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Chapter 1

INTRODUCTION

1.1 DeVnitions and Study of Literature

1.1.1 Partitions

A partition of a positive integers n is a Vnite non-increasing sequence of positive inte-

gers ν1 ≥ ν2 · · · ≥ νm > 0 such that

n =
m∑
i=1

νi ,

where νi ’s are called parts. The number of partitions of n is denoted by p(n) and by

convention p(0) = 1. For example, partitions of 5 are

5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1.

Thus p(5) = 7.

Ferrers Diagram

A Ferrers diagram is a way to represent partitions geometrically. The diagram consists

rows of dots. Each row represents a diUerent addend in the partition. The rows are

ordered in non-increasing order so that the row with the most dots is on the top and

the row with the least dots is on the bottom.

For example: 13 can be partitioned into 5+3+2+2+1 which would be represented

by the following Ferrers diagram:

1
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5

3

2

2

1

Figure 1.1: Ferrers diagram of the partition 5+3+2+2+1.

The conjugate of a Ferrers diagram is formed by reWecting the diagram across its

diagonal (the one starting in the top left of the diagram). This can also be interpreted as

exchanging the rows for the columns. For example, consider our example from before

but this time let’s count the number of dots in each column:

5 4 2 1 1

5

3

2

2

1

Figure 1.2: Ferrers diagram of the conjugate partition 5+4+2+1+1.

A French mathematician, Philip Naude (1684–1747), raised a number of questions in

his letter to Leonhard Euler (1707–1783) in 1740. One of his questions was as follows:

in how many ways can an integer n be represented as a sum of integers? In response

to this question, Euler discovered many ideas, results and methods of partitions of

numbers. These elementary, but remarkable, results were presented in his fundamental

treatise on analysis, Introductio in Analysin InVnitorum [24]. His fundamental works on

the theory of partitions of number based on the use of generating functions and formal

power series Vrmly established the additive number theory.
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1.1.2 Generating functions and Notation

Euler gave a generating function for p(n) using the q- series

∞∑
n=0

p(n)qn =
1

(q;q)∞
. (1.1)

Now

1
(q;q)∞

=
1

1− q
· 1
1− q2

· 1
1− q3

· · · ·

= (1+ q1 + q1+1 + q1+1+1 + · · · )(1 + q2 + q2+2 + · · · )(1 + q3 + q3+3 + · · · ) · · ·

= 1+ q1 + q1+1 + q2 + q1+1+1 + q1+2 + q3 + · · ·

= 1+ q1 + (q1+1 + q2) + (q1+1+1 + q1+2 + q3) + · · ·

= 1+ q+2q2 +3q3 + · · · . (1.2)

For any complex number a and q with |q| < 1, we have

(a;q)∞ =
∞∏
k=0

(1− aqk)

and for any positive integer k,

fk := (qk;qk)∞.

Euler noted that the series representation of inVnite product (q;q)∞ is given by

(q;q)∞ =
∞∑

k=−∞
(−1)kq(3k

2+k)/2

= 1− q − q2 + q5 + q7 − q12 − q15 ++−−· · · . (1.3)

The above identity is known as Euler’s pentagonal number theorem. From (1.1) and

(1.3), we have ∞∑
n=0

p(n)qn
 (1− q − q2 + q5 + q7 − q12 − q15 ++−−· · · ) = 1. (1.4)
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Which implies to get the following recurrence relation:

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · · . (1.5)

A British mathematician, Percy Alexander MacMahon in 1916, was the Vrst person

who computed p(n) for n up to 200, using the Euler’s recurrence relation and he made

a table with columns of Vve numbers such as

1 7 42 176 627 ...

1 11 56 231 792 ...

2 15 77 297 1002 ...

3 22 101 385 1255 ...

5 30 135 490 1575 ...

Ramanujan noticed the table and found three simple congruences satisVed by p(n) are

as follows: For every nonnegative integer n,

p(5n+4) ≡ 0 (mod 5), (1.6)

p(7n+5) ≡ 0 (mod 7), (1.7)

p(11n+6) ≡ 0 (mod 11). (1.8)

In [64, 65], Ramanujan gave a proof of above three congruences. He made a remarks

in [64] that “It appears that there are no equally simple properties for any moduli in-

volving primes other than 5, 7 and 11”. In a posthumously published papers [66] and

[67], Hardy has collected diUerent proof of (1.6)-(1.8) from an unpublished manuscript

of Ramanujan on p(n) and τ(n) ( [68]).

Ramanujan [65] has noticed a more general conjecture. Let ζ = 5a7b11c and let κ

be an integer such that 24κ ≡ 1 (mod ζ). Then

p(ζn+κ) ≡ 0 (mod ζ). (1.9)

In [68], Ramanujan gave a proof of (1.9) for arbitrary a and b = c = 0. He also sketch

a proof of his conjecture for arbitrary b and a = c = 0, but he did not complete it.

After Ramanujan died, H. Gupta extended MacMahon’s table up to n = 300. Chowla

[19] after observing the Gupta’s table, found that p(243) is not divisible by 73, despite

the fact that 24 · 243 ≡ 1 (mod 73). To correct Ramanujan’s conjecture, deVne ζ′ =



Chapter 1. Introduction 5

5a7b
′
11c, where b′ = b, if b = 0,1,2, and b′ = [(b+2)/2], if b > 2. Then

p(ζ′n+κ) ≡ 0 (mod ζ′). (1.10)

Watson [73] published a proof of (1.10) for a = c = 0 and noticed a more detailed

version of Ramanujan’s proof of (1.10) in case b = c = 0. Finally, Atkin [6] proved (1.10)

for arbitrary c and a = b = 0.

We study several congruence properties of restricted partition functions such as: k-

color overpartition functions, Andrews’ singular overpartitions, Designated summands,

`-regular cubic partition pairs, (`,m)-regular bipartition triples and Partition quadruple

with t-cores.

A bipartition of a positive integer n is a pair of partitions (ν1,ν2) such that the sum

of all the parts is equal to n, where ν1 and ν2 are allowed to be empty partition. Let

p−2(n) denote the number of bipartitions of n. The generating function for p−2(n) is

given by

∞∑
n=0

p−2(n)q
n =

1
(q;q)2∞

=
1

f 21
. (1.11)

Atkin [7] has proved the Ramanujan type congruences for p−2(n) modulo 5. Ra-

manathan [63] has established congruences modulo 5 for p−2(n) which are analogues

to the classical congruences of Ramanujan.

Let pk(n) be two color partition function with one of the color is multiple of k, the

generating function is given by

∞∑
n=0

pk(n)q
n =

1
(q;q)∞(qk;qk)∞

=
1
f1fk

. (1.12)

Ahmed, Baruah and Dastidar [2] have found some interesting congruences modulo 5

for pk(n) for k ∈ {2,3,4}. Chern [18] has established some congruences modulo 7 for

p4(n). Tang [70] has proved some inVnite families of Ramanujan-type congruences

modulo powers of 5 for pk(n) with k = 2,6,7.

Corteel and Lovejoy [20] have introduced the combinatorial object known as over-

partition of a nonnegative integer n, which is a non-increasing sequence of a natural

number, whose sum is n and the Vrst (equivalently, the Vnal) occurrence of parts of

each size may be over lined. We denote the number of overpartitions of n by p(n) and
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p(0) = 1. As noted in [20], the generating function for p(n) is given by

∞∑
n=0

p(n)qn =
(q2;q2)∞
(q;q)2∞

=
f2
f 21
. (1.13)

For example: The eight overpartitions of 3 are

3, 3, 2+1, 2+1, 2+1, 2+1, 1+1+1, 1+1+1.

Mahlburg [47] has proved that p(n) is divisible by 64 for almost all positive integers n.

He also conjectured that for a particular positive integer k, p(n) is divisible by 2k for

almost all positive integers n. Kim [38] has proved the k = 7 case of the conjecture by

using the techniques of Mahlburg. Hirschhorn and Sellers [34] have established some

congruence modulo small powers of 2 for p(n) and also proved 2-, 3- and 4-dissections

of the generating function for overpartition function.

In chapter (2), we establish several inVnite families of congruences modulo powers

of 2 and 3 for p3(n), where p3(n) denote the number of overpartitions of nwith 2-color

in which one of the colors appears only in parts that are multiples of 3.

For any positive integer ` > 1, a partition is said to be `-regular if none of its parts

is divisible by `. Let d`(n) denote the number of such partitions of n, with d`(0) = 1.

The generating function for d`(n) is given by

∞∑
n=0

d`(n)q
n =

(q`;q`)∞
(q;q)∞

=
f`
f1
. (1.14)

Many authors have obtained several inVnite families of congruences satisVed by d`(n).

See [4, 13, 21, 25, 37, 50, 55, 58, 74, 79].

Let B`(n) denote the number of `-regular bipartitions of n. The generating function

for B`(n) is given by

∞∑
n=0

B`(n)q
n =

(q`;q`)2∞
(q;q)2∞

=
f 2`
f 21
. (1.15)

Lin [43, 44] has proved inVnite family of congruences modulo 3 for B7(n) using Ra-

manujan’s two modular equations of degree 7. Mahadeva Naika and Hemanthku-

mar [50] have established several inVnite families of congruences modulo powers of

2 and 5 for B5(n).
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Andrews, Lewis and Lovejoy [5] have investigated a new class of partition with des-

ignated summands, are constructed by taking ordinary partitions and tagging exactly

one of each part size. The total number of partitions of n with designated summands is

denoted by PD(n). The authors [5] have derived the following generating function of

PD(n):
∞∑
n=0

PD(n)qn =
(q6;q6)∞

(q;q)∞(q2;q2)∞(q3;q3)∞
=

f6
f1f2f3

. (1.16)

For example: PD(4) = 10, namely

4′ , 3′ +1′ , 2′ +2, 2+2′ , 2′ +1′ +1, 2′ +1+1′ , 1′ +1+1+1, 1+1′ +1+1,

1+1+1′ +1, 1+1+1+1′

Andrews et al. [5] and Baruah and Ojah [10] have also studied PDO(n), the number of

partitions of nwith designated summands in which all parts are odd and the generating

function is given by
∞∑
n=0

PDO(n)qn =
f4f

2
6

f1f3f12
. (1.17)

In chapter (3), we obtain several inVnite families of congruences modulo 3, 4, 8,

16 and 32 for PD2,3(n), where PD2,3(n) denote the number of partitions of n with

designated summands in which parts are not multiples of 2 or 3. Also establish several

congruences modulo 3 and 4 for P BD3(n), where P BD3(n) denote the number of 3-

regular bipartitions of n with designated summands.

Andrews [3] introduced singular overpartitions. To introduce singular overparti-

tions, Vrst he deVned some properties of the entries in a Frobenius symbol for n, which

is of the form a1 a2 ..., ar
b1 b2 ..., br

 ,
where

∑
(ai + bi + 1) = n and a1 > a2 > ... > ar ≥ 0,b1 > b2 > ... > br ≥ 0. There

is a natural mapping that reveals a one-to-one correspondence between the Frobenius

symbols for n and the ordinary partitions of n. “Singular overpartitions” are Frobenius

symbols for n with at most one overlined entry in each row. More precisely, for two

positive integers k and i, a column

ajbj
 in a Frobenius symbol is (k, i)–positive if aj −

bj ≥ k − i − 1 and (k, i)–negative if aj − bj ≤ −i + 1. If −i + 1 < aj − bj < k − i + 1, then

we say the column is (k, i)–neutral. Two columns have the same parity if they are both

(k, i)–positive or (k, i)–negative. We can divide the Frobenius symbol into (k, i)–blocks
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such that all the entries in each block have either the same (k, i)–parity or (k, i)–neutral.

The Vrst non-neutral column in each parity block is called the anchor of the block. A

(k, i)–parity block is neutral if all columns in it are neutral and a (k, i)–parity block is

positive (resp. negative) if it contains no (k, i)–negative (resp. positive) columns.

A Frobenius symbol is (k, i)–singular if

(1) there are no overlined entries, or

(2) the one overlined entry on the top row occurs in the anchor of a (k, i)–positive

block, or

(3) the one overlined entry on the bottom row occurs in an anchor of a (k, i)–negative

block, and

(4) if there is one overlined entry in each row, then they occur in adjacent (k, i)–parity

blocks.

Let Qk,i(n) denote the number of such singular overpartitions for 1 ≤ i ≤ b k2c. An-
drews proved thatQk,i(n) = Ck,i(n), where Ck,i(n) counts the number of overpartitions

of n in which no part is divisible by k and only parts congruent to ±i modulo k may be

overlined. Therefore for k ≥ 3 and 1 ≤ i ≤ b k2c, the generating function for Ck,i(n) is

given by

∞∑
n=0

Qk,i(n)q
n =

∞∑
n=0

Ck,i(n)q
n

=
(qk;qk)∞(−qi ;qk)∞(−qk−i ;qk)∞

(q;q)∞
. (1.18)

For example: Ten singular overpartitions counted by C3,1(4) are

4, 4, 2+2, 2+2, 2+1+1, 2+1+1, 2+1+1, 2+1+1, 1+1+1+1, 1+1+1+1.

Andrews [3] proves that, for all n ≥ 0, C3,1(n) = A3(n), where A3(n) is the number

of overpartitions of n into parts not divisible by 3. The function A`(n), which counts

the number of overpartitions of n into parts not divisible by `, plays a key role in the

work of Lovejoy [45].

In [3], Andrews found the following congruences:

C3,1(9n+3) ≡ C3,1(9n+6) ≡ 0 (mod 3). (1.19)

In chapter (4), we establish several inVnite families of congruences for CO3,1(n)

modulo 6, 8 and 16, where COδ,i(n) denote the number of singular overpartitions of
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n into odd parts. We obtain congruence and inVnite families of congruences modulo

4 for A
3
4,1(n) and modulo 8 for A

5
4,1(n), where A

k
δ,i(n) denote the number of singular

overpartitions of n without multiples of k. Also we deduce some new inVnite families

of congruences for C
6
1,2(n) modulo 27 and congruences modulo 4 for C

12
1,5(n), C

9
3,3(n)

and C
15
5,5(n), where C

δ
i,j(n) denote the number of Andrews’ singular overpatition pairs

of n.

Kim [39] studied overcubic partition function a(n), which is analogous to overpar-

tition function
∞∑
n=0

a(n)qn =
(−q;q)∞(−q2;q2)∞
(q;q)∞(q2;q2)∞

=
f4
f 21 f2

. (1.20)

Hirschhorn [28] has obtained the results of Kim [39] using Jacobi’s triple product iden-

tity. Sellers [69] has proved a number of arithmetic properties of a(n). Zhao and

Zhong [82] have studied cubic partition pairs denoted by b(n) and the generating func-

tion is
∞∑
n=0

b(n)qn =
1

(q;q)2∞(q2;q2)2∞
=

1

f 21 f
2
2

. (1.21)

In chapter (5), we establish some inVnite families of congruences modulo 4, 8, 27

and 81 for b`(n), where b`(n) denote the number of `- regular cubic partition pairs of a

positive integer n and the values of ` ∈ {2,3,5,9}.
A partition k-tuple of n is a k-tuple of partitions (ν1,ν2, ...,νk) such that n = |ν1|+

...+ |νk |. We will call a partition 2-tuple a bipartition and a partition 3-tuple a partition

triple. A partition triple (ν1,ν2,ν3) of a positive integer n is called `-regular partition

triple if none of νi , i = 1,2 and 3, is divisible by `. The number of `-regular partition

triple of positive integer n is denoted by T`(n). The generating function for T`(n) is

given by
∞∑
n=0

T`(n)q
n =

(q`;q`)3∞
(q;q)3∞

=
f 3`
f 31
. (1.22)

Wang [71,72] has established inVnite families of arithmetic properties and congruences

for overpartition triples and partition triples with 3-cores.

A (`,m)-regular bipartition of n is a bipartition (ν1,ν2) of n such that ν1 is `-regular

partition and ν2 is a m-regular partition. Let B`,m(n) denote the number of (`,m)-

regular bipartitions of n. The generating function for B`,m(n) is

∞∑
n=0

B`,m(n)q
n =

(q`;q`)∞(qm;qm)∞
(q;q)2∞

=
f`fm
f 21

. (1.23)
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Lin [42–44] has proved several inVnite families of congruences modulo 3 for B4,4(n),

B7,7(n) and B13,13(n) and gave characterizations of B4,4(n) modulo 2 and 4. Dai [22]

examined the behavior of B4,4(n) modulo 8 and found several inVnite families of con-

gruences modulo 8 for B4,4(n).

In chapter (6), we obtain some arithmetic identities and congruences modulo 3, 9

and 27 for BT`,m(n), where BT`,m(n) denote the number of (`,m)-regular bipartition

triples of a positive integer n, here (`,m) ∈ {(2,9), (3,3), (3,5), (3,7), (3,9), (9,9)}.
The Ferrers-Young diagram of the partition ν of n is obtained by arranging n nodes

in k left aligned rows so that the ith row has νi nodes. The nodes are labeled by row

and column coordinates as one would label the entries of a matrix. Let ν′j denote the

number of nodes in column j . The hook number H(i, j) of the (i, j) node is deVned

as the number of nodes directly below and to the right of the node including the node

itself. i. e. H(i, j) = νi + ν′j − j − i +1. A t-core is a partition with no hook number that

are divisible by t.

For example: In Figure (1.1) represents the Ferrers-Young diagram of the partition

ν = (5,3,2,2,1) of 13. The nodes (1, 1), (1, 2), (1, 3), (1, 4), (1,5), (2, 1), (2, 2), (2, 3), (3,

1), (3, 2), (4, 1), (4, 2) and (5, 1) have hook numbers 9, 7, 4, 2, 1, 6, 4, 1, 4, 2, 3, 1 and 1,

respectively. Therefore ν is a t-core partition for t = 5 and for all t ≥ 10.

Let at(n) be the number of partitions of n that are t-cores, then its generating func-

tion is given by [ [29], Eq. (2.1)]

∞∑
n=0

at(n)q
n =

(qt;qt)t∞
(q;q)∞

=
f tt
f1
. (1.24)

Garvan, Kim and Stanton [26] have proved that if α is a positive integer and ` = 5,7,11,

then

a`(`
αn− δ`) ≡ 0 (mod `α)

for all nonnegative integer n, where δ` =
`2−1
24 . Kolitsch and Sellers [41], Hischhorn and

Sellers [33] have established parity results for a8(n) and a16(n). Granville and Ono [27]

have obtained Ramanujan type congruences for at(n), when t is power of 5, 7 or 11.

