 5r6 4r3 373
ZBT2,9(3n)q” _ Ity 2qf6 fo | 2fs ];18 (mod 3), (6.2.19)
n=0
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which implies,
ZBT29 (91+ 6)q f2 f (mod 3). (6.2.20)
£
Using (1.31) in (6.2.20), we arrive at
ZBT29 9n+6)q" = f6f18 (mod 3). (6.2.21)
n=0 3
Congruences (6.2.13) and (6.2.14) follow from (6.2.21).
From (6.2.21) yields
ZBTw(zm +6)q" = fz—f (mod 3). (6.2.22)
n=0 fl
Using (6.2.22) and (6.2.18), we get
BT2,9(27Vl + 6) = BT2’9(37’Z) (mod 3) (6223)
Using (6.2.23) and by mathematical induction
27-9%-3
BTZ’Q 27a+1n + T = BT2’9(3TZ) (mOd 3) (6224)
From (6.2.24) and (6.2.13), we find that (6.2.15). ]
6.2.3 Infinite family of congruences modulo 27 for BT; 3(n)
Theorem 6.2.3. For each n and a > 0,
BT3’3(31/1 + 2) =0 (mod 27), (6225)
537+ 1
BT;3 (3“+2n + #) =0 (mod 27). (6.2.26)
Proof. Setting (¢, m) = (3,3) in (6.1.1), we have
6
(6.2.27)

ZBT33 = E
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Invoking (1.31) in (6.2.27), we obtain

00 21 3\7
ZBT&:),(TI)qn = ff'_l— = (]}3) (mod 27) (6228)
n=0 3 3
Employing (1.75) in (6.2.28), we find that
0 21
) BT3s(m)q" = 39(:7 (1+64C+q°C° +99*C* +124°C° +947C
n=0 3

+-26q9C94-12q10C10+-23q12C12+-9q13C13+-12q15C15
+9g10¢10 1+ 25018018 4+ 6419010 + 22471 C%)  (mod 27). (6.2.29)

Congruence (6.2.25) follows from the above equation.

3n+1

Extracting the terms containing g°"", dividing throughout by g and then replacing

> by g from (6.2.29), we get

) BT35(3n+1)q"
n=0
21
= f3—3(617_6 + 9q17_3 + 9q2 + 12q3173 + 9q4176 + 9q5179 + 6q61712) (mod 27),
1
(6.2.30)
which implies,
iBT n _ f321 -1 2\6
53(3n+1)q" = 2= (617 +447°)°)  (mod 27). (6.2.31)
n=0 fi
Using (1.76) in (6.2.31), we arrive at
00 £ 122
ZBT3,3(3n+ 1)g" = =+ 6(%) (mod 27), (6.2.32)
n=0 fi 3
which is equivalent to
1) 21
BT33(3n+1)q" = 6=+ (mod 27). (6.2.33)

3
n=0 j%
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From (6.2.33) and (6.2.28), we get
BT373(31’1 + 1) = 6BT3’3(H) (mod 27) (6234)
Using (6.2.34) and by mathematical induction
3a+1 -1
BT3,3(3“+1n + ) = 6""1BT;35(n) (mod 27). (6.2.35)
Congruence (6.2.26) follows from (6.2.35) and (6.2.25). ]
6.2.4 Congruences modulo 9 for BT; 5(n)
Theorem 6.2.4. For each nonnegative integer n and a > 0,
BT;5(5n+2)=0 (mod 9), (6.2.36)
BT;5(5n+4)=0 (mod 9), (6.2.37)
11-54t1 -3
BT (5“*211 t——p—|=0 (mod9). (6.2.38)
Proof. Setting (¢,m) = (3,5) in (6.1.1), we have
o0 373 3,373
ZBT3 5(n)q" = Ll _Iih ks : (6.2.39)
’ f6 f9
n=0 1 1
Using (1.31) in (6.2.39), we obtain
ZBT&;,(n)q” = f2f2 (mod 9). (6.2.40)
n=0
Substituting (1.34) in (6.2.40), we find that
Ny n_ 3¢3(.3 2 5,697 8q°
) BTys(m)q" = f5f35(a®+6a’q+5q° + =+ —5| (mod 9). (6.2.41)
a