A partition k-tuple of n with t-cores is a partition k-tuple (ν1,ν2, ...,νk) of n where

each νi is t-core for i = 1,2,3, ...k. If Ct(n) denotes the number of partition quadruple
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of n with t-cores, then the generating function for Ct(n) is given by

∞∑
n=0

Ct(n)q
n =

(qt;qt)4t∞
(q;q)4∞

=
f 4tt
f 41
. (1.25)

In chapter (7), we establish several inVnite families of congruences modulo 8 for

C3(n), congruences modulo 5 and 7 for C5(n), C7(n) and C25(n).

1.1.3 Ramanujan’s theta functions

Ramanujan’s general theta function f (x,y) is deVned as

f (x,y) :=
∞∑

n=−∞
xn(n+1)/2yn(n−1)/2, |xy| < 1. (1.26)

The product representation of f (x,y) arises from Jacobi’s triple product identity [11, p.

35, Entry 19] as

f (x,y) = (−x;xy)∞(−y;xy)∞(xy;xy)∞. (1.27)

Special cases of f (x,y) are

ϕ(q) := f (q,q) =
∞∑

n=−∞
qn

2
= (−q;q2)2∞(q2;q2)∞ =

f 52
f 21 f

2
4

, (1.28)

ψ(q) := f (q,q3) =
∞∑
n=0

qn(n+1)/2 =
(q2;q2)∞
(q;q2)∞

=
f 22
f1

(1.29)

and

f (−q) := f (−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q;q)∞ = f1. (1.30)

1.2 Preliminaries

In this section, we collect few results which are useful in proving our main results.

Lemma 1.2.1. For each prime p and n ≥ 1,

f
pn

1 ≡ f
pn−1
p (mod pn). (1.31)

It easily follows from the binomial theorem.
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Lemma 1.2.2. [11, pp. 40-49] We have

ϕ(q) = ϕ(q9) + 2qf (q3,q15), (1.32)

ψ(q) = f (q3,q6) + qψ(q9). (1.33)

Lemma 1.2.3. [67, p. 212] We have the following 5-dissection

f1 = f25
(
a− q − q2/a

)
, (1.34)

where

a := a(q) :=
(q10,q15;q25)∞
(q5,q20;q25)∞

.

Lemma 1.2.4. [11, p. 303, Entry 17(v)] We have

f1 = f49

(
B(q7)
C(q7)

− q
A(q7)
B(q7)

− q2 + q5
C(q7)
A(q7)

)
, (1.35)

where

A(q) :=
f (−q3,−q4)
f (−q2)

,B(q) :=
f (−q2,−q5)
f (−q2)

andC(q) :=
f (−q,−q6)
f (−q2)

.

Lemma 1.2.5. [21, Theorem 2.2] For any prime p ≥ 5,

f1 =

p−1
2∑

k= 1−p
2

k,±p−16

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2 , (1.36)

where

±p − 1
6

:=


p−1
6 , if p ≡ 1 (mod 6),
−p−1
6 , if p ≡ −1 (mod 6).

Furthermore, for −(p−1)2 ≤ k ≤ p−1
2 and k , (±p−1)

6 ,

3k2 + k
2

.
p2 − 1
24

(mod p).
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Lemma 1.2.6. [21, Theorem 2.1] For any odd prime p,

ψ(q) =

p−3
2∑

m=0

q
m2+m

2 f

(
q
p2+(2m+1)p

2 ,q
p2−(2m+1)p

2

)
+ q

p2−1
8 ψ(qp

2
). (1.37)

Furthermore, m
2+m
2 .

p2−1
8 (mod p) for 0 ≤m ≤ p−3

2 .

Lemma 1.2.7. The following 2-dissections hold:

f 21 =
f2f

5
8

f 24 f
2
16

− 2q
f2f

2
16

f8
, (1.38)

1

f 21
=

f 58
f 52 f

2
16

+2q
f 24 f

2
16

f 52 f8
, (1.39)

f 41 =
f 104

f 22 f
4
8

− 4q
f 22 f

4
8

f 24
, (1.40)

1

f 41
=

f 144

f 142 f 48
+4q

f 24 f
4
8

f 102

. (1.41)

Lemma (1.2.7) is a consequence of dissection formulas of Ramanujan, collected in Berndt’s

book [11, p. 40, Entry 25].

Lemma 1.2.8. The following 2-dissections hold:

f 33
f1

=
f 34 f

2
6

f 22 f12
+ q

f 312
f4
, (1.42)

f3
f 31

=
f 64 f

3
6

f 92 f
2
12

+3q
f 24 f6f

2
12

f 72
, (1.43)

f1
f 33

=
f2f

2
4 f

2
12

f 76
− q

f 32 f
6
12

f 24 f
9
6

, (1.44)

f 31
f3

=
f 34
f12
− 3q

f 22 f
3
12

f4f
2
6

. (1.45)

Hirschhorn, Garvan and Borwein [29] have proved the equation (1.42). For proof of

(1.43), see [9]. Proofs of equations (1.44) and (1.45) follow by changing q to −q in

equations (1.42) and (1.43) respectively with (−q;−q)∞ =
f 32
f1f4

.
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Lemma 1.2.9. The following 2-dissection holds:

f3
f1

=
f4f6f16f

2
24

f 22 f8f12f48
+ q

f6f
2
8 f48

f 22 f16f24
. (1.46)

Xia and Yao [81] gave a proof of Lemma (1.2.9).

Lemma 1.2.10. The following 2-dissections hold:

f 23
f 21

=
f 44 f6f

2
12

f 52 f8f24
+2q

f4f
2
6 f8f24

f 42 f12
, (1.47)

f 21
f 23

=
f2f

2
4 f

4
12

f 56 f8f24
− 2q

f 22 f8f12f24

f4f
4
6

. (1.48)

Xia and Yao [78] proved (1.47) and (1.48) follows from (1.47).

Lemma 1.2.11. The following 2-dissection formulas hold:

f1f3 =
f2f

2
8 f

4
12

f 24 f6f
2
24

− q
f 44 f6f

2
24

f2f
2
8 f

2
12

, (1.49)

1
f1f3

=
f 28 f

5
12

f 22 f4f
4
6 f

2
24

+ q
f 54 f

2
24

f 42 f
2
6 f

2
8 f12

, (1.50)

1

f 21 f
2
3

=
f 58 f

5
24

f 52 f
5
6 f

2
16f

2
48

+2q
f 44 f

4
12

f 62 f
6
6

+4q4
f 24 f

2
12f

4
16f

2
48

f 52 f
5
6 f8f24

. (1.51)

Baruah and Ojah [10] have proved last Lemma.

Lemma 1.2.12. The following 2-dissections hold:

f5
f1

=
f8f

2
20

f 22 f40
+ q

f 34 f10f40

f 32 f8f20
, (1.52)

f1
f5

=
f2f8f

3
20

f4f
3
10f40

− q
f 24 f40

f8f
2
10

. (1.53)

Equation (1.52) was proved by Hirschhorn and Sellers [30]. Replacing q by −q in (1.52),

we obtain (1.53).
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Lemma 1.2.13. The following 2-dissections hold:

1
f1f7

=
f 216f

5
56

f 22 f8f
2
14f

2
28f

2
112

+ q
f 24 f

2
28

f 32 f
3
14

+ q6
f 58 f

2
112

f 22 f
2
4 f

2
14f

2
16f56

, (1.54)

f1f7 =
f2f14f

2
16f

5
56

f4f8f
3
28f

2
112

− qf4f28 + q6
f2f

5
8 f14f

2
112

f 34 f
2
16f28f56

. (1.55)

Equation (1.54) and (1.55) was proved by Xia and Yao [76].

Lemma 1.2.14. The following 2-dissections hold:

f9
f1

=
f 312f18
f 22 f6f36

+ q
f 24 f6f36

f 32 f12
, (1.56)

f1
f9

=
f2f

3
12

f4f6f
2
18

− q
f4f6f

2
36

f12f
3
18

. (1.57)

Lemma 1.2.14 was proved by Xia and Yao [77].

Lemma 1.2.15. [50, Lemma 2.3] The following 2-dissection formulas hold:

f1f
3
5 = 2q2f4f

3
20 + f

3
2 f10 − 2q

3 f
4
4 f

2
40f10

f2f
2
8

− q
f 22 f

2
10f20
f4

, (1.58)

f 31 f5 = 2q2
f 64 f

2
40f10

f2f
2
8 f

2
20

+
f 22 f4f

2
10

f20
+2qf 34 f20 − 5qf2f

3
10. (1.59)

Ramanujan’s cubic continued fraction ω is given by

ω :=
q1/3

1 +
q+ q2

1 +
q2 + q4

1 +
q3 + q6

1 +
. . . , (1.60)

We deVne the function x(q), a(q), b(q) and c(q) as follows:

x(q) = q−1/3ω,

a(q) =
1

x(q)2
− 2qx(q),

b(q) =
1
x(q)

+ 4qx(q)2,

c(q) =
1

x(q)3
− 8q2x(q)3.
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From the deVnition of a(q), b(q) c(q), we get the following results

a(q)b(q) = c(q) + 2q, (1.61)

a(q)3 + qb(q)3 = c(q)2 − 5qc(q) + 40q2. (1.62)

Lemma 1.2.16. [14] We have

f1f2 = f9f18

(
1

x(q3)
− q − 2q2x(q3)

)
, (1.63)

1
f1f2

=
f 39 f

3
18

f 43 f
4
6

(
a(q3) + qb(q3) + 3q2

)
, (1.64)

c(q) =
f 41 f

4
2

f 43 f
4
6

+7q. (1.65)

Lemma 1.2.17. Let
∞∑
n=0

h(n)qn =
1

f 41 f
4
2

. (1.66)

Then
∞∑
n=0

h(3n+2)qn ≡ 18
f 43 f

4
6

f 81 f
8
2

+81q
f 83 f

8
6

f 121 f 122

(mod 243). (1.67)

Proof. Consider
∞∑
n=0

h(n)qn =
1

f 41 f
4
2

. (1.68)

Employing (1.64) into (1.68), we obtain

∞∑
n=0

h(n)qn =
f 129 f 1218

f 163 f 166

(a(q3)4 +4qa(q3)3b(q3) + 6q2a(q3)2b(q3)2

+12q2a(q3)3 +36q3a(q3)2b(q3) + 4q3a(q3)b(q3)3

+ q4b(q3)4 +36q4a(q3)b(q3)2 +54q4a(q3)2

+108q5a(q3)b(q3) + 12q5b(q3)3 +54q6b(q3)2

+108q6a(q3) + 108q7b(q3) + 81q8) (mod 243). (1.69)

Extracting the terms involving q3n+2 from (1.69), dividing q2 and replacing q3 by q, we
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get

∞∑
n=0

h(3n+2)qn =
f 123 f 126

f 161 f 162

(6a(q)2b(q)2 +12(a(q)3 + qb(q)3)

+ 108qa(q)b(q) + 81q2) (mod 243). (1.70)

In view of (1.61), (1.62) and (1.70), it follows that

∞∑
n=0

h(3n+2)qn ≡
f 123 f 126

f 161 f 162

(18c(q)2 +72qc(q) + 72q2) (mod 243). (1.71)

Substituting (1.65) into (1.71), we arrive at (1.67).

Lemma 1.2.18. The following 3-dissection holds:

f2
f 21

=
f 46 f

6
9

f 83 f
3
18

+2q
f 36 f

3
9

f 73
+4q2

f 26 f
3
18

f 63
. (1.72)

Equation (1.72) was proved by Hirschhorn and Sellers [35].

Lemma 1.2.19. [10, Lemma 2.6] The following 3-dissection formula holds:

f4
f1

=
f12f

4
18

f 33 f
2
36

+ q
f 26 f

3
9 f36

f 43 f
2
18

+2q2
f6f18f36
f 33

. (1.73)

Lemma 1.2.20. [36] The following 3-dissection formula holds:

f1f2 =
f6f

4
9

f3f
2
18

− qf9f18 − 2q2
f3f

4
18

f6f
2
9

. (1.74)

Lemma 1.2.21. [11, p. 345, Entry 1 (iv)] We have the following 3-dissection

f 31 = f 39 (ζ
−1 − 3q+4q3ζ2), (1.75)

where

ζ =
f3f

3
18

f6f
3
9

.
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Lemma 1.2.22. [11, p. 345, Entry 1] We have

f 121

f 123

+27q = (η−1 +4qη2)3, (1.76)

where

η :=
f1f

3
6

f2f
3
3

.

Lemma 1.2.23. [12] The following 3-dissection holds:

f1
f4

=
f6f9f18
f 312

− q
f3f

4
18

f 312f
2
9

− q2
f 26 f9f

3
36

f 412f
2
18

. (1.77)

Let p ≥ 3 be a prime and a be an integer. The Legendre symbol

(
a
p

)
is deVned by

(
a
p

)
:=


1, if a is a quadratic residue modulo p and p - a,

0, if p | a,

−1, if a is a quadratic nonresidue modulo p.



Chapter 2

2-COLOR OVERPARTITION
FUNCTION

2.1 Introduction

In the introductory chapter, we have deVned the k-color partition function pk(n). Love-

joy and Mallet [46] have deVned the basic notions associated with n-color overparti-

tions and also determined some basic generating functions. Motivated by above works,

we deVne,
∞∑
n=0

p3(n)q
n =

(−q;q)∞(−q3;q3)∞
(q;q)∞(q3;q3)∞

. (2.1.1)

Let p3(n) denote the number of overpartitions of n with 2-color in which one of the

colors appears only in parts that are multiples of 3. For example, there are ten partitions

of 2-color overpartitions of 3:

3a, 3a, 3b, 3b, 2a +1a, 2a +1a, 2a +1a, 2a +1a, 1a +1a +1a, 1a +1a +1a.

2.2 InVnite families of congruences for 2-color overpar-

titions

In this section, we establish several inVnite families of congruences modulo powers of

2 and 3 for p3(n).

References [59] is belongs to this chapter

19
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2.2.1 Congruences modulo 9 and 18

Theorem 2.2.1. For α ≥ 0 and n ≥ 0,

p3(12 · 2
αn) ≡ p3(6n) (mod 9), (2.2.1)

p3(4 · 3
α+3n+2 · 3α+3) ≡ p3(36n+18) (mod 9), (2.2.2)

p3(12n+6) ≡ 6 · p3(6n+3) (mod 9), (2.2.3)

p3(108n+18) ≡ p3(36n+6) (mod 9), (2.2.4)

p3(36n+30) ≡ 0 (mod 9), (2.2.5)

p3(6n+4) ≡ 0 (mod 18). (2.2.6)

Proof. We have
∞∑
n=0

p3(n)q
n =

f2f6
f 21 f

2
3

. (2.2.7)

Substituting (1.72) in (2.2.7), we obtain

∞∑
n=0

p3(n)q
n =

f 56 f
6
9

f 103 f 318
+2q

f 46 f
3
9

f 93
+4q2

f 36 f
3
18

f 83
. (2.2.8)

Extracting the terms involving q3n+1, dividing by q and replacing q3 by q, we get

∞∑
n=0

p3(3n+1)qn = 2
f 42 f

3
3

f 91
. (2.2.9)

Invoking (1.31) into (2.2.9), we deduce that

∞∑
n=0

p3(3n+1)qn ≡ 2f 42 (mod 18). (2.2.10)

Extracting the terms involving q2n+1 from (2.2.10), we obtain (2.2.6).

From (2.2.8), we have
∞∑
n=0

p3(3n)q
n =

f 52 f
6
3

f 101 f 36
. (2.2.11)
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Invoking (1.31) into (2.2.11), we obtain

∞∑
n=0

p3(3n)q
n ≡

f 33
f1f

4
2

(mod 9). (2.2.12)

Employing (1.42) into (2.2.12), we deduce that

∞∑
n=0

p3(3n)q
n ≡

f 34 f
2
6

f 62 f12
+ q

f 312
f 42 f4

(mod 9). (2.2.13)

Extracting the terms involving q2n from (2.2.13) and replacing q2 by q, we have

∞∑
n=0

p3(6n)q
n ≡

f 32 f
2
3

f 61 f6
(mod 9). (2.2.14)

Invoking (1.31) into (2.2.14), we Vnd that

∞∑
n=0

p3(6n)q
n ≡

f 31 f
3
2

f3f6
(mod 9). (2.2.15)

Employing (1.45) into (2.2.15), we have

∞∑
n=0

p3(6n)q
n ≡

f 32 f
3
4

f6f12
+6q

f 52 f
3
12

f4f
3
6

(mod 9). (2.2.16)

Extracting the terms involving q2n+1 from (2.2.16), dividing by q and replacing q2 by q,

we obtain
∞∑
n=0

p3(12n+6)qn ≡ 6
f 51 f

3
6

f2f
3
3

(mod 9). (2.2.17)

Invoking (1.31) into (2.2.17), we get

∞∑
n=0

p3(12n+6)qn ≡ 6
f 21 f

3
6

f2f
2
3

(mod 9). (2.2.18)

Replacing q by −q in (1.32) and using the fact that

φ(−q) =
f 21
f2
, (2.2.19)
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we Vnd that

f 21
f2

=
f 29
f18
− 2q

f3f
2
18

f6f9
. (2.2.20)

Again employing (2.2.20) into (2.2.18), we obtain

∞∑
n=0

p3(12n+6)qn ≡ 6
f 36 f

2
9

f 23 f18
− 12q

f 26 f
2
18

f3f9
(mod 9). (2.2.21)

Congruence (2.2.5) follows by extracting the terms involving q3n+2 on both sides of

(2.2.21).

Extracting the terms involving q3n+1 from (2.2.21) and dividing by q, then replacing

q3 by q, we have
∞∑
n=0

p3(36n+18)qn ≡ 6
f 22 f

2
6

f1f3
(mod 9). (2.2.22)

It follows from (1.33) that
f 22
f1

=
f6f

2
9

f3f18
+ q

f 218
f9
. (2.2.23)

Employing (2.2.23) into (2.2.22), we obtain

∞∑
n=0

p3(36n+18)qn ≡ 6
f 36 f

2
9

f 23 f18
+6q

f 26 f
2
18

f3f9
(mod 9). (2.2.24)

Extracting the terms involving q3n+1 from (2.2.24) and dividing by q, then replacing q3

by q, we have
∞∑
n=0

p3(108n+54)qn ≡ 6
f 22 f

2
6

f1f3
(mod 9). (2.2.25)

In view of congruences (2.2.22) and (2.2.25), we have

p3(108n+54) ≡ p3(36n+18) (mod 9). (2.2.26)

Utilizing (2.2.26) and by mathematical induction on α, we get (2.2.2).

Extracting the terms involving q3n from (2.2.21) and replacing q3 by q, we have

∞∑
n=0

p3(36n+6)qn ≡ 6
f 32 f

2
3

f 21 f6
(mod 9). (2.2.27)
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Extracting the terms involving q3n from (2.2.24) and replacing q3 by q, we have

∞∑
n=0

p3(108n+18)qn ≡ 6
f 32 f

2
3

f 21 f6
(mod 9). (2.2.28)

In view of congruences (2.2.27) and (2.2.28), we arrive at (2.2.4).