3
a
n=0

Congruences (6.2.36) and (6.2.37) follow from (6.2.41).
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From (6.2.41) yields
ZBT3,5(5n +3)g" =5£2f2 (mod 9). (6.2.42)
n=0
By (6.2.42) and (6.2.40), we get
BT3’5(57/1 + 3) = 5BT3’5(7’1) (mod 9) (6243)
From (6.2.43) and by mathematical induction
3.5%%1 -3
BT3’5 5a+17”l + T = 5a+1BT3’5(Tl) (mOd 9) (6244)
Using (6.2.44) and (6.2.36) we arrive at (6.2.38). ]
6.2.5 Congruences modulo 3 for BT;,(n)
Theorem 6.2.5. For each n and a > 0,
BT;7(3n+1)=0 (mod 3), (6.2.45)
BT;7;(3n+2)=0 (mod 3), (6.2.46)
BT;7(12n+9)=0 (mod 3), (6.2.47)
BT;;(3-4"2n+10-4*"1~1)=0 (mod 3) (6.2.48)
Proof. Setting (€, m) =(3,7) in (6.1.1), we have
0 33
ZBTW(n)q” % (6.2.49)
n=0 fl
By (1.31) in (6.2.49), we find that
Y BT3;(n)q" = fifor  (mod 3). (6.2.50)
n=0

From (6.2.50) follow the congruences (6.2.45) and (6.2.46).
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Identity (6.2.50) yields
ZBT3,7(3n)q” =fifs (mod 3). (6.2.51)
n=0
Substituting (1.55) in (6.2.51) and extracting the odd terms
BT3]7(61/1 + 3)qn = 2f2f14 (mod 3) (6252)
n=0
Congruence (6.2.47) follows from the above equation.
From (6.2.52) yields
ZBT3,7(1211 +3)g" =2f,f, (mod 3). (6.2.53)
n=0
Using (6.2.53) and (6.2.51), we arrive at
BT;7(12n+3) = 2BT;7(3n) (mod 3). (6.2.54)
Form (6.2.54) and by mathematical induction
BTs;(12%'n+4%*1 —1) = 2**1BT; ;(3n) (mod 3). (6.2.55)
By (6.2.55) and congruence (6.2.47), we obtain (6.2.48). O]
6.2.6 Congruences modulo 9 and 27 for BT; ¢(n)
Theorem 6.2.6. For eachn > 0,
BT59(3n+2)=0 (mod 27), (6.2.56)
BT39(9n+4)=0 (mod 27), (6.2.57)
BT3,9(9n+7)=0 (mod 27), (6.2.58)
BT34(27n+19)=0 (mod 27), (6.2.59)
BT3’9(271/1 + 10) =0 (mod 9) (6260)
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Proof. Setting (€, m) =(3,9) in (6.1.1), we have

o) 3¢3
ZBT3,9(n)q" _fs)s (6.2.61)

Invoking (1.31) in (6.2.61), we obtain

0 21 3 3\7 £3
n fo _ () S
ZBT3,9(n)q =12 =172 (mod 27). (6.2.62)
n=0 f3 f3
Employing (1.75) in (6.2.62), we find that

00 24

) BTse(n)q" = 69C7 (1+64C+q°C°+99*C* +124°C° + 997

n=0 3

+26q9(:9+12q10C10+23q12C12+9q13C13+12q15C15
+9g15C16 +25¢918¢18 1 69'7C17 + 2241 C%)  (mod 27). (6.2.63)

Congruence (6.2.56) follows from the above equation.

Extracting the terms containing g%"+!

g2 by g from (6.2.63), we find that

, dividing throughout by g and then replacing

) BT3s(3n+1)q"
n=0
f24
- %(6’7_6 +9q17° +94° +124°7° + 94*1° + 9¢°° + 64°'?)  (mod 27),
1
(6.2.64)
which implies that

© f24
ZBT3,9(3n +1)q" = %(6(;7‘1 +4q1)°)  (mod 27), (6.2.65)
n=0 1

Using (1.76) in (6.2.65), we arrive at

o0 f24 122
ZBT3’9(311+ 1)g" = 3—6[6(%) ] (mod 27), (6.2.66)
n=0 fl 3



Chapter 6. (£, m)-REGULAR BIPARTITION TRIPLES 136

which is equivalent to

ZBT3,9(3n +1)g" = 6% (mod 27). (6.2.67)
n=0

By (1.31) in (6.2.67), we get
ZBT3,9(3n +1)q" =6 (mod 27). (6.2.68)
n=0

Congruences (6.2.57) and (6.2.58) easily follow from (6.2.68).
From (6.2.68) yields

ZBT3,9(9n+ 1)q" = 6f=6(f)* (mod 27). (6.2.69)
n=0
Substituting (1.75) in (6.2.69), we obtain

ZBT”(% +1)q" = £5(6C72+189C " +214°C + 18¢*C* +15¢°C*)  (mod 27).
n=0

(6.2.70)

Congruences (6.2.59) and (6.2.60) follow from (6.2.70). O
6.2.7 Congruences modulo 9 and 27 for BT, ¢(1n)

Theorem 6.2.7. For eachn and o > 0,

BTy9(3n+2)=0 (mod 27), (6.2.71)

BT9’9(97’1 + 7) =0 (mod 27), (6272)

BT9’9(9TZ + 4) =0 (mod 9), (6273)

BTy 9(36n+28)=0 (mod 9), (6.2.74)

BToo(9-4"2n+30-4°"1-2)=0 (mod 9). (6.2.75)

Proof. Setting (€, m) =(9,9) in (6.1.1), we have

c n _ f96
ZBT”(n)q =2 (6.2.76)
n=0 1
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By (1.31) in (6.2.76), we get
o0 6 21 [6(3\7
ZBT9,9(")4” b s = Js (f91 ) (mod 27). (6.2.77)
n=0 f3 f3

Employing (1.75) in (6.2.77), we arrive at

00 27
ZBTg,g(n)q" = f99C7 (1+6qC+q°C3 +9q*C* +124°C0 +9¢7C7
n=0 3

+ 26619C9 112410010 4 23q12C12 1 9g13¢13 4 126]15(:15
+9¢'0C1 1+ 25¢18¢18 1 6919017 + 22471 C%Y)  (mod 27). (6.2.78)
Congruence (6.2.71) follows from (6.2.78).

Extracting the terms containing g>"+!

, dividing throughout by g and then replacing
g° by g from (6.2.78), we deduce that

) BTye(3n+1)q"
n=0
27
= %(617_6 + 9q17_3 + 9q2 + 12q3173 + 9q4176 + 9q5179 + 6q61712) (mod 27),
1
(6.2.79)
which implies,
N n_ f327 -1 216
ZBT9,9(3n +1)g" = 2 (6(y7" +499%)°)  (mod 27). (6.2.80)
n=0 fl
Using (1.76) in (6.2.80), we obtain
00 f27 122
ZBT9'9(3T[ + 1)q” = /3 [6( 112) ] (mOd 27), (6281)
n=0 fl 3
which is equivalent to
ZBT9,9(3n +1)0" = 6£°f2=6(f3)F (mod 27). (6.2.82)
n=0