Extracting the terms involving q2n from both sides of (2.2.16) and then replacing q2

by q, we obtain
∞∑
n=0

p3(12n)q
n ≡

f 31 f
3
2

f3f6
(mod 9). (2.2.29)

In view of congruences (2.2.15) and (2.2.29), we have

p3(12n) ≡ p3(6n) (mod 9). (2.2.30)

Utilizing (2.2.30) and by mathematical induction on α, we arrive at (2.2.1).

Extracting the terms involving q2n+1 from (2.2.13) and dividing by q, then replacing

q2 by q, we obtain
∞∑
n=0

p3(6n+3)qn ≡
f 36
f 41 f2

(mod 9). (2.2.31)

Extracting the terms involving q2n+1 from (2.2.16) and dividing by q, then replacing q2

by q, we obtain
∞∑
n=0

p3(12n+6)qn ≡ 6
f 51 f

3
6

f2f
3
3

(mod 9). (2.2.32)

Invoking (1.31) into (2.2.32), we have

∞∑
n=0

p3(12n+6)qn ≡ 6
f 36
f 41 f2

(mod 9). (2.2.33)

In view of congruences (2.2.31) and (2.2.33), we arrive at (2.2.3).

2.2.2 InVnite family of congruence modulo 18

Theorem 2.2.2. For α ≥ 0 and n ≥ 0,

p3(6 · 5
2α+4n+ (30i +25)52α+2) ≡ 0 (mod 18), (2.2.34)
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where i = 1, 2, 3, 4.

Proof. Extracting the terms involving q2n from (2.2.10) and replacing q2 by q, we have

∞∑
n=0

p3(6n+1)qn ≡ 2f 41 (mod 18). (2.2.35)

Employing (1.34) into (2.2.35) and extracting the terms involving q5n+4, we get

∞∑
n=0

p3(30n+25)qn ≡ 8f 45 (mod 18), (2.2.36)

which implies,
∞∑
n=0

p3(150n+25)qn ≡ 8f 41 (mod 18). (2.2.37)

From (2.2.35) and (2.2.37), we Vnd that

p3(150n+25) ≡ 4p3(6n+1) (mod 18). (2.2.38)

Utilizing (2.2.38) and by mathematical induction on α, we obtain

p3(6 · 5
2α+2n+52α+2) ≡ 4α+1p3(6n+1) (mod 18). (2.2.39)

From (2.2.36), we get

p3(150n+30i +25) ≡ 0 (mod 18), i = 1,2,3,4. (2.2.40)

Using (2.2.39) and (2.2.40), we obtain (2.2.34).

2.2.3 Congruences modulo 27

Theorem 2.2.3. For α ≥ 0 and n ≥ 0,

p3(12n+10) ≡ 0 (mod 27), (2.2.41)

p3(3 · 4
α+2n+10 · 4α+1) ≡ 0 (mod 27). (2.2.42)
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Proof. From (2.2.9), we have

∞∑
n=0

p3(3n+1)qn = 2f 42

(
f3
f 31

)3
. (2.2.43)

Employing (1.43) into (2.2.43) and invoking (1.31), we obtain

∞∑
n=0

p3(3n+1)qn ≡ 2
f 184 f 96
f 232 f 612

+18q
f 144 f 76
f 212 f 212

(mod 27). (2.2.44)

Extracting the terms involving q2n+1 from (2.2.44), dividing by q and replacing q2 by q,

we get
∞∑
n=0

p3(6n+4)qn ≡ 18
f 142 f 73
f 211 f 26

(mod 27). (2.2.45)

Invoking (1.31) into (2.2.45), we deduce that

∞∑
n=0

p3(6n+4)qn ≡ 18f 52 f6 (mod 27). (2.2.46)

Congruence (2.2.41) follows by extracting the terms involving q2n+1 from both sides of

(2.2.46).

From (2.2.46), we have

∞∑
n=0

p3(12n+4)qn ≡ 18f 51 f3 (mod 27). (2.2.47)

Using (1.31) into (2.2.47), we obtain

∞∑
n=0

p3(12n+4)qn ≡ 18f 81 (mod 27). (2.2.48)

Invoking (1.40) into (2.2.48), we Vnd that

∞∑
n=0

p3(12n+4)qn ≡ 18
f 204

f 42 f
8
8

+18q2
f 42 f

8
8

f 44
+18qf 84 (mod 27). (2.2.49)

Extracting the terms involving q2n+1 from (2.2.49), dividing by q and replacing q2 by q,
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we get
∞∑
n=0

p3(24n+16)qn ≡ 18f 82 (mod 27). (2.2.50)

We can rewrite the above equation as

∞∑
n=0

p3(24n+16)qn ≡ 18f 52 f6 (mod 27). (2.2.51)

In view of congruences (2.2.46) and (2.2.51), we have

p3(6n+4) ≡ p3(24n+16) (mod 27). (2.2.52)

Utilizing (2.2.52) and by mathematical induction on α, we arrive at

p3(6n+4) ≡ p3(6 · 4
α+1n+4α+2) (mod 27). (2.2.53)

Using (2.2.53) and (2.2.41), we get (2.2.42).

2.2.4 Congruences modulo 8, 16 and 32

Theorem 2.2.4. For each α ≥ 0 and n ≥ 0,

p3(3
αn) ≡ p3(n) (mod 8), (2.2.54)

p3(18n+6) ≡ 2p3(9n+3) (mod 8), (2.2.55)

p3(3 · 4
α+1n+10 · 4α) ≡ 0 (mod 16), (2.2.56)

p3(6 · 4
α+1n+5 · 4α+1) ≡ 0 (mod 32), (2.2.57)

p3(6n+5) ≡ 0 (mod 32), (2.2.58)

p3(18n+15) ≡ 0 (mod 8). (2.2.59)

Proof. Invoking (1.31) into (2.2.11), we deduce that

∞∑
n=0

p3(3n)q
n ≡

f2f6
f 21 f

2
3

(mod 8). (2.2.60)

In view of congruences (2.2.7) and (2.2.60), we have

p3(3n) ≡ p3(n) (mod 8). (2.2.61)
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Utilizing (2.2.61) and by mathematical induction on α, we arrive at (2.2.54).

Invoking (1.31) into (2.2.9), we deduce that

∞∑
n=0

p3(3n+1)qn ≡ 2
f 33
f1

(mod 16). (2.2.62)

Using (1.42) in (2.2.62) and extracting the terms involving q2n+1, we get

∞∑
n=0

p3(6n+4)qn ≡ 2
f 36
f2

(mod 16), (2.2.63)

which implies that

p3(12n+10) ≡ 0 (mod 16) (2.2.64)

and
∞∑
n=0

p3(12n+4)qn ≡ 2
f 33
f1

(mod 16). (2.2.65)

Using (2.2.62) and (2.2.65), we Vnd that

p3(12n+4) ≡ p3(3n+1) (mod 16). (2.2.66)

By mathematical induction on α, we get

p3(3 · 4
α+1n+4α+1) ≡ p3(3n+1) (mod 16). (2.2.67)

Congruence (2.2.56) follows from (2.2.64) and (2.2.67).

Equating the terms containing q3n+2 from both sides of (2.2.8), dividing by q2 and

then replacing q3 by q, we obtain

∞∑
n=0

p3(3n+2)qn = 4
f 32 f

3
6

f 81
. (2.2.68)

Invoking (1.31) into (2.2.68), we deduce that

∞∑
n=0

p3(3n+2)qn ≡ 4
f 36
f2

(mod 32), (2.2.69)
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which implies,

p3(6n+5) ≡ 0 (mod 32) (2.2.70)

and
∞∑
n=0

p3(6n+2)qn ≡ 4
f 33
f1

(mod 32). (2.2.71)

Employing (1.42) into (2.2.71), we obtain

∞∑
n=0

p3(6n+2)qn ≡ 4
f 34 f

2
6

f 22 f12
+4q

f 312
f4

(mod 32). (2.2.72)

Extracting the terms involving q2n+1 from (2.2.72), dividing by q and replacing q2 by q,

we get
∞∑
n=0

p3(12n+8)qn ≡ 4
f 36
f2

(mod 32), (2.2.73)

which implies that

p3(24n+20) ≡ 0 (mod 32) (2.2.74)

and
∞∑
n=0

p3(24n+8)qn ≡ 4
f 33
f1

(mod 32). (2.2.75)

In view of congruences (2.2.71) and (2.2.75), and by mathematical induction on α, we

Vnd that

p3(6 · 4
α+1n+2 · 4α+1) ≡ p3(6n+2) (mod 32). (2.2.76)

Congruence (2.2.57) follows from (2.2.74) and (2.2.76).

Invoking (1.31) into (2.2.11), we deduce that

∞∑
n=0

p3(3n)q
n ≡

f2f
6
3

f 21 f
3
6

(mod 8). (2.2.77)

Employing (1.72) into (2.2.77), we obtain

∞∑
n=0

p3(3n)q
n ≡

f6f
6
9

f 23 f
3
18

+2q
f 39
f3

+4q2
f 318
f6

(mod 8). (2.2.78)

Extracting the terms involving q3n+2 from (2.2.78), dividing by q2 and replacing q3 by
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q, we get
∞∑
n=0

p3(9n+6)qn ≡ 4
f 36
f2

(mod 8),

which implies,

p3(18n+15) ≡ 0 (mod 8) (2.2.79)

and
∞∑
n=0

p3(18n+6)qn ≡ 4
f 33
f1

(mod 8). (2.2.80)

Again extracting the terms involving q3n+1 from (2.2.78), dividing by q and replacing

q3 by q, we get
∞∑
n=0

p3(9n+3)qn ≡ 2
f 33
f1

(mod 8). (2.2.81)

Congruence (2.2.55) follows from (2.2.80) and (2.2.81).

2.2.5 InVnite families of congruences modulo 4

Theorem 2.2.5. For α ≥ 0 and n ≥ 0,

p3(4
αn) ≡ p3(n) (mod 4), (2.2.82)

p3(6(4n+ i) + 1) ≡ 0 (mod 4), (2.2.83)

where i = 1, 2, 3.

p3(24 · 25
α+2n+ (120j +25) · 25α+1) ≡ 0 (mod 4), (2.2.84)

where j = 1, 2, 3, 4.

p3(2
2α+2n+22α+1) ≡ 0 (mod 4), (2.2.85)

p3(2 · 3
α+2n+5 · 3α+1) ≡ 0 (mod 16), (2.2.86)

p3(6n+5) ≡ 0 (mod 16). (2.2.87)
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Proof. Employing (1.51) into (2.2.7), we obtain

∞∑
n=0

p3(n)q
n =

f 58 f
5
24

f 42 f
4
6 f

2
16f

2
48

+2q
f 44 f

4
12

f 52 f
5
6

+4q4
f 24 f

2
12f

4
16f

2
48

f 42 f
4
6 f8f24

. (2.2.88)

Extracting the terms involving q2n+1 from (2.2.88), dividing by q and replacing q2 by q,

we get

∞∑
n=0

p3(2n+1)qn = 2
f 42 f

4
6

f 51 f
5
3

. (2.2.89)

Invoking (1.31) into (2.2.89), we deduce that

∞∑
n=0

p3(2n+1)qn ≡ 2f 31 f
3
3 (mod 16). (2.2.90)

Employing (1.75) into (2.2.90), we obtain

∞∑
n=0

p3(2n+1)qn ≡ 2
f 23 f6f

6
9

f 318
+8q3

f 53 f
6
18

f 26 f
3
9

− 6qf 33 f
3
9 (mod 16). (2.2.91)

Congruence (2.2.87) follows by extracting the terms involving q3n+2 on both sides of

(2.2.91).

Extracting the terms involving q3n+1 from (2.2.91), dividing by q and replacing q3

by q, we get

p3(6n+3)qn ≡ 10f 31 f
3
3 (mod 16). (2.2.92)

Using (2.2.90) and (2.2.92), we have

p3(6n+3) ≡ 5p3(2n+1) (mod 16). (2.2.93)

Utilizing (2.2.93) and by mathematical induction on α, we get

p3(6 · 3
αn+3α+1) ≡ 5α+1p3(2n+1) (mod 16). (2.2.94)

Using (2.2.94) and (2.2.87), we get (2.2.86).



Chapter 2. 2-color overpartition function 31

Extracting the terms involving q2n from (2.2.88) and replacing q2 by q, we get

∞∑
n=0

p3(2n)q
n =

f 54 f
5
12

f 41 f
4
3 f

2
8 f

2
24

+4q2
f 22 f

2
6 f

4
8 f

2
24

f 41 f
4
3 f4f12

, (2.2.95)

which implies that

∞∑
n=0

p3(2n)q
n ≡

f 54 f
5
12

f 41 f
4
3 f

2
8 f

2
24

(mod 4). (2.2.96)

Invoking (1.31) into (2.2.96), we deduce that

∞∑
n=0

p3(2n)q
n ≡

f4f12
f 22 f

2
6

(mod 4). (2.2.97)

Extracting the terms involving q2n+1 from (2.2.97), we obtain

p3(4n+2) ≡ 0 (mod 4). (2.2.98)

Again extracting the terms involving q2n from (2.2.97) and replacing q2 by q, we get

∞∑
n=0

p3(4n)q
n ≡

f2f6
f 21 f

2
3

(mod 4). (2.2.99)

In view of congruences (2.2.7) and (2.2.99), we have

p3(4n) ≡ p3(n) (mod 4). (2.2.100)

Utilizing (2.2.100) and by mathematical induction on α, we get (2.2.82). Using (2.2.98)

in (2.2.82), we obtain (2.2.85).

Extracting the terms involving q3n from (2.2.91) and replacing q3 by q, we get

∞∑
n=0

p3(6n+1)qn ≡ 2
f 21 f2f

6
3

f 36
+8q

f 51 f
6
6

f 22 f
3
3

(mod 16), (2.2.101)

which implies,
∞∑
n=0

p3(6n+1)qn ≡ 2
f 21 f2f

6
3

f 36
(mod 4). (2.2.102)
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Invoking (1.31) into (2.2.102), we deduce that

∞∑
n=0

p3(6n+1)qn ≡ 2f4 (mod 4). (2.2.103)

Congruence (2.2.83) follows by extracting the terms involving q4n+i on both sides of

(2.2.103).

Extracting the terms involving q4n from (2.2.103) and replacing q4 by q, we get

∞∑
n=0

p3(24n+1)qn ≡ 2f1 (mod 4). (2.2.104)

Employing (1.34) into (2.2.104) and extracting the term q5n+1, we obtain

∞∑
n=0

p3(120n+25)qn ≡ 2f5 (mod 4). (2.2.105)

Extracting the terms involving q5n+i from (2.2.105), we get

p3(600n+120i +25) ≡ 0 (mod 4), i = 1,2,3,4. (2.2.106)

Extracting the terms involving q5n from (2.2.105) and replacing q5 by q, we get

∞∑
n=0

p3(600n+25)qn ≡ 2f1 (mod 4). (2.2.107)

Using (2.2.104) and (2.2.107), we get

p3(600n+25) ≡ p3(24n+1) (mod 4). (2.2.108)

Utilizing (2.2.108) and by mathematical induction on α, we get

p3(600 · 25
αn+25α+1) ≡ p3(24n+1) (mod 4). (2.2.109)

Utilizing (2.2.106) and (2.2.109), we get (2.2.84).



Chapter 3

DESIGNATED SUMMANDS

3.1 Introduction

In chapter (1), we deVned partition with designated summands PD(n). Chen, Ji, Jin and

Shen [17] have established Ramanujan type identity for the partition function PD(3n+

2), they also gave a combinatorial interpretation of the congruence for PD(3n + 2)

by introducing a rank for partitions with designated summands. Recently Xia [75]

extended the work of deriving congruence properties of PD(n) by employing the gen-

erating functions of PD(3n) and PD(3n+2) due to Chen et al. [17]. Naika et al. [48,60]

have found generating function identities and congruences modulo 4, 9, 12, 36, 48

and 144 for PD3(n) and studied various arithmetic properties of PD2(n)modulo 3 and

powers of 2.

3.2 Congruences for (2, 3)-regular partition with desig-

nated summands

In this section, we deVne PD2,3(n), the number of partitions of n with designated sum-

mands in which parts are not multiples of 2 or 3. The generating function of PD2,3(n)

is given by
∞∑
n=0

PD2,3(n)q
n =

f4f
2
6 f9f36

f1f
2
12f

2
18

. (3.2.1)

For example: PD2,3(4) = 4, namely

1′ +1+1+1, 1+1′ +1+1, 1+1+1′ +1, 1+1+1+1′ .

References [55] and [58] are based on this chapter

33
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3.2.1 Congruences modulo 4

Theorem 3.2.1. For n ≥ 1 and α ≥ 0,

PD2,3(18n) ≡ 0 (mod 4), (3.2.2)

PD2,3(2 · 3α+3n) ≡ 0 (mod 4). (3.2.3)

Proof. We have

∞∑
n=0

PD2,3(n)q
n =

f4f
2
6 f9f36

f1f
2
12f

2
18

. (3.2.4)

Substituting (1.56) into (3.2.4), we obtain

∞∑
n=0

PD2,3(n)q
n =

f4f6f12
f 22 f18

+ q
f 34 f

3
6 f

2
36

f 32 f
3
12f

2
18

. (3.2.5)

Extracting the even terms in the above equation

∞∑
n=0

PD2,3(2n)q
n =

f2f3f6
f 21 f9

. (3.2.6)

Substituting (1.72) into (3.2.6), we Vnd that

∞∑
n=0

PD2,3(2n)q
n =

f 56 f
5
9

f 73 f
3
18

+2q
f 46 f

2
9

f 63
+4q2

f 36 f
3
18

f 53 f9
. (3.2.7)

Extracting the terms involving q3n from both sides of (3.2.7) and replacing q3 by q, we

get
∞∑
n=0

PD2,3(6n)q
n =

f 52 f
5
3

f 71 f
3
6

. (3.2.8)

Invoking (1.31) into (3.2.8), we Vnd that that

∞∑
n=0

PD2,3(6n)q
n ≡

f1f2f
5
3

f 36
(mod 8). (3.2.9)
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Employing (1.74) into (3.2.9), we get

∞∑
n=0

PD2,3(6n)q
n ≡

f 43 f
4
9

f 26 f
2
18

− q
f 53 f9f18
f 36

− 2q2
f 63 f

4
18

f 46 f
2
9

(mod 8). (3.2.10)

Extracting the terms involving q3n from both sides of (3.2.10) and replacing q3 by q, we

have
∞∑
n=0

PD2,3(18n)q
n ≡

f 41 f
4
3

f 22 f
2
6

(mod 8). (3.2.11)

Congruence (3.2.2) follows from (1.31) and (3.2.11).