Substituting (1.75) in (6.2.82), we find that
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) BToo(3n+1)g" =ff;°(60° +18qC* +124°C 2 + 184%™
n=0
+15¢°C +6q°C* +18¢9'°C° +124'2C7
+ 18q13C8 + 15q15C10) (mod 27). (6.2.83)
Congruence (6.2.72) follows from (6.2.83).
From (6.2.82) can be written as
ZBT9,9(3n +1)q" = 6£8 (mod 9). (6.2.84)
n=0
Congruence (6.2.73) easily obtained from the above equation.
From (6.2.84) yields
ZBT”(% +1)g" = 6fF =622 (mod 9). (6.2.85)
= h
Employing (1.42) in (6.2.85) and extracting the odd terms
(o) f3
ZBT9,9(1811 +10)g" =65 (mod 9). (6.2.86)
n=0 f2
Congruence (6.2.74) follows from (6.2.86).
From (6.2.86), we have
ZBT9,9(36n+ 10)g" = 6= (mod 9). (6.2.87)
= fi
Using (6.2.85) and (6.2.87), we obtain
BT9,9(367’1 + 10) = BT9’9(97’1 + 1) (mod 9) (6288)
From (6.2.43) and by mathematical induction
BTyo(367 ' n+12-4% —2) = BToo(9n+1) (mod 9). (6.2.89)
Using (6.2.89) and congruence (6.2.74) we get (6.2.75). O]



Chapter 7

PARTITION QUADRUPLES WITH
t-CORES

7.1 Introduction

In chapter (1), we have defined partition with f-cores a;(n) and partition quadruple
with t-cores C;(n). Many mathematicians studied the arithmetic properties of a;(n).
For instance Hirschhorn and Sellers [31,32] have studied the 4-core partition a4(n) and
established some infinite families of arithmetic relations for a4(#). Baruah and Nath [8]
have proved some more infinite families of arithmetic identities for a4(n). With the

above motivation, we study the divisibility properties of the function C;(n).

7.2 Congruences for partition quadruples with f-cores

In this section, we obtain some congruences and infinite families of congruences for

C;(n) modulo 5, 7 and 8 for various values of .

Reference [52] is based on this chapter

139



Chapter 7. PARTITION QUADRUPLES WITH {-CORES 140

7.2.1 Generating functions for C;(4n), Cs;(4n + 1), C3(4n + 2) and
Cs(4n+ 3)

Theorem 7.2.1. For eachn > 0,

o0 16 (8 404 4
ZC3(4n)q”— 2 Jo +24 2[5 fS +16 2f2f3f4f12

= TGt fe TR
+ 24qf2]]:13 Js +q 4 , (7.2.1)
o) 12 6 5 10
;C3(4n +1)9" =4 f7fi ]{62 48qf2 3}1J564f12 + quf;ff:flz’ (7.2.2)
- f213f3f6 f27f33f42f122 f2 f36f6 f22f38f42f122
Ca(4n+2 32 24472737412
L O D=8 g o IS T S M
(7.2.3)
iC3(4n +3)q" = 24—f22f34f63 +32 qu S fifia +4 f24f39f6 : (7.2.4)
= fi fafi2 e f2fafin

Proof. Setting t = 3 in (1.25), we have
0 12 3,4
q" == fi) (7.2.5)
Z f14 ( fl

Substituting (1.42) into (7.2.5), we arrive at

00 12 8 r6

n f6 4f6 f12 f12 4 12
Y C +4 (7.2.6)
2 =gt ST T A TR

Extracting the even terms of the above equation

N BB, frfsfs
C;(2n) ) (7.2.7)
L O = o e 24
which yields
. n f3 4 f3 12
C;(2n) ( ) ( ) 256 (7.2.8)
% o=\ ) e ;
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Employing (1.47) into (7.2.8) and extracting the terms involving g*" and g*"*!, we get
(7.2.1) and (7.2.3).
From (7.2.6), we have
o) 86 2.8
ZC3(2n +1)g" = 4f2 16(3 + 4qf3 ]2[6 , (7.2.9)
n=0 fl fl
which implies,
) f2 3 f2
) Cs(2n+1)q" :4f28(iz) +4qf68(%). (7.2.10)
n=0 fl fl

Substituting (1.47) into (7.2.10) and extracting the even and odd terms of the above
equation, we obtain (7.2.2) and (7.2.4). O]

7.2.2 Infinite families of congruences modulo 8 for C;(n)

Theorem 7.2.2. For each o > 0 andn > 0,

Cs(16n+14)=0 (mod 8), (7.2.11)
C3(48n+30)=0 (mod 8), (7.2.12)
16-49 -4
Cs (16‘”111 + 6T = Cs(4n) (mod 8). (7.2.13)
Proof. From (7.2.3), we have
0 876 4
ZC3(411 +2)q" = 6f26f32f62 (mod 8). (7.2.14)
=0 TG
Using (1.31) in (7.2.14), we get
00 f6 f2 3
ZC3(471 +2)q" = 6% = (%) (mod 8). (7.2.15)
n=0 fl fl
Employing (1.47) into (7.2.15), we find that
0 12 £3 £6 9743
ZC3(4n +2)q" = 6f415f63f132 +4q fﬂ% iz (mod 8). (7.2.16)
n=0 Ly f fefa



Chapter 7. PARTITION QUADRUPLES WITH {-CORES 142

Extracting the terms involving g2"*! from (7.2.16), dividing by g and then replacing g2

by g, we arrive at

o 4
Zc (8n+6)q" = f2 f3'fs (mod 8). (7.2.17)
n=0 f1 *fafiz
Invoking (1.31) in (7.2.17), we obtain
ZC3(8n +6)q" = 4f> (mod 8). (7.2.18)
n=0
Congruence (7.2.11) follows from (7.2.18).
From (7.2.18), we have
Zc (24n+6)q" = 4f} (mod 8). (7.2.19)

n=0

Congruence (7.2.12) easily follows from above equation.

From (7.2.1), we get

0 16 £8 12
Zoc3(4n)q" _ f?ff];f{*z + qff314 (mod 8). (7.2.20)

Invoking (1.31) in (7.2.20), we find that

iC (4n)q" = £ +q(§3 ) (mod 8). (7.2.21)
n=0

Substituting (1.42) into second term of (7.2.21) and extracting the odd terms of the

required equation. we deduce that

f212f3 f24f34f6 12
Cs(8 4 mod 8). 7.2.22
nZ:o' 3(8n+4)q" = f1 f6 69 f14 q f2 (mod 8) ( )

Using (1.31) in (7.2.22), we get

o0 12
ZC3(8n +4)q" = [+ 6qf2f0 + qzﬁ (mod 8). (7.2.23)
n=0 2
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Extracting the terms involving g?" from (7.2.23) and then replacing g° by g, we find
that

00 12
ZC3(16n+4 f1 +qﬁ (mod 8). (7.2.24)
n=0 1
Invoking (1.31) in (7.2.24), we arrive at
00 3,4
Zc (16n+4)q" = f; +q( 3 ) (mod 8). (7.2.25)
n=0 fl
Using (7.2.25) and (7.2.21), we get
Cs(16n+4)=C3(4n) (mod 8). (7.2.26)
By mathematical induction on «, we obtain (7.2.13). O]

Theorem 7.2.3. Fora, f andy >0,
ZC (16 32atl 528 72y, 4 o .32a+l 52B . 727’) =4f> (mod 8), (7.2.27)
n=0
ZC (16-320%1 . 520 7271y 2. 32041 . 520 . 72742 ) g = 4 £3 (mod 8), (7.2.28)
n=0
Zc (16-320%1 . 5264172V 4232041 . 52042727 ) g = 4 £ (mod 8), (7.2.29)
n=0

Zc3 (16-320%2. 5% . 7271y 23203520 .72 ) g" = 43 (mod 8). (7.2.30)
n=0

C3(16 . 32a+2 . 52/3 . 72)/n+ 2. 320[+1 _52ﬁ . 72)/)