Equation (3.2.11) can be rewritten as

∞∑
n=0

PD2,3(18n)q
n ≡

f 43
f 26

(
f 21
f2

)2
(mod 8). (3.2.12)

Replacing q by −q in (1.32) and using the fact that

φ(−q) =
f 21
f2
, (3.2.13)

we Vnd that that

f 21
f2

=
f 29
f18
− 2q

f3f
2
18

f6f9
. (3.2.14)

Employing (3.2.14) into (3.2.12), we get

∞∑
n=0

PD2,3(18n)q
n ≡

f 43 f
4
9

f 26 f
2
18

+4q2
f 63 f

4
18

f 46 f
2
9

− 4q
f 53 f9f18
f 36

(mod 8). (3.2.15)

Extracting the terms involving q3n from both sides of (3.2.15) and replacing q3 by q, we

obtain
∞∑
n=0

PD2,3(54n)q
n ≡

f 41 f
4
3

f 22 f
2
6

(mod 8). (3.2.16)

In view of the congruences (3.2.11) and (3.2.16), we get

PD2,3(54n) ≡ PD2,3(18n) (mod 8). (3.2.17)
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Utilizing (3.2.17) and by mathematical induction on α, we arrive at

PD2,3(2 · 3α+3n) ≡ PD2,3(18n) (mod 8). (3.2.18)

Using (3.2.2) into (3.2.18), we get (3.2.3).

3.2.2 Congruences and Internal congruence modulo 4 and 8

Theorem 3.2.2. For n ≥ 0 and α ≥ 0,

PD2,3(72n+42) ≡ 0 (mod 4), (3.2.19)

PD2,3(36n+30) ≡ 0 (mod 4), (3.2.20)

PD2,3(144n+120) ≡ 0 (mod 4), (3.2.21)

PD2,3(9 · 4α+3n+30 · 4α+2) ≡ 0 (mod 4), (3.2.22)

PD2,3(54n+18) ≡ 4 · PD2,3(18n+6) (mod 8), (3.2.23)

PD2,3(54n+36) ≡ 2 · PD2,3(18n+12) (mod 8), (3.2.24)

PD2,3(36n+30) ≡ 2 · PD2,3(72n+60) (mod 8). (3.2.25)

Proof. Extracting the terms involving q3n+1 from (3.2.15), dividing by q and then re-

placing q3 by q, we have

∞∑
n=0

PD2,3(54n+18)qn ≡ −4
f 51 f3f6
f 32

(mod 8). (3.2.26)

Extracting the terms involving q3n+1 from (3.2.10), dividing by q and then replacing q3

by q, we obtain
∞∑
n=0

PD2,3(18n+6)qn ≡ −
f 51 f3f6
f 32

(mod 8). (3.2.27)

From (3.2.26) and (3.2.27), we arrive at (3.2.23).

Extracting the terms involving q3n+2 from (3.2.15), dividing by q2 and then replacing

q3 by q, we Vnd that

∞∑
n=0

PD2,3(54n+36)qn ≡ 4
f 61 f

4
6

f 42 f
2
3

(mod 8). (3.2.28)

Extracting the terms involving q3n+2 from (3.2.10), dividing by q2 and then replacing
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q3 by q, we obtain

∞∑
n=0

PD2,3(18n+12)qn ≡ −2
f 61 f

4
6

f 42 f
2
3

(mod 8). (3.2.29)

In view of the congruences (3.2.28) and (3.2.29), we get (3.2.24).

From (3.2.27), we have

∞∑
n=0

PD2,3(18n+6)qn ≡ 7
f 51 f3f6
f 32

(mod 8). (3.2.30)

Invoking (1.31) into (3.2.30), we get

∞∑
n=0

PD2,3(18n+6)qn ≡ 7
f2f3f6
f 31

(mod 8). (3.2.31)

Employing (1.43) into (3.2.31), we obtain

∞∑
n=0

PD2,3(18n+6)qn ≡ 7
f 64 f

4
6

f 82 f
2
12

+21q
f 24 f

2
6 f

2
12

f 62
(mod 8). (3.2.32)

Extracting the terms involving q2n from (3.2.32) and then replacing q2 by q, we have

∞∑
n=0

PD2,3(36n+6)qn ≡ 7
f 62 f

4
3

f 81 f
2
6

(mod 8). (3.2.33)

Invoking (1.31) into (3.2.33), we get

∞∑
n=0

PD2,3(36n+6)qn ≡ 3f 22 (mod 4). (3.2.34)

Extracting the terms involving q2n+1 from (3.2.34), we get (3.2.19).

Extracting the terms involving q2n+1 from (3.2.32), dividing by q and then replacing

q2 by q, we obtain

∞∑
n=0

PD2,3(36n+24)qn ≡ 5
f 22 f

2
3 f

2
6

f 61
(mod 8). (3.2.35)
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Invoking (1.31) into (3.2.35), we get

∞∑
n=0

PD2,3(36n+24)qn ≡ 5
f 26
f 22

(f1f3)
2 (mod 8). (3.2.36)

Employing (1.49) into (3.2.36), we obtain

∞∑
n=0

PD2,3(36n+24)qn ≡ 5
f 48 f

8
12

f 44 f
4
24

+5q2
f 84 f

4
6 f

4
24

f 42 f
4
8 f

4
12

− 10q
f 24 f

2
6 f

2
12

f 22
(mod 8). (3.2.37)

Extracting the terms involving q2n+1 from (3.2.37), dividing by q and then replacing q2

by q, we get
∞∑
n=0

PD2,3(72n+60)qn ≡ 6
f 22 f

2
3 f

2
6

f 21
(mod 8). (3.2.38)

Invoking (1.31) into equation (3.2.29), we Vnd that that

∞∑
n=0

PD2,3(18n+12)qn ≡ 6
f 83
f 21 f

2
3

(mod 8). (3.2.39)

Invoking (1.31) into (3.2.39), we get

∞∑
n=0

PD2,3(18n+12)qn ≡ 2
f 36
f2

(mod 4). (3.2.40)

Congruence (3.2.20) follows by extracting the terms involving q2n+1 from (3.2.40).

From (3.2.40),
∞∑
n=0

PD2,3(36n+12)qn ≡ 2
f 33
f1

(mod 4). (3.2.41)

Substituting (1.42) into (3.2.41), we have

∞∑
n=0

PD2,3(36n+12)qn ≡ 2
f 34 f

2
6

f 22 f12
+2q

f 312
f4

(mod 4), (3.2.42)

which implies,
∞∑
n=0

PD2,3(72n+48)qn ≡ 2
f 36
f2

(mod 4). (3.2.43)

Congruence (3.2.21) fellows by extracting the terms involving q2n+1 from (3.2.43).
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From equations (3.2.43) and (3.2.40), we have

PD2,3(72n+48) ≡ PD2,3(18n+12) (mod 4). (3.2.44)

By mathematical induction on α, we arrive at

PD2,3(18 · 4α+1 +3 · 4α+2) ≡ PD2,3(18n+12) (mod 4). (3.2.45)

Using (3.2.21) into (3.2.45), we get (3.2.22).

Equation (3.2.39) can rewritten as

∞∑
n=0

PD2,3(18n+12)qn ≡ 6
(
f 33
f1

)2
(mod 8). (3.2.46)

Employing (1.42) into (3.2.46), we obtain

∞∑
n=0

PD2,3(18n+12)qn ≡ 6
f 64 f

4
6

f 42 f
2
12

+6q2
f 612
f 24

+12q
f 24 f

2
6 f

2
12

f 22
(mod 8). (3.2.47)

Extracting the terms involving q2n+1 from (3.2.47), dividing by q and then replacing q2

by q, we get
∞∑
n=0

PD2,3(36n+30)qn ≡ 12
f 22 f

2
3 f

2
6

f 21
(mod 8). (3.2.48)

From (3.2.38) and (3.2.48), we get (3.2.25).

3.2.3 Congruences modulo 4

Theorem 3.2.3. For each n ≥ 0 and α ≥ 0,

PD2,3(72 · 25α+1n+6 · 25α+1) ≡ PD2,3(72n+6) (mod 4), (3.2.49)

PD2,3(360(5n+ i) + 150) ≡ 0 (mod 4), (3.2.50)

where i = 1, 2, 3, 4.
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Proof. From the equation (3.2.34), we have

∞∑
n=0

PD2,3(72n+6)qn ≡ 3f 21 (mod 4). (3.2.51)

Employing (1.34) in the above equation, and then extracting the terms containing q5n+2,

dividing by q2 and replacing q5 by q, we get

∞∑
n=0

PD2,3(360n+150)qn ≡ 3f 25 (mod 4), (3.2.52)

which yields

∞∑
n=0

PD2,3(1800n+150)qn ≡ 3f 21 ≡
∞∑
n=0

PD2,3(72n+6)qn (mod 4). (3.2.53)

By induction on α, we obtain (3.2.49). The congruence (3.2.50) follows by extracting

the terms involving q5n+i for i = 1, 2, 3, 4 from both sides of (3.2.52).

3.2.4 Congruences modulo 16

Theorem 3.2.4. For each n ≥ 0 and α ≥ 0,

PD2,3(24n+20) ≡ 0 (mod 16), (3.2.54)

PD2,3(6 · 4α+2n+5 · 4α+2) ≡ 0 (mod 16). (3.2.55)

Proof. Extracting the terms involving q3n+1 from (3.2.7), dividing by q and then replac-

ing q3 by q, we get
∞∑
n=0

PD2,3(6n+2)qn = 2
f 42 f

2
3

f 61
. (3.2.56)

Invoking (1.31) into equation (3.2.56), we get

∞∑
n=0

PD2,3(6n+2)qn = 2(f1f3)
2 (mod 16). (3.2.57)
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Substituting (1.49) into (3.2.57), we arrive at

∞∑
n=0

PD2,3(6n+2)qn ≡ 2
f 22 f

4
8 f

8
12

f 44 f
2
6 f

4
24

+2q2
f 84 f

2
6 f

4
24

f 22 f
4
8 f

4
12

− 4qf 24 f
2
12 (mod 16). (3.2.58)

Extracting the terms involving q2n+1 from (3.2.58), dividing by q and then replacing q2

by q, we get
∞∑
n=0

PD2,3(12n+8)qn ≡ 12f 22 f
2
6 (mod 16). (3.2.59)

Extracting the terms involving q2n+1 from (3.2.59), we get (3.2.54).

Extracting the terms involving q2n from (3.2.59) and replacing q2 by q, we get

∞∑
n=0

PD2,3(24n+8)qn ≡ 12(f1f3)
2 (mod 16). (3.2.60)

In view of the congruences (3.2.57) and (3.2.60), we get

PD2,3(24n+8) ≡ 6 · PD2,3(6n+2) (mod 16). (3.2.61)

Utilizing (3.2.61) and by mathematical induction on α, we arrive at

PD2,3(6 · 4α+1 +2 · 4α+1) ≡ 6α+1 · PD2,3(6n+2) (mod 16). (3.2.62)

Using (3.2.54) into (3.2.62), we arrive at (3.2.55).

Theorem 3.2.5. For each n ≥ 0 and α ≥ 0,

PD2,3(6 · 4α+1n+4α+2) ≡ PD2,3(6n+4) (mod 32). (3.2.63)

Proof. Extracting the terms involving q3n+2 from (3.2.7), dividing by q2 and then re-

placing q3 by q, we get

∞∑
n=0

PD2,3(6n+4)qn = 4
f 32 f

3
6

f 51 f3
. (3.2.64)
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Invoking (1.31) into (3.2.64), we arrive at

∞∑
n=0

PD2,3(6n+4)qn ≡ 4
f 31 f

3
6

f2f3
(mod 32). (3.2.65)

Employing (1.45) into (3.2.65), we Vnd that

∞∑
n=0

PD2,3(6n+4)qn ≡ 4
f 34 f

3
6

f2f12
− 12q

f2f6f
3
12

f4
(mod 32). (3.2.66)

Extracting the terms involving q2n from (3.2.66) and replacing q2 by q, we get

∞∑
n=0

PD2,3(12n+4)qn ≡ 4
f 32 f

3
3

f1f6
(mod 32). (3.2.67)

Employing (1.42) into (3.2.67), we get

∞∑
n=0

PD2,3(12n+4)qn ≡ 4
f2f

3
4 f6
f12

+4q
f 32 f

3
12

f4f6
(mod 32). (3.2.68)

Extracting the terms involving q2n+1 from (3.2.68), dividing by q and then replacing q2

by q, we get
∞∑
n=0

PD2,3(24n+16)qn ≡ 4
f 31 f

3
6

f2f3
(mod 32). (3.2.69)

In view of the congruences (3.2.65) and (3.2.69), we obtain

PD2,3(24n+16) ≡ PD2,3(6n+4) (mod 32). (3.2.70)

Utilizing (3.2.70) and by mathematical induction on α, we get (3.2.63).
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3.2.5 Congruences and InVnite families of congruences modulo 8

Theorem 3.2.6. For n ≥ 0,

PD2,3(48n+34) ≡ 0 (mod 8), (3.2.71)

PD2,3(48n+46) ≡ 0 (mod 8), (3.2.72)

PD2,3(96n+52) ≡ 0 (mod 8), (3.2.73)

PD2,3(96n+76) ≡ 0 (mod 8). (3.2.74)

Proof. Extracting the terms involving q2n+1 from (3.2.66), dividing by q and then re-

placing q2 by q, we get

∞∑
n=0

PD2,3(12n+10)qn ≡ 20
f1f3f

3
6

f2
(mod 32). (3.2.75)

Substituting (1.49) into (3.2.75), we obtain

∞∑
n=0

PD2,3(12n+10)qn ≡ 20
f 26 f

2
8 f

4
12

f 24 f
2
24

− 20q
f 44 f

4
6 f

2
24

f 22 f
2
8 f

2
12

(mod 32). (3.2.76)

Extracting the terms involving q2n from (3.2.76) and replacing q2 by q, we get

∞∑
n=0

PD2,3(24n+10)qn ≡ 20
f 23 f

2
4 f

4
6

f 22 f
2
12

(mod 32). (3.2.77)

Invoking (1.31) into (3.2.77), we Vnd that

∞∑
n=0

PD2,3(24n+10)qn ≡ 4f 22 f
2
3 (mod 16). (3.2.78)

Invoking (1.31) into (3.2.78), we get

∞∑
n=0

PD2,3(24n+10)qn ≡ 4f4f6 (mod 8). (3.2.79)

Congruence (3.2.71) follows by extracting the terms involving q2n+1 from (3.2.79).

Extracting the terms involving q2n+1 from (3.2.76), dividing by q and then replacing
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q2 by q, we get

∞∑
n=0

PD2,3(24n+22)qn ≡ 12
f 42 f

4
3 f

2
12

f 21 f
2
4 f

2
6

(mod 32). (3.2.80)

Invoking (1.31) into (3.2.80), we have

∞∑
n=0

PD2,3(24n+22)qn ≡ 12
f 43 f

2
6

f 21
(mod 16). (3.2.81)

Invoking (1.31) into (3.2.81), we obtain

∞∑
n=0

PD2,3(24n+22)qn ≡ 4
f 26 f12
f2

(mod 8). (3.2.82)

Extracting the terms involving q2n+1 from (3.2.82), we get (3.2.72).

Extracting the terms involving q2n from (3.2.68) and replacing q2 by q, we get

∞∑
n=0

PD2,3(24n+4)qn ≡ 4
f1f

3
2 f3
f6

(mod 32). (3.2.83)

Substituting (1.49) into (3.2.83), we Vnd that

∞∑
n=0

PD2,3(24n+4)qn ≡ 4
f 42 f

2
8 f

4
12

f 24 f
2
6 f

2
24

− 4q
f 22 f

4
4 f

2
24

f 28 f
2
12

(mod 32). (3.2.84)

Extracting the terms involving q2n from (3.2.84) and replacing q2 by q, we get

∞∑
n=0

PD2,3(48n+4)qn ≡ 4
f 41 f

2
4 f

4
6

f 22 f
2
3 f

2
12

(mod 32). (3.2.85)

Invoking (1.31) into (3.2.85), we have

∞∑
n=0

PD2,3(48n+4)qn ≡ 4
f 24
f 23

(mod 16). (3.2.86)
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Invoking (1.31) into (3.2.86), we obtain

∞∑
n=0

PD2,3(48n+4)qn ≡ 4
f8
f6

(mod 8). (3.2.87)

Congruence (3.2.73) obtained by extracting the term involving q2n+1 from (3.2.87).

Extracting the terms involving q2n+1 from (3.2.84), dividing by q and then replacing

q2 by q, we get

∞∑
n=0

PD2,3(48n+28)qn ≡ 28
f 21 f

4
2 f

2
12

f 24 f
2
6

(mod 32). (3.2.88)

Invoking (1.31) into (3.2.88), we have

∞∑
n=0

PD2,3(48n+28)qn ≡ 12f 21 f
2
6 (mod 16). (3.2.89)

Invoking (1.31) into (3.2.89), we have

∞∑
n=0

PD2,3(48n+28)qn ≡ 4f2f12 (mod 8). (3.2.90)

Extracting the terms involving q2n+1 from (3.2.90), we get (3.2.74).

Theorem 3.2.7. For any prime p ≡ 5, α ≥ 1 and n ≥ 0,

∞∑
n=0

PD2,3(48p
2αn+10p2α)qn ≡ 4f2f3 (mod 8). (3.2.91)

Proof. Extracting the terms involving q2n from (3.2.79) and replacing q2 by q, we get

∞∑
n=0

PD2,3(48n+10)qn ≡ 4f2f3 (mod 8). (3.2.92)

DeVne
∞∑
n=0

f (n)qn = f2f3 (mod 8). (3.2.93)



Chapter 3. Designated Summands 46

Combining (3.2.92) and (3.2.93), we Vnd that

∞∑
n=0

PD2,3(48n+10)qn ≡ 4
∞∑
n=0

f (n)qn (mod 8). (3.2.94)

Now, we consider the congruence equation

2 · 3k
2 + k
2

+3 · 3m
2 +m
2

≡
5p2 − 5
24

(mod p), (3.2.95)

which is equivalent to

(2 · (6k +1))2 +6 · (6m+1)2 ≡ 0 (mod p),

where −(p−1)2 ≤ k,m ≤ p−1
2 and p is a prime such that (−6p ) = −1. Since (−6p ) = −1 for

p ≡ 5 (mod 6), the congruence relation (3.2.95) holds if and only if both k =m = ±p−16 .