(7.2.31)

4 (mod 8) ifn=k(3k+1)/2 for somek e Z,
0

(mod 8) otherwise,

Proof. Extracting the terms involving g*" from (7.2.19) and replacing g° by g, we obtain

ZC3(48n +6)q"=4f7 (mod 8). (7.2.32)
n=0
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The equation (7.2.32) is the @ = f = = 0 case of (7.2.27).
Let us consider the case § = = 0. Suppose that the congruence (7.2.27) holds for some
integer a > 0. Employing the equation (1.75) in (7.2.27) with f =y =0,

) C3(16-32 0+ 2.32)g" = 4(f;+ qf;))  (mod 8), (7.2.33)
n=0

which implies,

Zc (16-320+2y 1. 2. 320430 = 463 (mod 8). (7.2.34)
n=0

Therefore
ch (16322731 4+2.320%3)qn = 4¢3 (mod 8), (7.2.35)
n=0

which implies that (7.2.27) is true for a + 1. Hence by induction (7.2.27) is true for any
non-negative integer @ and f =y = 0.

Let us consider the case = 0, suppose that the congruence (7.2.27) holds for some
integer a, f > 0. Substituting (1.34) in (7.2.27),

o0

Zc (16-3%0%1.5%p 4 2.320%1 . 528) " = 4£) (a—q - qz/a) (mod 8). (7.2.36)
n=0

Extracting the terms involving ¢>"*3 from (7.2.36), we arrive at

o0

Zc (16-320+1 . 52B+1y 1 9. 32a%1 . 526+2)an — 4 £3 (mod 8), (7.2.37)
n=0

which yields

Zc (16-32%1.526+2) 1 9. 32a+1 52p+2)n = 4£3 (mod 8), (7.2.38)

n=0

which implies that (7.2.27) is true for f + 1. Hence by induction (7.2.27) is true for
a,f>0and y =0.
Now, Suppose that the congruence (7.2.27) holds for some integers «, f and y > 0.
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Employing (1.35) in the equation (7.2.27), we find that

ZC3(16'32&+1 528 7274 4 9. 32a+1 52 727/)qn
n=0

B(q") A(¢) C(q’)
—4f3 2.5
) 4f49(€<q7> T8 T T A

3
) (mod 8). (7.2.39)

Extracting the terms involving g”"*% from (7.2.39), we get

(o]

ZC3 (16-320+1. 520 . 727+ 2. 32041 . 526 . 72742 ) g1 = 4 £3 (mod 8), (7.2.40)
n=0

which prove (7.2.28). Extracting the coefficient of g’" in (7.2.40), we arrive at

ZC3 (16-320%1 .52 . 7212 2. 32041 . 526 . 72742) g = 4 3 (mod 8), (7.2.41)
n=0

which implies that (7.2.27) is true for y + 1. Hence, by induction (7.2.27) is true for any
non-negative integers a, f and y. This completes the proof.

Employing (1.34) in (7.2.27), we get (7.2.29).

Substituting (1.75) in (7.2.27) and then extracting g°"*! and g*", we obtain (7.2.30) and
(7.2.31) respectively. [

Corollary 7.2.1. For a, p and y > 0, p € {30,46,62,78,94,110}, q € {34,66}, r €
(26,42,58,74) and s € {22, 38},

C5(16-32072.5%6 .72V + 34.3%*+1.520.727) =0 (mod 8), (7.2.42

Cs(16-320% . 526721+ 2 1 p. 320%1.526.72742) = 0 (mod 8), (7.2.43

C3(16 . 32a+1 . 52[3’ . 72)/+1n + q- 32a+1 . 52[5 . 72)/) =0

Cs (16 L32a+1 5242 2y, o . 32a+l £2p+l .727/) 0
)=0

C3(16_320(+3 52ﬁ _72;/n+5_32a+2 52[5 727/

( ) )
( ) )
(mod 8), (7.2.44)
(mod 8), (7.2.45)
( ) )

(7.2.46
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7.2.3 Congruences modulo 5 for Cs(n)

Theorem 7.2.4. For eachn > 0,

Cs5(5n+3)=0 (mod 5), (7.2.47)
Cs5(5n+4)=0 (mod 5), (7.2.48)
C5(25n+21)=0 (mod 5). (7.2.49)
Proof. Setting t = 5 in (1.25), we have
o0 20
ZC5(n)q” =2 (7.2.50)
n=0 1
Using (1.31) in (7.2.50), we get
ZCS(n)q” = if}° (mod 5). (7.2.51)
n=0
Substituting (1.34) into (7.2.51), we find that
. 19 q°
ch(n)q" = £ fys (a —q- 7) (mod 5). (7.2.52)

n=0

Congruences (7.2.47) and (7.2.48) follow from (7.2.52).
Extracting the terms involving g°"*! from (7.2.52), dividing by g and then replacing
g° by q, we get

Cs(5n+1)q" =4£”f5 (mod 5). (7.2.53)

gk

o

n=

Invoking (1.31) in (7.2.53), we obtain

ZCS(Sn +1)q" =4f* % (mod 5). (7.2.54)
n=0
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Again substituting (1.34) into (7.2.54), we find that

) _Cs(5n+1)g" = da* i1 + 4> fi s + 2a° L1

n=0
3 574 r4 3 6 r4 4
N q ];sf25+ q £5f25+3a2q2f54f245
7 r4 4 8 r4
i q f53f25 q fifZS (mod 5)
a a

Congruence (7.2.49) easily follows from (7.2.55).
7.2.4 Congruences modulo 7 for C;,(n)
Theorem 7.2.5. For eachn > 0,

Cy(7n+6)=0 (mod 7).

Proof. Setting t =7 in (1.25), we have
©o 28

)

Invoking (1.31) in (7.2.57), we get

ZC7(n)q" = f2f77 (mod 7).

n=0

Employing (1.35) into (7.2.58), we deduce that

00 B(a7)3 B(a")A(q”
ZQ(”)Q” =17 fio C((Z7))3 +44f7" fio (2(27)(2 )
n=0
B(q7)2 A(q7)?
+3q f49Cq7?A( ) 3q2f727f439B(q7)qC( )
7 B(g’
+60° 77 foo C(Z7; 9’ f7 f439A((Z7))

391057 53, 2 M) (47)C(q’)

A(q7)?

A
+ 3q7f727f439w

(7.2.55)

(7.2.56)

(7.2.57)

(7.2.58)
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C(q7) C(q7)?
+ 648 £27 £3 Py
q f7 f49B(q7) f7 f49A(q7)B( )
9f27f3 C(q7) 12 27 (q7)2
I
15 27 (q ) 2 27 03 B(g 7)?
f7 f49A 7)3 7 49C( 7)2
4 27 7) 5027 3 Alg7)
+3q" f; f49 (q7) q’ f7 f49B @7)?
7\2 7
427 03 A7) 5027 .3 AQ7)
+4q°f; f49 B(q7) +4q°f; 49B(q7) (mod 7).
Congruence (7.2.56) follows from (7.2.59).
7.2.5 Congruences modulo 5 for C,5(n)
Theorem 7.2.6. For eachn > 0,
Cy5(51+3)=0 (mod 5),
Cy5(5n1+4)=0 (mod 5),
Cy5(25n+21)=0 (mod 5).

Proof. Setting t = 25 in (1.25), we have

o0 100
ZCzs(n)q” =2

(7.2.59)

(7.2.60)
(7.2.61)
(7.2.62)

(7.2.63)

(7.2.64)

The rest of the proof'is similar to the theorem (7.2.4) therefore we omitte the details. []
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