Therefore, if we substitute (1.36) into (3.2.93) and then extracting the terms in which

the powers of q are congruent to 5 · p
2−1
24 modulo p and then divide by q5·

p2−1
24 , we Vnd

that
∞∑
n=0

f

(
pn+5 ·

p2 − 1
24

)
qpn = f2pf3p,

which implies,
∞∑
n=0

f

(
p2n+5 ·

p2 − 1
24

)
qn = f2f3 (3.2.96)

and for n ≥ 0,

f

(
p2n+ pi +5 ·

p2 − 1
24

)
= 0, (3.2.97)

where i is an integer and 1 ≤ i ≤ p − 1. By induction, we see that for n ≥ 0 and α ≥ 0,

f

(
p2αn+5 ·

p2α − 1
24

)
= f (n). (3.2.98)

Replacing n by p2αn+5 · p
2α−1
24 in (3.2.94), we arrive at (3.2.91).
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Corollary 3.2.1. For each n ≥ 0 and α ≥ 0,

PD2,3(3 · 4α+3n+34 · 4α+1) ≡ 0 (mod 8), (3.2.99)

PD2,3(3 · 4α+3n+46 · 4α+1) ≡ 0 (mod 8), (3.2.100)

PD2,3(6 · 4α+3n+13 · 4α+2) ≡ 0 (mod 8), (3.2.101)

PD2,3(6 · 4α+3n+19 · 4α+2) ≡ 0 (mod 8). (3.2.102)

Proof. Corollary (3.2.1) follows from the Theorem (3.2.5) and Theorem (3.2.6).

3.2.6 Congruences and Internal congruence modulo 4

Theorem 3.2.8. For n ≥ 0,

PD2,3(12n+11) ≡ 0 (mod 4), (3.2.103)

PD2,3(24n+19) ≡ 0 (mod 4), (3.2.104)

PD2,3(24n+17) ≡ 0 (mod 4), (3.2.105)

PD2,3(108n+63) ≡ 0 (mod 4), (3.2.106)

PD2,3(108n+99) ≡ 0 (mod 4), (3.2.107)
∞∑
n=0

PD2,3(216n+27)qn ≡ 2ψ(q) (mod 4), (3.2.108)

PD2,3(72n+6) ≡ PD2,3(36n+3) (mod 4), (3.2.109)

PD2,3(96n+28) ≡ 2 · PD2,3(24n+7) (mod 4). (3.2.110)

Proof. Extracting the odd terms in (3.2.5), we get

∞∑
n=0

PD2,3(2n+1)qn =
f 32 f

3
3 f

2
18

f 31 f
3
6 f

2
9

. (3.2.111)

Invoking (1.31) into (3.2.111), we obtain

∞∑
n=0

PD2,3(2n+1)qn ≡
f1f2f

3
3 f

2
9

f 36
(mod 4). (3.2.112)
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Substituting (1.74) into (3.2.112), we Vnd that

∞∑
n=0

PD2,3(2n+1)qn ≡
f 23 f

6
9

f 26 f
2
18

− q
f 33 f

3
9 f18
f 36

− 2q2
f 43 f

4
18

f 46
(mod 4). (3.2.113)

Extracting the terms involving q3n from (3.2.113) and replacing q3 by q, we get

∞∑
n=0

PD2,3(6n+1)qn ≡
f 21 f

6
3

f 22 f
2
6

(mod 4). (3.2.114)

Invoking (1.31) into (3.2.114), we have

∞∑
n=0

PD2,3(6n+1)qn ≡
f 23
f 21

(mod 4). (3.2.115)

Employing (1.47) into (3.2.115), we get

∞∑
n=0

PD2,3(6n+1)qn ≡
f 44 f6f

2
12

f 52 f8f24
+2q

f4f
2
6 f8f24

f 42 f12
(mod 4). (3.2.116)

Extracting the terms involving q2n+1 from (3.2.116), dividing by q and then replacing

q2 by q, we get

∞∑
n=0

PD2,3(12n+7)qn ≡ 2
f2f

2
3 f4f12

f 41 f6
(mod 4). (3.2.117)

Invoking (1.31) into (3.2.117), we obtain

∞∑
n=0

PD2,3(12n+7)qn ≡ 2f2f12 (mod 4). (3.2.118)

Extracting the terms involving q2n+1 from (3.2.118), we obtain (3.2.103).

From (3.2.118), we get

∞∑
n=0

PD2,3(24n+7)qn ≡ 2f1f6 (mod 4). (3.2.119)
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Extracting the terms involving q2n from (3.2.90) and replacing q2 by q, we get

∞∑
n=0

PD2,3(96n+28)qn ≡ 4f1f6 (mod 8). (3.2.120)

In view of congruences (3.2.120) and (3.2.119), we obtain (3.2.110).

Extracting the terms involving q3n+1 from (3.2.113), dividing by q and then replac-

ing q3 by q, we have

∞∑
n=0

PD2,3(6n+3)qn ≡ 3
f 31 f

3
3 f6
f 32

(mod 4). (3.2.121)

Invoking (1.31) into (3.2.121), we Vnd that

∞∑
n=0

PD2,3(6n+3)qn ≡ 3
f 33 f6
f1f2

(mod 4). (3.2.122)

Employing (1.42) into (3.2.122), we get

∞∑
n=0

PD2,3(6n+3)qn ≡ 3
f 34 f

3
6

f 32 f12
+3q

f6f
3
12

f2f4
(mod 4). (3.2.123)

Extracting the terms involving q2n from (3.2.123) and replacing q2 by q, we obtain

∞∑
n=0

PD2,3(12n+3)qn ≡ 3
f 32 f

3
3

f 31 f6
(mod 4). (3.2.124)

Invoking (1.31) into (3.2.124), we have

∞∑
n=0

PD2,3(12n+3)qn ≡ 3
f1f2f

3
3

f6
(mod 4). (3.2.125)

Substituting (1.74) into (3.2.125), we Vnd that

∞∑
n=0

PD2,3(12n+3)qn ≡ 3
f 23 f

4
9

f 218
− 3q

f 33 f9f18
f6

− 6q2
f 43 f

4
18

f 26 f
2
9

(mod 4). (3.2.126)
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Extracting the terms involving q3n from (3.2.126) and replacing q3 by q, we obtain

∞∑
n=0

PD2,3(36n+3)qn ≡ 3
f 21 f

4
3

f 26
(mod 4). (3.2.127)

Invoking (1.31) into (3.2.127), we have

∞∑
n=0

PD2,3(36n+3)qn ≡ 3f 21 (mod 4). (3.2.128)

Extracting the terms involving q2n from (3.2.34) and replacing q2 by q, we obtain

∞∑
n=0

PD2,3(72n+6)qn ≡ 3f 21 (mod 4). (3.2.129)

In view of congruences (3.2.129) and (3.2.128), we obtain (3.2.109).

Extracting the terms involving q3n+2 from (3.2.126), dividing by q2 and then replac-

ing q3 by q, we have

∞∑
n=0

PD2,3(36n+27)qn ≡ 2
f 41 f

4
6

f 22 f
2
3

(mod 4). (3.2.130)

Invoking (1.31) into (3.2.130), we have

∞∑
n=0

PD2,3(36n+27)qn ≡ 2
f 46
f 23

(mod 4). (3.2.131)

Congruences (3.2.106) and (3.2.107) follow by extracting the terms involving q3n+1 and

q3n+2 from (3.2.131).

Invoking (1.31) into (3.2.131), we get

∞∑
n=0

PD2,3(36n+27)qn ≡ 2
f 212
f6

(mod 4). (3.2.132)

Extracting the terms involving q6n from (3.2.132) and replacing q6 by q, we get (3.2.108).

Extracting the terms involving q3n+2 from (3.2.113), dividing by q2 and then replac-
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ing q3 by q, we have

∞∑
n=0

PD2,3(6n+5)qn ≡ 2
f 41 f

4
6

f 42
(mod 4). (3.2.133)

Invoking (1.31) into (3.2.133), we have

∞∑
n=0

PD2,3(6n+5)qn ≡ 2
f 46
f 22

(mod 4). (3.2.134)

Congruence (3.2.103) follows by extracting the terms involving q2n+1 from (3.2.134).

Extracting the terms involving q2n from (3.2.134) and replacing q2 by q, we get

∞∑
n=0

PD2,3(12n+5)qn ≡ 2
f 43
f 21

(mod 4). (3.2.135)

Substitute (1.42) and (1.46) in (3.2.135)

∞∑
n=0

PD2,3(12n+5)qn

≡ 2
f 44 f

3
6 f16f

2
24

f 42 f8f
2
12f48

+2q
f 34 f

3
6 f

2
8 f48

f 42 f12f16f24
+2q

f6f
2
12f16f

2
24

f 22 f8f48
+2q2

f6f
2
8 f

3
12f48

f 22 f16f24
(mod 4).

(3.2.136)

Extracting the terms involving q2n+1 from (3.2.136), dividing by q and then replacing

q2 by q, we have

∞∑
n=0

PD2,3(24n+17)qn ≡ 2
f 32 f

3
3 f

2
4 f24

f 41 f6f8f12
+2

f3f
2
6 f8f

2
12

f 21 f4f24
(mod 4). (3.2.137)

Invoking (1.31) into (3.2.137), we get

∞∑
n=0

PD2,3(24n+17)qn ≡ 2f2f3f12 +2f2f3f12 (mod 4), (3.2.138)

which implies (3.2.105).
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3.2.7 Congruences modulo 4

Theorem 3.2.9. For n ≥ 0 and α ≥ 0,

PD2,3(648n+459) ≡ 0 (mod 4), (3.2.139)

PD2,3(8 · 9α+3n+51 · 9α+2) ≡ 0 (mod 4). (3.2.140)

Proof. Employing (1.33) into (3.2.108), we get

PD2,3(216n+27)qn ≡ 2f (q3,q6) + 2qψ(q9) (mod 4). (3.2.141)

Congruence (3.2.139) follows by extracting the terms involving q3n+2 from (3.2.141).

Extracting the terms involving q3n+1 from (3.2.141), dividing by q and then replac-

ing q3 by q, we have

PD2,3(648n+243)qn ≡ 2ψ(q3) (mod 4). (3.2.142)

Extracting the terms involving q3n from (3.2.142) and replacing q3 by q, we obtain

PD2,3(1944n+243)qn ≡ 2ψ(q) (mod 4). (3.2.143)

In view of congruences (3.2.108) and (3.2.143), we have

PD2,3(1944n+243) ≡ PD2,3(216n+27) (mod 4). (3.2.144)

Utilizing (3.2.144) and by mathematical induction on α, we get

PD2,3(24 · 9α+2n+3 · 9α+2) ≡ PD2,3(216n+27) (mod 4). (3.2.145)

Using (3.2.139) into (3.2.145), we obtain (3.2.140).
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3.2.8 Congruences modulo 3

Theorem 3.2.10. For n ≥ 0 and α ≥ 0,

PD2,3(6n+3) ≡ 0 (mod 3), (3.2.146)

PD2,3(6n+5) ≡ 0 (mod 3), (3.2.147)

PD2,3(36n+30) ≡ 0 (mod 3), (3.2.148)

PD2,3(4 · 3α+3n+10 · 3α+2) ≡ 0 (mod 3). (3.2.149)

Proof. Substituting (1.73) into (3.2.4), we obtain

∞∑
n=0

PD2,3(n)q
n =

f 26 f9f
2
18

f 33 f12f36
+ q

f 46 f
4
9 f

2
36

f 43 f
2
12f

4
18

+2q2
f 36 f9f

2
36

f 33 f
2
12f18

. (3.2.150)

Extracting the terms involving q3n from (3.2.150) and replacing q3 by q, we get

∞∑
n=0

PD2,3(3n)q
n =

f 22 f3f
2
6

f 31 f4f12
. (3.2.151)

Invoking (1.31) into (3.2.151), we have

∞∑
n=0

PD2,3(3n)q
n ≡

f 82
f 44

(mod 3). (3.2.152)

Extracting the terms involving q2n from (3.2.152) and replacing q2 by q, we get

∞∑
n=0

PD2,3(6n)q
n ≡

f 81
f 42

(mod 3). (3.2.153)

But
f 81
f 42

=
f 21 f

2
3

f 42
. (3.2.154)

∞∑
n=0

PD2,3(6n)q
n ≡

f 21 f
2
3

f 42
(mod 3). (3.2.155)
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Substituting (1.49) into (3.2.155), we obtain

∞∑
n=0

PD2,3(6n)q
n ≡

f 48 f
8
12

f 22 f
4
4 f

2
6 f

4
24

+ q2
f 84 f

2
6 f

4
24

f 62 f
4
8 f

4
12

− 2q
f 24 f

2
12

f 42
(mod 3). (3.2.156)

Extracting the terms involving q2n+1 from (3.2.156), dividing by q and then replacing

q2 by q, we get

∞∑
n=0

PD2,3(12n+6)qn ≡
f 22 f

2
6

f 41
(mod 3). (3.2.157)

Invoking (1.31) into (3.2.157), we obtain

∞∑
n=0

PD2,3(12n+6)qn ≡
f 22 f

2
6

f1f3
(mod 3), (3.2.158)

which implies that

∞∑
n=0

PD2,3(12n+6)qn ≡ ψ(q)ψ(q3) (mod 3). (3.2.159)

Employing (1.33) into (3.2.159), we have

∞∑
n=0

PD2,3(12n+6)qn ≡ ψ(q3)f (q3,q6) + qψ(q3)ψ(q9) (mod 3). (3.2.160)

Congruence (3.2.148) follows by extracting the terms involving q3n+2 from (3.2.160).

Extracting the terms involving q3n+1 from (3.2.160), dividing by q and then replac-

ing q3 by q, we get

∞∑
n=0

PD2,3(36n+18)qn ≡ ψ(q)ψ(q3) (mod 3). (3.2.161)

In view of congruences (3.2.159) and (3.2.161), we obtain

PD2,3(36n+18)qn ≡ PD2,3(12n+6) (mod 3). (3.2.162)
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Utilizing (3.2.162) and by mathematical induction on α, we get

PD2,3(4 · 3α+2n+2 · 3α+2) ≡ PD2,3(12n+6) (mod 3). (3.2.163)

Using (3.2.148) into (3.2.163), we get (3.2.149).

Invoking (1.31) into (3.2.111), we get

∞∑
n=0

PD2,3(2n+1)qn ≡
f 46
f 43

(mod 3). (3.2.164)

Congruences (3.2.146) and (3.2.147) follow by extracting the terms involving q3n+1 and

q3n+2 from (3.2.164).

3.3 Arithmetic properties of 3-regular bipartitions with

designated summands

In this section, we study P BD3(n), the number of 3-regular bipartitions of n with des-

ignated summands and the generating function is given by

∞∑
n=0

P BD3(n)q
n =

f 46 f
2
9

f 21 f
2
2 f

2
18

. (3.3.1)

To be precise by a bipartition with designated summands, we mean a pair of partitions

(ν1,ν2) where in partitions ν1 and ν2 are partitions with designated summands. Thus

P BD3(4) = 35 are

(4′,∅), (2′ +2,∅), (2 + 2′,∅), (2′ +1′ +1,∅), (2′ +1+1′,∅), (1′ +1+1+1,∅),
(1 + 1′ +1+1,∅), (1 + 1+1′ +1,∅), (1 + 1+1+1′,∅), (2′,2′), (2′,1′ +1),

(2′,1+1′), (1′,1′ +1+1), (1′,1+1′ +1), (1′,1+1+1′), (1′ +1,1′ +1),

(1′ +1,1+1′), (1+1′,1′ +1), (1+1′,1+1′), (2′ +1′,1′), (1′,2′ +1′), (1′ +1,2′),

(1 + 1′,2′), (1′ +1+1,1′), (1 + 1′ +1,1′), (1 + 1+1′,1′), (∅,4′), (∅,2′ +2),

(∅,2+2′), (∅,2′ +1′ +1), (∅,2′ +1+1′), (∅,1′ +1+1+1), (∅,1+1′ +1+1),

(∅,1+1+1′ +1), (∅,1+1+1+1′).
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3.3.1 Generating function for P BD3(2n) and P BD3(2n+1)

Theorem 3.3.1. We have n ≥ 0,

∞∑
n=0

P BD3(2n)q
n =

f 23 f
6
6

f 61 f
2
18

+ q
f 42 f

6
3 f

2
18

f 81 f
2
6 f

2
9

, (3.3.2)

∞∑
n=0

P BD3(2n+1)qn = 2
f 22 f

4
3 f

2
6

f 71 f9
. (3.3.3)

Proof. Substituting (1.56) into (3.3.1), we Vnd that

∞∑
n=0

P BD3(n)q
n =

f 46
f 22 f

2
18

(
f 612f

2
18

f 42 f
2
6 f

2
36

+2q
f 24 f

2
12f18

f 52
+ q2

f 44 f
2
6 f

2
36

f 62 f
2
12

)
.

=
f 26 f

6
12

f 62 f
2
36

+2q
f 24 f

4
6 f

2
12

f 72 f18
+ q2

f 44 f
6
6 f

2
36

f 82 f
2
12f

2
18

. (3.3.4)

Extracting the terms involving q2n and q2n+1 from the above equation, we obtain (3.3.2)

and (3.3.3).

3.3.2 InVnite families of congruences modulo 3

Theorem 3.3.2. For each nonnegative integer n and α ≥ 0,

P BD3

(
4× 3α+2n+10× 3α+1

)
≡ 0 (mod 3), (3.3.5)

P BD3

(
8× 3α+2n+8× 3α+2

)
≡ 0 (mod 3), (3.3.6)

P BD3

(
2α+3n

)
≡ 2αP BD3(4n) (mod 3), (3.3.7)

∞∑
n=1

P BD3(4n+2)qn ≡ ψ(q)ψ(q3) (mod 3), (3.3.8)

∞∑
n=1

P BD3(8n+4)qn ≡ 2ψ(q)ψ(q3) (mod 3). (3.3.9)

Proof. Invoking (1.31) in (3.3.2), we Vnd that

∞∑
n=0

P BD3(2n)q
n ≡ 1+ q

f1f
6
6

f 22 f
3
3

(mod 3), (3.3.10)



Chapter 3. Designated Summands 57

which implies,
∞∑
n=1

P BD3(2n)q
n ≡ q

f1f
6
6

f 22 f
3
3

(mod 3). (3.3.11)

Employing (1.44) into (3.3.11), we have

∞∑
n=1

P BD3(2n)q
n ≡ q

f 24 f
2
12

f2f6
− q2

f2f
6
12

f 24 f
3
6

(mod 3). (3.3.12)

Extracting the terms containing q2n+1, dividing throughout by q and then replacing q2

by q from (3.3.12) and using the fact that ψ(q) =
f 22
f1

, we get (3.3.8)

Substituting (1.33) into (3.3.8), we obtain

∞∑
n=1

P BD3(4n+2)qn ≡ f (q3,q6)ψ(q3) + qψ(q3)ψ(q9) (mod 3), (3.3.13)

which implies that

∞∑
n=1

P BD3(12n+6)qn ≡ ψ(q)ψ(q3) (mod 3). (3.3.14)

From equations (3.3.8) and (3.3.14), we get

P BD3(12n+6) ≡ P BD3(4n+2) (mod 3). (3.3.15)

By using mathematical induction on α in (3.3.15), we have

P BD3

(
4× 3α+1n+2× 3α+1

)
≡ P BD3(4n+2) (mod 3). (3.3.16)

Extracting the terms containing q3n+2 from (3.3.13) we obtain

P BD3(12n+10) ≡ 0 (mod 3). (3.3.17)

Using (3.3.17) in (3.3.16), we obtain (3.3.5).

Extracting the terms containing q2n and replacing q2 by q from (3.3.12), we get

∞∑
n=1

P BD3(4n)q
n ≡ 2q

f1f
6
6

f 22 f
3
3

(mod 3). (3.3.18)



Chapter 3. Designated Summands 58

Employing (1.44) into (3.3.18), we obtain

∞∑
n=1

P BD3(4n)q
n ≡ 2q

f 24 f
2
12

f2f6
− 2q2

f2f
6
12

f 44 f
3
6

(mod 3). (3.3.19)

Congruence (3.3.9) obtained by extracting the terms containing q2n+1 from (3.3.19) and

using the fact that ψ(q) =
f 22
f1

.

Substituting (1.33) into (3.3.9), we have

∞∑
n=1

P BD3(8n+4)qn ≡ 2f (q3,q6)ψ(q3) + 2qψ(q3)ψ(q9) (mod 3). (3.3.20)

Extracting the terms containing q3n+1 and q3n+2 from the above equation, we obtain

∞∑
n=1

P BD3(24n+12)qn ≡ 2ψ(q)ψ(q3) (mod 3) (3.3.21)

and

P BD3(24n+20) ≡ 0 (mod 3). (3.3.22)

In view of the congruences (3.3.9) and (3.3.21), we get

P BD3(24n+12) ≡ P BD3(8n+4) (mod 3). (3.3.23)

Utilizing (3.3.23) and by mathematical induction on α, we arrive at

P BD3

(
8× 3α+1n+8× 3α+1

)
≡ P BD3(8n+4) (mod 3). (3.3.24)

Using (3.3.22) in (3.3.24), we obtain (3.3.6).

Extracting the terms containing q2n and replacing q2 by q from (3.3.19) , we have

∞∑
n=1

P BD3(8n)q
n ≡ q

f1f
6
6

f 42 f
3
3

(mod 3). (3.3.25)

In view of the congruences (3.3.25) and (3.3.18), we obtain

P BD3(8n) ≡ 2 · P BD3(4n) (mod 3). (3.3.26)
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Utilizing (3.3.26) and by mathematical induction on α, we arrive at (3.3.7).

Theorem 3.3.3. Let p be a prime with

(
−3
p

)
= −1. Then for any nonnegative integers α,

∞∑
n=1

P BD3

(
4p2αn+2p2α

)
qn ≡ ψ(q)ψ(q3) (mod 3), (3.3.27)

and for n ≥ 0, 1 ≤ j ≤ p − 1,

P BD3

(
4p2α+1(pn+ j) + 2p2α+2

)
≡ 0 (mod 3). (3.3.28)

Proof. Equation (3.3.8) is the α = 0 case of (3.3.27). If we assume that (3.3.27) holds for

some α ≥ 0, then, substituting (1.37) in (3.3.27),

∞∑
n=1

P BD3

(
4p2αn+2p2α

)
qn

≡


p−3
2∑

m=0

q
m2+m

2 f

(
q
p2+(2m+1)p

2 ,q
p2−(2m+1)p

2

)
+ q

p2−1
8 ψ(qp

2
)


×


p−3
2∑

m=0

q3
m2+m

2 f

(
q3

p2+(2m+1)p
2 ,q3

p2−(2m+1)p
2

)
+ q3

p2−1
8 ψ(q3p

2
)

 (mod 3). (3.3.29)

For any odd prime p, and 0 ≤m1,m2 ≤ (p − 3)/2, consider the congruence

m2
1 +m1

2
+3

m2
2 +m2

2
≡
4p2 − 4

8
(mod p),

which implies that

(2m1 +1)2 +3(2m2 +1)2 ≡ 0 (mod p). (3.3.30)

Since
(
−3
p

)
= −1, the only solution of the congruence (3.3.30) is m1 = m2 =

p − 1
2

.

Therefore, equating the coeXcients of qpn+
4p2−4

8 from both sides of (3.3.29), dividing

throughout by q
4p2−4

8 and then replacing qp by q, we obtain

∞∑
n=1

P BD3

(
4p2α

(
pn+

4p2 − 4
8

)
+2p2α

)
qn ≡ ψ(qp)ψ(q3p) (mod 3). (3.3.31)
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Equating the coeXcients of qpn on both sides of (3.3.31) and then replacing qp by q, we

obtain
∞∑
n=1

P BD3

(
4p2α+2n+2p2α+2

)
qn ≡ ψ(q)ψ(q3) (mod 3), (3.3.32)

which is the α +1 case of (3.3.27).

Extracting the terms involving qpn+j for 1 ≤ j ≤ p−1 in (3.3.31), we get (3.3.28).

Theorem 3.3.4. Let p be a prime with

(
−3
p

)
= −1. Then for any nonnegative integers α,

∞∑
n=1

P BD3

(
8p2αn+4p2α

)
qn ≡ 2ψ(q)ψ(q3) (mod 3), (3.3.33)

and for n ≥ 0, 1 ≤ j ≤ p − 1,

P BD3

(
8p2α+1(pn+ j) + 4p2α+2

)
≡ 0 (mod 3). (3.3.34)

Proof. Equation (3.3.9) is the α = 0 case of (3.3.33). If we assume that (3.3.33) holds for

some α ≥ 0, then, substituting (1.37) in (3.3.33),

∞∑
n=1

P BD3

(
8p2αn+4p2α

)
qn

≡ 2


p−3
2∑

m=0

q
m2+m

2 f

(
q
p2+(2m+1)p

2 ,q
p2−(2m+1)p

2

)
+ q

p2−1
8 ψ(qp

2
)


×


p−3
2∑

m=0

q3
m2+m

2 f

(
q3

p2+(2m+1)p
2 ,q3

p2−(2m+1)p
2

)
+ q3

p2−1
8 ψ(q3p

2
)

 (mod 3). (3.3.35)

For any odd prime p, and 0 ≤m1,m2 ≤ (p − 3)/2, consider the congruence

m2
1 +m1

2
+3

m2
2 +m2

2
≡
4p2 − 4

8
(mod p),

which implies that

(2m1 +1)2 +3(2m2 +1)2 ≡ 0 (mod p). (3.3.36)

Since
(
−3
p

)
= −1, the only solution of the congruence (3.3.36) is m1 = m2 =

p − 1
2

.
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Therefore, equating the coeXcients of qpn+
4p2−4

8 from both sides of (3.3.35), dividing

throughout by q
4p2−4

8 and then replacing qp by q, we obtain

∞∑
n=1

P BD3

(
8p2α

(
pn+

4p2 − 4
8

)
+4p2α

)
qn ≡ 2ψ(qp)ψ(q3p) (mod 3). (3.3.37)

Equating the coeXcients of qpn on both sides of (3.3.37) and then replacing qp by q, we

obtain

∞∑
n=1

P BD3

(
8p2α+2n+4p2α+2

)
qn ≡ 2ψ(q)ψ(q3) (mod 3), (3.3.38)

which is the α +1 case of (3.3.33).

Extracting the terms involving qpn+j for 1 ≤ j ≤ p − 1 in (3.3.37), we arrive at

(3.3.34).

3.3.3 Congruences modulo 6

Theorem 3.3.5. For each n ≥ 0,

P BD3(18n+15) ≡ 0 (mod 6), (3.3.39)
∞∑
n=0

P BD3(18n+3)qn ≡ 4f1f3 (mod 6). (3.3.40)

Proof. Invoking (1.31) in (3.3.3), we have

∞∑
n=0

P BD3(2n+1)qn ≡ 2
f 21 f

2
2 f3f

2
6

f9
(mod 18). (3.3.41)

Employing (1.74) into (3.3.41) and extracting the terms containing q3n+1, dividing through-

out by q and then replacing q3 by q from (3.3.41), we obtain

∞∑
n=0

P BD3(6n+3)qn ≡ 14
f 32 f

4
3

f6
+8q

f 31 f
8
6

f 53
(mod 18). (3.3.42)
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Invoking (1.31) in (3.3.42), we see that

∞∑
n=0

P BD3(6n+3)qn ≡ 4f 43 +4q
f 86
f 43

(mod 6). (3.3.43)

Congruence (3.3.39) follows by extracting the terms containing q3n+2 from the above

equation.

Extracting the terms containing q3n and replacing q3 by q from (3.3.43), we arrive

at
∞∑
n=0

P BD3(18n+3)qn ≡ 4f 41 (mod 6), (3.3.44)

which implies,
∞∑
n=0

P BD3(18n+3)qn ≡ 4f1f
3
1 (mod 6). (3.3.45)

Invoking (1.31) in (3.3.45) we get (3.3.40).

Theorem 3.3.6. If p ≥ 5 is a prime such that

(
−3
p

)
= −1. Then for all integers α ≥ 0,

∞∑
n=0

P BD3

(
18p2αn+3p2α

)
qn ≡ 4f1f3 (mod 6). (3.3.46)

Proof. From (3.3.40), we have

For a prime p ≥ 5 and −(p − 1)/2 ≤ k,m ≤ (p − 1)/2, consider

3k2 + k
2

+3× 3m
2 +m
2

≡
4p2 − 4
24

(mod p).

This is equivalent to

(6k +1)2 +3(6m+1)2 ≡ 0 (mod p).

Since
(
−3
p

)
= −1, the only solution of the above congruence is k = m = (±p − 1)/6.

Therefore, from Lemma (1.2.5),

∞∑
n=0

P BD3

(
18

(
p2n+4×

p2 − 1
24

)
+3

)
qn ≡ 4f1f3 (mod 6). (3.3.47)

Using (3.3.40), (3.3.47), and induction on α, we arrive at (3.3.46).
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Theorem 3.3.7. Let p ≥ 5 be prime and

(
−3
p

)
= −1. Then for all integers n ≥ 0 and α ≥ 1,

P BD3

(
18p2αn+ p2α−1(3p+18j)

)
≡ 0 (mod 6), (3.3.48)

where j = 1,2, . . . ,p − 1.

Proof. From Lemma (1.2.5) and Theorem (3.3.6), for each α ≥ 0,

∞∑
n=0

P BD3

(
18

(
p2n+4×

p2 − 1
24

)
+3

)
qn ≡ 4f1f3 (mod 6). (3.3.49)

That is,
∞∑
n=0

P BD3

(
18p2α+1n+3p2α+2

)
qn ≡ 4fpf3p (mod 6). (3.3.50)

Since there are no terms on the right of (3.3.50) where the powers of q are congruent to

1,2, . . . ,p − 1 modulo p,

P BD3

(
18p2α+1(pn+ j) + 3p2α+2

)
≡ 0 (mod 6), (3.3.51)

for j = 1,2, . . . ,p−1. Therefore, for j = 1,2, . . . ,p−1 and α ≥ 1, we obtain (3.3.48).
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3.3.4 Congruences and InVnite families of congruences modulo 4

Theorem 3.3.8. For each n ≥ 0,

P BD3(12n+7) ≡ 0 (mod 4), (3.3.52)

P BD3(12n+11) ≡ 0 (mod 4), (3.3.53)

P BD3(24n+17) ≡ 0 (mod 4), (3.3.54)

P BD3(36n+27) ≡ 0 (mod 4), (3.3.55)

P BD3(72n+39) ≡ 0 (mod 4), (3.3.56)

P BD3(72n+57) ≡ 0 (mod 4), (3.3.57)

P BD3(216n+153) ≡ 0 (mod 4), (3.3.58)
∞∑
n=0

P BD3(72n+3)qn ≡ 2f1 (mod 4), (3.3.59)

∞∑
n=0

P BD3(72n+15)qn ≡ 2f1f4 (mod 4). (3.3.60)

Proof. Invoking (1.31) in (3.3.3), we Vnd that

∞∑
n=0

P BD3(2n+1)qn ≡ 2
f1f

4
6

f 22 f9
(mod 8). (3.3.61)

Employing (1.57) into (3.3.61), we obtain

∞∑
n=0

P BD3(2n+1)qn ≡ 2
f 36 f

3
12

f2f4f
2
18

− 2q
f4f

5
6 f

2
36

f 22 f12f
3
18

(mod 8). (3.3.62)

Extracting the terms containing q2n+1, dividing throughout by q and then replacing q2

by q from the above equation, we get

∞∑
n=0

P BD3(4n+3)qn ≡ 6
f2f

5
3 f

2
18

f 21 f6f
3
9

(mod 8). (3.3.63)

But

6
f2f

5
3 f

2
18

f 21 f6f
3
9

≡ 6
f2f

5
3 f9

f 21 f6
(mod 8). (3.3.64)
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Invoking (1.31) in (3.3.64), we get

∞∑
n=0

P BD3(4n+3)qn ≡ 2f3f6f9 (mod 4). (3.3.65)

Congruences (3.3.52) and (3.3.53) follow by extracting the terms containing q3n+1 and

q3n+2 from (3.3.65).

Extracting the terms containing q3n and replacing q3 by q from (3.3.65). we obtain

∞∑
n=0

P BD3(12n+3)qn ≡ 2f1f2f3 (mod 4). (3.3.66)

Substituting (1.74) into (3.3.66), we Vnd that

∞∑
n=0

P BD3(12n+3)qn ≡ 2
f6f

4
9

f 218
− 2qf3f9f18 (mod 4). (3.3.67)

Congruence (3.3.55) obtained by extracting the terms containing q3n+2 from (3.3.67).

Extracting the terms containing q3n and replacing q3 by q from the above equation.

we arrive at
∞∑
n=0

P BD3(36n+3)qn ≡ 2
f2f

4
3

f 26
(mod 4). (3.3.68)

Using (1.31) in (3.3.68), we obtain

∞∑
n=0

P BD3(36n+3)qn ≡ 2f2 (mod 4). (3.3.69)

Congruences (3.3.56) and (3.3.59) follow by extracting the terms containing q2n and

q2n+1 from (3.3.69).

Extracting the terms containing q3n+1, dividing throughout by q and then replacing

q3 by q from (3.3.67), we obtain

∞∑
n=0

P BD3(36n+15)qn ≡ 2f1f3f6 (mod 4). (3.3.70)
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Employing (1.49) into (3.3.70), we Vnd that

∞∑
n=0

P BD3(36n+15)qn ≡ 2
f2f

2
8 f

4
12

f 24 f
2
24

− 2q
f 44 f

2
6 f

2
24

f2f
2
8 f

2
12

(mod 4). (3.3.71)

Extracting the terms containing q2n and then replacing q2 by q from (3.3.71), we obtain

∞∑
n=0

P BD3(72n+15)qn ≡ 2
f1f

2
4 f

4
6

f 22 f
2
12

(mod 4). (3.3.72)

Using (1.31) in (3.3.72) we arrive at (3.3.60).

Extracting the terms containing q2n and replacing q2 by q from (3.3.62), we get

∞∑
n=0

P BD3(4n+1)qn ≡ 2
f 33 f

3
6

f1f2f
2
9

(mod 8). (3.3.73)

Using (1.31) in (3.3.73), we have

∞∑
n=0

P BD3(4n+1)qn ≡ 2
f 33 f

3
6

f1f2f18
(mod 4). (3.3.74)

Substituting (1.42) into (3.3.74), we arrive at

∞∑
n=0

P BD3(4n+1)qn ≡ 2
f 34 f

5
6

f 32 f12f18
+2q

f 36 f
3
12

f2f4f18
(mod 4). (3.3.75)

Extracting the terms containing q2n and replacing q2 by q from (3.3.75), we obtain

∞∑
n=0

P BD3(8n+1)qn ≡ 2
f 32 f

5
3

f 31 f6f9
(mod 4). (3.3.76)

But
f 32 f

5
3

f 31 f6f9
≡
f 22 f3f6
f1f9

(mod 2). (3.3.77)

Which yields
∞∑
n=0

P BD3(8n+1)qn ≡ 2
f 22 f3f6
f1f9

(mod 4). (3.3.78)
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Using Jacobi’s triple product identity and ψ(q) = f 22
f1

in (1.33), we arrive at

f 22
f1

=
f6f

2
9

f3f18
+ q

f 218
f9
. (3.3.79)

Employing (3.3.79) into (3.3.78), we get

∞∑
n=0

P BD3(8n+1)qn ≡ 2
f 26 f9
f18

+2q
f3f6f

2
18

f 29
(mod 4). (3.3.80)

Congruence (3.3.54) obtained by extracting the terms containing q3n+2 from the above

equation.

Extracting the terms containing q3n+1, dividing throughout by q and then replacing

q3 by q from (3.3.80), we obtain

∞∑
n=0

P BD3(24n+9)qn ≡ 2
f1f2f

2
6

f 23
(mod 4). (3.3.81)

Using (1.31) in (3.3.81), we have

∞∑
n=0

P BD3(24n+9)qn ≡ 2f1f2f6 (mod 4). (3.3.82)

Substituting (1.74) into (3.3.82), we obtain

∞∑
n=0

P BD3(24n+9)qn ≡ 2
f 26 f

4
9

f3f
2
18

− 2qf6f9f18 (mod 4). (3.3.83)

Congruence (3.3.57) follows from (3.3.83) and extracting the terms containing q3n and

replacing q3 by q from the above equation. we Vnd that

∞∑
n=0

P BD3(72n+9)qn ≡ 2
f 22 f

4
3

f1f
2
6

(mod 4). (3.3.84)

Using (1.31) in (3.3.84), we get

∞∑
n=0

P BD3(72n+9)qn ≡ 2
f 22
f1
≡ 2ψ(q) (mod 4). (3.3.85)
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Substituting (1.33) into (3.3.85) and extracting the terms containing q3n+2, we arrive at

(3.3.58).

Theorem 3.3.9. For any prime p ≥ 5, α ≥ 0 and n ≥ 0,

∞∑
n=0

P BD3

(
72p2αn+3p3α

)
qn ≡ 2f1 (mod 4). (3.3.86)

Proof. Employing Lemma (1.2.5) into (3.3.59), it can be see that

∞∑
n=0

P BD3

(
72

(
pn+

p2 − 1
24

)
+3

)
qn ≡ 2fp (mod 4), (3.3.87)

which implies that

∞∑
n=0

P BD3

(
72p2n+3p3

)
qn ≡ 2f1 (mod 4). (3.3.88)

Therefore,

P BD3

(
72p2n+3p3

)
≡ P BD3(72n+3) (mod 4).

Using the above relation and by induction on α, we arrive at (3.3.86).

Theorem 3.3.10. For any prime p ≥ 5, α ≥ 0, n ≥ 0 and l = 1,2, ...p − 1,

P BD3

(
72p2α(pn+ l) + 3p3α

)
≡ 0 (mod 4). (3.3.89)

Proof. Combining (3.3.87) with Theorem (3.3.9), we derive that for α ≥ 0,

∞∑
n=0

P BD3

(
72p2α+1n+3p3α

)
≡ 2fp (mod 4).

Therefore, it follows that

∞∑
n=0

P BD3

(
72p2α+1(pn+ l) + 3p3α

)
≡ 0 (mod 4).

where l = 1,2, ...,p − 1, we obtain (3.3.89).
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Theorem 3.3.11. If p ≥ 5 is a prime such that

(
−4
p

)
= −1. Then for all integers α ≥ 0,

∞∑
n=0

P BD3

(
72p2αn+15p2α

)
qn ≡ 2f1f4 (mod 4). (3.3.90)

Proof. From (3.3.60), we have

For a prime p ≥ 5 and −(p − 1)/2 ≤ k,m ≤ (p − 1)/2, consider

3k2 + k
2

+4× 3m
2 +m
2

≡
5p2 − 5
24

(mod p).

This is equivalent to

(6k +1)2 +4(6m+1)2 ≡ 0 (mod p).

Since
(
−4
p

)
= −1, the only solution of the above congruence is k = m = (±p − 1)/6.

Therefore, from Lemma (1.2.5),

∞∑
n=0

P BD3

(
72

(
p2n+5×

p2 − 1
24

)
+15

)
qn ≡ 2f1f4 (mod 4). (3.3.91)

Using (3.3.60), (3.3.91), and induction on α, we get (3.3.90).

Theorem 3.3.12. Let p ≥ 5 be prime and

(
−4
p

)
= −1. Then for all integers n ≥ 0 and

α ≥ 1,

P BD3

(
72p2αn+ p2α−1(15p+72j)

)
≡ 0 (mod 4), (3.3.92)

where j = 1,2, . . . ,p − 1.

Proof. From Lemma (1.2.5) and Theorem (3.3.11), for each α ≥ 0,

∞∑
n=0

P BD3

(
72

(
p2n+5×

p2 − 1
24

)
+15

)
qn ≡ 2f1f4 (mod 4). (3.3.93)

That is,
∞∑
n=0

P BD3

(
72p2α+1n+15p2α+2

)
qn ≡ 2fpf4p (mod 4). (3.3.94)

Since there are no terms on the right of (3.3.94) where the powers of q are congruent to
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1,2, . . . ,p − 1 modulo p,

P BD3

(
72p2α+1(pn+ j) + 15p2α+2

)
≡ 0 (mod 4), (3.3.95)

for j = 1,2, . . . ,p−1. Therefore, for j = 1,2, . . . ,p−1 and α ≥ 1, we arrive at (3.3.92).



Chapter 4

ANDREWS’ SINGULAR
OVERPARTITIONS

4.1 Introduction

In the introductory chapter, we deVned the deVnition of Andrews’ singular overparti-

tion functions denoted by Ck,i(n). Chen et al. [16] have proved some congruences mod-

ulo 2, 3, 4, and 8 for C3,1(n). They also proved some congruence for C4,1(n), C6,1(n)

and C6,2(n) modulo powers of 2 and 3. More recently Ahmed and Baruah [1] have

found some new congruences for C3,1(n), C8,2(n), C12,4(n), C24,8(n) and C48,16(n)

modulo 18, 36. Chen [15] has also found some congruences modulo powers of 2 for

C3,1(n), C4,1(n). Yao [80] has proved congruences modulo 16, 32, 64 for C3,1(n).

Naika at el. [49] have found some congruences modulo 6, 12, 16, 18, 24, 48, and 72

for C3,1(n).

4.2 Andrews’ singular overpartitions with odd parts

In this section, we deVne the function COδ,i(n), the number of singular overpartitions

of n into odd parts such that no part is divisible by δ and only parts ≡ ±i (mod δ) may

be overlined. For 0 < i < δ, the generating function of COδ,i(n) is deVne by

∞∑
n=0

COδ,i(n)q
n =

(qδ;q2δ)∞(−qi ;qδ)∞(−qδ−i ;qδ)∞
(q;q2)∞(−q2i ;q2δ)∞(−q2(δ−i);q2δ)∞

. (4.2.1)

Reference [56], [57] and [54] is based on this chapter

71
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4.2.1 Congruences modulo 8 and 16

Theorem 4.2.1. For each integer n ≥ 0,

CO3,1(12n+7) ≡ 0 (mod 8), (4.2.2)

CO3,1(24n+19) ≡ 0 (mod 16), (4.2.3)
∞∑
n=0

CO3,1(24n+7)qn ≡ ψ(q)f4 (mod 16). (4.2.4)

Proof. Setting δ = 3 and i = 1 in (4.2.1), we Vnd that

∞∑
n=0

CO3,1(n)q
n =

(q2;q2)3∞(q
3;q3)2∞(q

12;q12)
(q6;q6)3∞(q4;q4)∞(q;q)2∞

. (4.2.5)

Substituting (1.47) into (4.2.5), we obtain

∞∑
n=0

CO3,1(n)q
n =

f 34 f
3
12

f 22 f
2
6 f8f24

+2q
f8f24
f2f6

, (4.2.6)

which yields, for each n ≥ 0,

∞∑
n=0

CO3,1(2n+1)qn = 2
f4f12
f1f3

. (4.2.7)

Employing (1.73) into (4.2.7), we have

∞∑
n=0

CO3,1(2n+1)qn = 2
f 212f

4
18

f 43 f
2
36

+2q
f 26 f

3
9 f12f36
f 53 f

2
18

+4q2
f6f12f18f36

f 43
. (4.2.8)

Extracting the terms involving q3n in the above equation and replacing q3 by q, we get

∞∑
n=0

CO3,1(6n+1)qn = 2
f 24 f

4
6

f 41 f
2
12

. (4.2.9)

Using (1.31) in (4.2.9), we obtain

∞∑
n=0

CO3,1(6n+1)qn ≡ 2f 22 (mod 8). (4.2.10)
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Congruence (4.2.2) follows by extracting the terms involving q2n+1 from (4.2.10).

Collecting the terms involving q2n from (4.2.10) and replacing q2 by q, we get

∞∑
n=0

CO3,1(12n+1) ≡ 2f 21 (mod 8). (4.2.11)

Substituting (1.41) into (4.2.9), we Vnd that

∞∑
n=0

CO3,1(6n+1)qn = 2
f 164 f 46
f 142 f 48 f

2
12

+8q
f 44 f

4
6 f

4
8

f 102 f 212
, (4.2.12)

which implies that
∞∑
n=0

CO3,1(12n+7)qn = 8
f 42 f

4
3 f

4
4

f 101 f 26
. (4.2.13)

Using (1.31) in (4.2.13), we get

∞∑
n=0

CO3,1(12n+7)qn ≡ 8f 72 (mod 16). (4.2.14)

Extracting the terms involving q2n+1 from (4.2.14) we get (4.2.3).

Collecting the terms involving q2n from (4.2.14) and replacing q2 by q, reduces to

∞∑
n=0

CO3,1(24n+7)qn ≡ 8f 71 (mod 16), (4.2.15)

Using (1.31) in (4.2.15), we get

∞∑
n=0

CO3,1(24n+7)qn ≡ 8
(
f 22
f1

)
f4 (mod 16). (4.2.16)

Using (1.37) in (4.2.16), we arrive at (4.2.4).

Theorem 4.2.2. For any prime p ≡ 5 (mod 6), α ≥ 1, and n ≥ 0,

∞∑
n=0

CO3,1(2p
2αn+ p2α)qn ≡ 2ψ(q)ψ(q3) (mod 4). (4.2.17)
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Proof. Using (1.31) in (4.2.7), we obtain

∞∑
n=0

CO3,1(2n+1)qn ≡ 2
f 22 f

2
6

f1f3
(mod 4). (4.2.18)

Using (1.37) in (4.2.18), we get

∞∑
n=0

CO3,1(2n+1)qn ≡ 2ψ(q)ψ(q3) (mod 4). (4.2.19)

DeVne
∞∑
n=0

g(n)qn = ψ(q)ψ(q3). (4.2.20)

Combining (4.2.19) and (4.2.20), we Vnd that

∞∑
n=0

CO3,1(2n+1)qn ≡ 2
∞∑
n=0

g(n)qn (mod 4). (4.2.21)

Now, we consider the congruence equation

k2 + k
2

+3 · m
2 +m
2

≡
4p2 − 4

8
(mod p), (4.2.22)

which is equivalent to

(2k +1)2 +3 · (2m+1)2 ≡ 0 (mod p),

where 0 ≤ k,m ≤ p−1
2 and p is a prime such that (−3p ) = −1. Since (−3p ) = −1 for

p ≡ 5 (mod 6), the congruence relation (4.2.22) holds if and only if both k =m = p−1
2 .

Therefore, if we substitute (1.37) into (4.2.20) and then extracting the terms in which

the powers of q are congruent to p2−1
2 modulo p and then divide by q

p2−1
2 , we Vnd that

∞∑
n=0

g

(
pn+

p2 − 1
2

)
qpn = ψ(qp

2
)ψ(q3p

2
),

which implies that
∞∑
n=0

g

(
p2n+

p2 − 1
2

)
qn = ψ(q)ψ(q3) (4.2.23)
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and for n ≥ 0,

g

(
p2n+ pi +

p2 − 1
2

)
= 0, (4.2.24)

where i is an integer and 1 ≤ i ≤ p − 1. By induction, we see that for n ≥ 0 and α ≥ 0,

g

(
p2αn+

p2α − 1
2

)
= g(n). (4.2.25)

Replacing n by p2αn+ p2α−1
2 in (4.2.21), we arrive at (4.2.17).

Theorem 4.2.3. For any prime p ≡ 5 (mod 6), α ≥ 1, and n ≥ 0,

∞∑
n=0

CO3,1(24p
2αn+7p2α)qn ≡ (−1)α.

±p−1
6 ψ(q)f4 (mod 16). (4.2.26)

Proof. DeVne
∞∑
n=0

a(n)qn = ψ(q)f4. (4.2.27)

Combining (4.2.4) and (4.2.27), we see that

∞∑
n=0

CO3,1(24n+7)qn ≡
∞∑
n=0

a(n)qn (mod 16). (4.2.28)

Now, we consider the congruence equation

k2 + k
2

+4 · 3m
2 +m
2

≡
7p2 − 7
24

(mod p), (4.2.29)

which is equivalent to

3 · (2k +1)2 + (12m+2)2 ≡ 0 (mod p),

where −(p−1)2 ≤ m ≤ p−1
2 , 0 ≤ k ≤ p−1

2 and p is a prime such that (−3p ) = −1. Since

(−3p ) = −1 for p ≡ 5 (mod 6), the congruence relation (4.2.29) holds if and only if

m = ±p−16 and k = p−1
2 . Therefore, if we substitute (1.37) and (1.36) into (4.2.27) and

then extracting the terms in which the powers of q are pn+ 7p2−7
24 , we arrive at

∞∑
n=0

a

(
pn+

7p2 − 7
24

)
qpn+

7p2−7
24 = (−1)

±p−1
6 q

7p2−7
24 ψ(qp

2
)f4p2 . (4.2.30)
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Dividing by q
7p2−7
24 on both sides of (4.2.30) and on simpliVcation, we Vnd that

∞∑
n=0

a

(
pn+

7p2 − 7
24

)
qn = (−1)

±p−1
6 ψ(qp)f4p,

which implies that

∞∑
n=0

a

(
p2n+

7p2 − 7
24

)
qn = (−1)

±p−1
6 ψ(q)f4 (4.2.31)

and for n ≥ 0,

a

(
p2n+ pi +

7p2 − 7
24

)
= 0, (4.2.32)

where i is an integer and 1 ≤ i ≤ p − 1. Combining (4.2.27) and (4.2.31), we see that for

n ≥ 0,

a

(
p2n+

7p2 − 7
24

)
= (−1)

±p−1
6 a(n). (4.2.33)

By (4.2.33) and mathematical induction, we deduce that for n ≥ 0 and α ≥ 0,

a

(
p2αn+

7p2α − 7
24

)
= (−1)α.

±p−1
6 a(n). (4.2.34)

Replacing n by p2αn+ 7p2α−7
24 in (4.2.28), we arrive at (4.2.26).

4.2.2 Congruences modulo 8

Theorem 4.2.4. For all n ≥ 0 and α ≥ 0,

CO3,1(36n+21) ≡ 0 (mod 8), (4.2.35)

CO3,1(36n+3) ≡ CO3,1(12n+1) (mod 8), (4.2.36)

CO3,1(4 · 3α+3n+7 · 3α+2) ≡ 0 (mod 8), (4.2.37)

CO3,1(36n+33) ≡ 0 (mod 8), (4.2.38)

CO3,1(18n+15) ≡ CO3,1(6n+5) (mod 8). (4.2.39)

Proof. Equating the coeXcients of q3n+1 from both sides of (4.2.8), dividing by q and
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then replacing q3 by q, we arrive at

∞∑
n=0

CO3,1(6n+3)qn = 2
f 22 f

3
3 f4f12
f 51 f

2
6

. (4.2.40)

Using (1.31) in (4.2.40), we obtain

∞∑
n=0

CO3,1(6n+3)qn ≡ 2
f4f12
f1f3

(mod 8). (4.2.41)

Substituting (1.73) into (4.2.41), we get

∞∑
n=0

CO3,1(6n+3)q
n ≡ 2

f 212f
4
18

f 43 f
2
36

+2q
f 26 f

3
9 f12f36
f 53 f

2
18

+4q2
f6f12f18f36

f 43
(mod 8), (4.2.42)

which implies that for all n ≥ 0,

∞∑
n=0

CO3,1(18n+3)qn ≡ 2
f 24 f

4
6

f 41 f
2
12

(mod 8). (4.2.43)

Using (1.31) in (4.2.43), we have

∞∑
n=0

CO3,1(18n+3)qn ≡ 2f 22 (mod 8). (4.2.44)

Equating the coeXcients of q2n+1 from both sides of (4.2.44), dividing by q and then

replacing q2 by q, we arrive at (4.2.35).

From (4.2.44), we get

∞∑
n=0

CO3,1(36n+3)qn ≡ 2f 21 (mod 8). (4.2.45)

In view of congruences (4.2.45) and (4.2.11), we obtain (4.2.36).

Extracting the terms involving q3n+1 from (4.2.42), dividing by q and then replacing

q3 by q, we have

∞∑
n=0

CO3,1(18n+9)qn ≡ 2
f 22 f

3
3 f4f12
f 51 f

2
6

(mod 8). (4.2.46)
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Using (1.31) in (4.2.46), we get

∞∑
n=0

CO3,1(18n+9)qn ≡ 2
f4f12
f1f3

(mod 8). (4.2.47)

In view of congruences (4.2.47) and (4.2.41), we get

CO3,1(18n+9) ≡ CO3,1(6n+3) (mod 8). (4.2.48)

Utilizing (4.2.48) and by mathematical induction on α, we arrive at

CO3,1(2 · 3α+2n+3α+2) ≡ CO3,1(6n+3) (mod 8). (4.2.49)

Using (4.2.35) in (4.2.49), we obtain (4.2.37).

From (4.2.42), we have

∞∑
n=0

CO3,1(18n+15)qn ≡ 4
f2f4f6f12
f 41

(mod 8). (4.2.50)

Using (1.31) in (4.2.50), we get

∞∑
n=0

CO3,1(18n+15)qn ≡ 4f2f6f12 (mod 8). (4.2.51)

Congruence (4.2.38) follows by extracting the terms involving q2n+1 from (4.2.51).

Extracting the terms involving q3n+2 from (4.2.8), dividing by q2 and then replacing

q3 by q, we obtain
∞∑
n=0

CO3,1(6n+5)qn = 4
f2f4f6f12
f 41

. (4.2.52)

Using (1.31) in (4.2.52), we have

∞∑
n=0

CO3,1(6n+5)qn ≡ 4f2f6f12 (mod 8). (4.2.53)

Combining (4.2.51) and (4.2.53), we arrive at (4.2.39).
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Theorem 4.2.5. For all n ≥ 0 and α ≥ 0,

CO3,1(12n+7) ≡ 0 (mod 8), (4.2.54)

CO3,1(12n+11) ≡ 0 (mod 8), (4.2.55)

CO3,1(108n+63) ≡ 0 (mod 8), (4.2.56)

CO3,1(108n+99) ≡ 0 (mod 8), (4.2.57)

CO3,1(972n+567) ≡ 0 (mod 8), (4.2.58)

CO3,1(972n+891) ≡ 0 (mod 8), (4.2.59)

CO3,1(12 · 9α+2n+3 · 9α+2) ≡ CO3,1(108n+27) (mod 8). (4.2.60)

Proof. Substituting (1.50) into (4.2.7), we obtain

∞∑
n=0

CO3,1(2n+1)qn = 2
f 28 f

6
12

f 22 f
4
6 f

2
24

+2q
f 64 f

2
24

f 42 f
2
6 f

2
8

, (4.2.61)

which implies,

∞∑
n=0

CO3,1(4n+3)qn = 2
f 62 f

2
12

f 41 f
2
3 f

2
4

. (4.2.62)

Using (1.31) in (4.2.62), we get

∞∑
n=0

CO3,1(4n+3)qn ≡ 2
f 212
f 23

(mod 8). (4.2.63)

Extracting the terms involving q3n+1 and q3n+2 from (4.2.63) we get (4.2.54) and (4.2.55).

Extracting the terms involving q3n from (4.2.63) and replacing q3 by q, we have

∞∑
n=0

CO3,1(12n+3)qn ≡ 2
f 24
f 21

(mod 8). (4.2.64)

Substituting (1.73) into (4.2.64) and equating the terms q3n+2, we obtain

∞∑
n=0

CO3,1(36n+27)qn ≡ 2
f 42 f

6
3 f

2
12

f 81 f
4
6

(mod 8). (4.2.65)
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Using (1.31) in (4.2.65), we have

∞∑
n=0

CO3,1(36n+27)qn ≡ 2f 63 (mod 8). (4.2.66)

Congruences (4.2.56) and (4.2.57) follow by extracting the terms involving q3n+1 and

q3n+2 from (4.2.65).

Extracting the terms involving q3n from (4.2.66) and replacing q3 by q, we have

∞∑
n=0

CO3,1(108n+27)qn ≡ 2f 61 (mod 8), (4.2.67)

which implies,

∞∑
n=0

CO3,1(108n+27)qn ≡ 2f 21 f
2
2 (mod 8). (4.2.68)

Employing (1.74) into (4.2.68) and equating the terms involving q3n+2, we obtain

∞∑
n=0

CO3,1(324n+243)qn ≡ 2f 23 f
2
6 (mod 8). (4.2.69)

Using (1.31) in (4.2.69), we get

∞∑
n=0

CO3,1(324n+243)qn ≡ 2f 63 (mod 8). (4.2.70)

Extracting the terms involving q3n+1 and q3n+2from (4.2.70), we arrive at (4.2.58) and

(4.2.59).

Extracting the terms involving q3n from (4.2.70) and replacing q3 by q, we obtain

∞∑
n=0

CO3,1(972n+243)qn ≡ 2f 61 (mod 8). (4.2.71)

In view of congruences (4.2.71) and (4.2.67), we get

CO3,1(972n+243) ≡ CO3,1(108n+27) (mod 8). (4.2.72)
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Utilizing (4.2.72) and by mathematical induction on α, we arrive at (4.2.60).

Theorem 4.2.6. For all n ≥ 0 and α ≥ 0,

CO3,1(24n+14) ≡ 0 (mod 8), (4.2.73)

CO3,1(4 · 3α+2n+2 · 3α+2) ≡ 3α+1CO3,1(12n+6) (mod 8), (4.2.74)

CO3,1(108n+27) ≡ 3CO3,1(24n+6) (mod 8), (4.2.75)

CO3,1(72n+6) ≡ 3CO3,1(24n+2) (mod 8), (4.2.76)

CO3,1(72n+42) ≡ 0 (mod 8), (4.2.77)

CO3,1(72n+66) ≡ 0 (mod 8), (4.2.78)

CO3,1(24n+22) ≡ 0 (mod 8), (4.2.79)

CO3,1(36n+30) ≡ CO3,1(12n+10) (mod 8). (4.2.80)

Proof. From (4.2.6), we have

∞∑
n=0

CO3,1(2n)q
n =

f 32 f
3
6

f 21 f
2
3 f4f12

. (4.2.81)

Substituting (1.50) into (4.2.81) and equating the terms q2n+1, we get

∞∑
n=0

CO3,1(4n+2)qn = 2
f 32 f

3
6

f 31 f
3
3

. (4.2.82)

Using (1.31) in (4.2.82), we obtain

∞∑
n=0

CO3,1(4n+2)qn ≡ 2
f 36
f 33

(f1f2) (mod 8). (4.2.83)

Employing (1.74) into (4.2.83), we have

∞∑
n=0

CO3,1(4n+2)qn ≡ 2
f 46 f

4
9

f 43 f
2
18

− 2q
f 36 f9f18
f 33

− 4q2
f 26 f

4
18

f 23 f
2
9

(mod 8), (4.2.84)

which implies that

∞∑
n=0

CO3,1(12n+2)qn ≡ 2
f 42 f

4
3

f 41 f
2
6

(mod 8). (4.2.85)
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Using (1.31) in (4.2.85), we have

∞∑
n=0

CO3,1(12n+2)qn ≡ 2f 22 (mod 8). (4.2.86)

Congruence (4.2.73) follows by extracting the terms involving q2n+1 from (4.2.86).

Extracting the terms involving q2n from (4.2.86), we arrive at

∞∑
n=0

CO3,1(24n+2) ≡ 2f 21 (mod 8). (4.2.87)

Extracting the terms involving q3n+1 from (4.2.84), dividing by q and then replacing

q3n by q, we have

∞∑
n=0

CO3,1(12n+6)qn ≡ 6
f 32 f3f6
f 31

(mod 8). (4.2.88)

Using (1.31) in (4.2.88), we get

∞∑
n=0

CO3,1(12n+6)qn ≡ 6(f1f2)f3f6 (mod 8). (4.2.89)

Substituting (1.74) into (4.2.89), we arrive at

∞∑
n=0

CO3,1(12n+6)qn ≡ 6
f 26 f

4
9

f 218
− 6qf3f6f9f18 − 12q2

f 23 f
4
18

f 29
(mod 8), (4.2.90)

which implies that for all n ≥ 0

∞∑
n=0

CO3,1(36n+18)qn ≡ 2f1f2f3f6 (mod 8). (4.2.91)

In the view of congruences (4.2.91) and (4.2.89), we have

CO3,1(36n+18) ≡ 3CO3,1(12n+6) (mod 8). (4.2.92)

Utilizing (4.2.92) and by mathematical induction on α, we arrive at (4.2.74).
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Employing (1.49) into (4.2.89), we get

∞∑
n=0

CO3,1(12n+6)qn ≡ 6
f 22 f

2
8 f

4
12

f 24 f
2
24

− 6q
f 44 f

2
6 f

2
24

f 28 f
2
12

(mod 8). (4.2.93)

Extracting the terms involving q2n from (4.2.93) and replacing q2 by q, we obtain

∞∑
n=0

CO3,1(24n+6)qn ≡ 6
f 21 f

2
4 f

4
6

f 22 f
2
12

(mod 8). (4.2.94)

Using (1.31) in (4.2.94), we have

∞∑
n=0

CO3,1(24n+6)qn ≡ 6f 21 f
2
2 (mod 8). (4.2.95)

Combining (4.2.95) and (4.2.68), we obtain (4.2.75).

Extracting the terms involving q3n from (4.2.90) and then replacing q3 by q, we get

∞∑
n=0

CO3,1(36n+6)qn ≡ 6
f 22 f

4
3

f 26
(mod 8). (4.2.96)

Using (1.31) in (4.2.96), we have

∞∑
n=0

CO3,1(36n+6)qn ≡ 6f 22 (mod 8). (4.2.97)

Congruence (4.2.77) follows by extracting the terms involving q2n+1 from (4.2.97).

Extracting the terms involving q2n from (4.2.97) and then replacing q2 by q, we get

∞∑
n=0

CO3,1(72n+6)qn ≡ 6f 21 (mod 8). (4.2.98)

Combining the equations (4.2.98) and (4.2.87), we arrive at (4.2.76).

Equating the coeXcients of q3n+2 from both sides of (4.2.90), dividing by q2 and

then replacing q3 by q, we have

∞∑
n=0

CO3,1(36n+30)qn ≡ 4
f 21 f

4
6

f 23
(mod 8). (4.2.99)
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Using (1.31) in (4.2.99), we obtain

∞∑
n=0

CO3,1(36n+30)qn ≡ 4f2f
3
6 (mod 8). (4.2.100)

Extracting the terms involving q2n+1 from (4.2.100), we arrive at (4.2.78).

Equating the coeXcients of q3n+2 from both sides of (4.2.84), dividing by q2 and

then replacing q3 by q,

∞∑
n=0

CO3,1(12n+10)qn ≡ 4
f 22 f

4
6

f 21 f
2
3

(mod 8). (4.2.101)

Using (1.31) in (4.2.101), we have

∞∑
n=0

CO3,1(24n+22)qn ≡ 4f2f
3
6 (mod 8). (4.2.102)

Congruence (4.2.79) follows by extracting the terms involving q2n+1 from (4.2.102).

In the view of congruences (4.2.102) and (4.2.100), we get (4.2.80).

4.2.3 Congruences modulo 6

Theorem 4.2.7. For all integers n ≥ 0,

CO3,1(12n+6) ≡ 0 (mod 6), (4.2.103)

CO3,1(12n+10) ≡ 0 (mod 6). (4.2.104)

Proof. Using (1.31) in (4.2.82), we obtain

∞∑
n=0

CO3,1(4n+2)qn ≡ 2
f 46
f 43
. (4.2.105)

Extracting the terms involving q3n+1 and q3n+2 from (4.2.105), we arrive at (4.2.103) and

(4.2.104).
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4.3 Congruences for Andrews’ singular overpartitions with-

out multiples of k

In this section, we deVne the function A
k
δ,i(n), the number of singular overpartitions of

n without multiples of k in which no part divisible by δ and only parts ≡ ±i (mod δ)

may be overlined. For 0 < i < δ, the generating function of A
k
δ,i(n) is

∞∑
n=0

A
k
δ,i(n)q

n =
f (qi ;qδ−i)(qk;qk)∞
f (qki ;qk(δ−i))(q;q)∞

. (4.3.1)

4.3.1 Congruences modulo 22 for A
3
4,1(n)

Theorem 4.3.1. For each integer n ≥ 0,

A
3
4,1(4n+3) ≡0 (mod 22), (4.3.2)

∞∑
n=0

A
3
4,1(4n+1)qn ≡2f2f3 (mod 22). (4.3.3)

Proof. Setting δ = 4, i = 1 and k = 3 in (4.3.1), we Vnd that

∞∑
n=0

A
3
4,1(n)q

n =
(q2;q2)2∞(q

3;q3)2∞
(q;q)2∞(q6;q6)2∞

. (4.3.4)

Substituting (1.47) into (4.3.4), we obtain

∞∑
n=0

A
3
4,1(n)q

n =
f 44 f

2
12

f 32 f6f8f24
+2q

f4f8f24
f 22 f12

, (4.3.5)

which yields, for each n ≥ 0,

∞∑
n=0

A
3
4,1(2n+1)qn = 2

f2f4f12
f 21 f6

. (4.3.6)

Using (1.31) in (4.3.6), we Vnd that

∞∑
n=0

A
3
4,1(2n+1)qn ≡ 2f4f6 (mod 22). (4.3.7)
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Congruence (4.3.2) follows by extracting the terms involving q2n+1 from (4.3.7).

Collecting the terms involving q2n from (4.3.7) and replacing q2 by q, we get (4.3.3).

Theorem 4.3.2. For any prime p ≥ 5 with (−6p ) = −1, α ≥ 1 and n ≥ 0,

∞∑
n=0

A
3
4,1

(
4 · p2αn+

5 · p2α +1
6

)
qn ≡ 2f2f3 (mod 22). (4.3.8)

Proof. DeVne
∞∑
n=0

f (n)qn = f2f3 (mod 22). (4.3.9)

Combining (4.3.3) and (4.3.9), we Vnd that

∞∑
n=0

A
3
4,1(4n+1)qn ≡ 2

∞∑
n=0

f (n)qn (mod 22). (4.3.10)

Now, we consider the congruence equation

2 · 3k
2 + k
2

+3 · 3m
2 +m
2

≡
5p2 − 5
24

(mod p), (4.3.11)

which is equivalent to

(2 · (6k +1))2 +6 · (6m+1)2 ≡ 0 (mod p).

where −(p−1)2 ≤ k,m ≤ p−1
2 and p is a prime such that (−6p ) = −1. Since (−6p ) = −1

for p ≥ 5, the congruence relation (4.3.11) holds if and only if both k = m = ±p−1
6 .

Therefore, if we substitute (1.36) into (4.3.9) and then extracting the terms in which the

powers of q are congruent to 5 · p
2−1
24 modulo p and then divide by q5·

p2−1
24 , we Vnd that

∞∑
n=0

f

(
pn+5 ·

p2 − 1
24

)
qpn = f2pf3p, (4.3.12)

which implies that
∞∑
n=0

f

(
p2n+5 ·

p2 − 1
24

)
qn = f2f3 (4.3.13)
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and for n ≥ 0,

f

(
p2n+ pi +5 ·

p2 − 1
24

)
= 0, (4.3.14)

where i is an integer and 1 ≤ i ≤ p − 1. By induction, we see that for n ≥ 0 and α ≥ 0,

f

(
p2αn+5 ·

p2α − 1
24

)
= f (n). (4.3.15)

Replacing n by p2αn+5 · p
2α−1
24 in (4.3.10), we arrive at (4.3.8).

Theorem 4.3.3. For any prime p ≥ 5 with (−6p ) = −1, α ≥ 1 and n ≥ 0,

A
3
4,1

(
4 · p2α+2n+4 · p2α+1i +

5 · p2α+2 +1
6

)
≡ 0 (mod 22).

where i = 1,2, ...,p − 1.

Proof. Replacing n by p2n + pi + 5·p2−5
24 in (4.3.15) and using (4.3.14), we Vnd that for

n ≥ 0 and α ≥ 0,

f

(
p2α+2n+ p2α+1i +

5 · p2α+2 − 5
24

)
= 0. (4.3.16)

Comparing the coeXcients of qn from the both sides of (4.3.10), we see that for n ≥ 0,

A
3
4,1(4n+1) ≡ 2f (n) (mod 22). (4.3.17)

The result follows from (4.3.16) and (4.3.17).

4.3.2 InVnite families of congruences modulo 22 and 23 for A
5
4,1(n)

Theorem 4.3.4. For all n ≥ 0 and α ≥ 0,

A
5
4,1

(
22α+5n+

7 · 22α+3 +1
3

)
≡ 0 (mod 22), (4.3.18)

A
5
4,1(8n+5) ≡ 0 (mod 22), (4.3.19)

A
5
4,1(16n+9) ≡ 0 (mod 22), (4.3.20)

A
5
4,1(8(4n+ i) + 7) ≡ 0 (mod 22), (4.3.21)
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where i=1, 2, 3.

A
5
4,1(32(5n+ i) + 15) ≡ 0 (mod 22), (4.3.22)

where i=1, 2, 3, 4.

A
5
4,1(160n+7) ≡ A5

4,1(16n+1) (mod 22). (4.3.23)

Proof. Setting δ = 4, i = 1 and k = 5 in (4.3.1), we Vnd that

∞∑
n=0

A
5
4,1(n)q

n =
(q2;q2)2∞(q

5;q5)2∞
(q;q)2∞(q10;q10)2∞

. (4.3.24)

Employing (1.52) into (4.3.24), we get

∞∑
n=0

A
5
4,1(n)q

n =
f 28 f

4
20

f 22 f
2
10f

2
40

+ q2
f 64 f

2
40

f 42 f
2
8 f

2
20

+2q
f 34 f20

f 32 f10
. (4.3.25)

Extracting the terms involving q2n+1 from (4.3.25), dividing by q and then replacing q2

by q, we obtain
∞∑
n=0

A
5
4,1(2n+1)qn = 2

f 32 f10
f 31 f5

. (4.3.26)

Using (1.31) in (4.3.26), we Vnd that

∞∑
n=0

A
5
4,1(2n+1)qn ≡ 2f 31 f5 (mod 22). (4.3.27)

Employing (1.59) into (4.3.27), we obtain

∞∑
n=0

A
5
4,1(2n+1)qn ≡ 2

f 22 f4f
2
10

f20
+2qf2f

3
10 (mod 22), (4.3.28)

which implies that

∞∑
n=0

A
5
4,1(4n+3)qn ≡ 2f1f

3
5 (mod 22). (4.3.29)
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Substituting (1.58) into (4.3.29), we get

∞∑
n=0

A
5
4,1(4n+3)qn ≡ 2f 32 f10 +2q

f 22 f
2
10f20
f4

(mod 22). (4.3.30)

Extracting the terms involving q2n from (4.3.30) and then replacing q2 by q, we obtain

∞∑
n=0

A
5
4,1(8n+3)qn ≡ 2f 31 f5 (mod 22). (4.3.31)

In view of congruences (4.3.27) and (4.3.31), we arrive at

A
5
4,1(8n+3) ≡ A5

4,1(2n+1) (mod 22). (4.3.32)

Utilizing (4.3.32) and by mathematical induction on α, we get

A
5
4,1

(
2 · 4α+1n+ 2 · 4α+1 +1

3

)
≡ A5

4,1(2n+1) (mod 22). (4.3.33)

Utilizing (4.3.19) and (4.3.33), we obtain (4.3.18).

Collecting the terms involving q2n from (4.3.28) and replacing q2 by q, we have

∞∑
n=0

A
5
4,1(4n+1)qn ≡ 2

f 21 f2f
2
5

f10
(mod 22). (4.3.34)

Using (1.31) in (4.3.34), we Vnd that

∞∑
n=0

A
5
4,1(4n+1)qn ≡ 2f4 (mod 22), (4.3.35)

Congruences (4.3.19) and (4.3.20) follow by extracting the terms involving q2n+1 and

q4n+2 from both sides of (4.3.35).

Collecting the terms involving q4n from (4.3.35) and replacing q4 by q, we have

∞∑
n=0

A
5
4,1(16n+1)qn ≡ 2f1 (mod 22), (4.3.36)

Extracting the terms involving q2n+1 from (4.3.30), dividing by q and then replacing q2
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by q, we obtain
∞∑
n=0

A
5
4,1(8n+7)qn ≡ 2

f 21 f
2
5 f10
f2

(mod 22). (4.3.37)

Using (1.31) in (4.3.37), we get

∞∑
n=0

A
5
4,1(8n+7)qn ≡ 2f 25 f10 (mod 22), (4.3.38)

which implies,
∞∑
n=0

A
5
4,1(8n+7)qn ≡ 2f20 (mod 22). (4.3.39)

Congruence (4.3.21) follows by extracting the terms involving q4n+i from both sides of

(4.3.39).

Extracting the terms involving q4n from (4.3.39) and then replacing q4 by q, we

obtain
∞∑
n=0

A
5
4,1(32n+7)qn ≡ 2f5 (mod 22). (4.3.40)

Congruence (4.3.22) follows by extracting the terms involving q5n+i from both sides of

(4.3.40).

Extracting the terms involving q5n from (4.3.40) and then replacing q5 by q, we get

∞∑
n=0

A
5
4,1(160n+7)qn ≡ 2f1 (mod 22). (4.3.41)

In view of congruences (4.3.36) and (4.3.41), we obtain (4.3.23).

Theorem 4.3.5. For all n ≥ 0 and α ≥ 0,

A
5
4,1

(
2 · 52α+3n+ 14 · 52α+2 +1

3

)
≡ 0 (mod 22), (4.3.42)

A
5
4,1(10n+5) ≡ 0 (mod 22), (4.3.43)

A
5
4,1(10n+9) ≡ 0 (mod 22), (4.3.44)

A
5
4,1(10(5n+ i) + 7) ≡ 0 (mod 22), (4.3.45)

where i=1, 2, 3, 4.
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Proof. Employing (1.34) into (4.3.27), we get

∞∑
n=0

A
5
4,1(2n+1)qn ≡ 2f5f

3
25

(
a3 − 3a2q+5q3 − 3

q5

a2
−
q6

a3

)
(mod 22). (4.3.46)

Congruences (4.3.43) and (4.3.44) follow by extracting the terms involving q5n+2 and

q5n+4 from both sides of (4.3.46).

Extracting the terms involving q5n+3 from (4.3.46), dividing by q3 and then replacing

q5 by q, we obtain

∞∑
n=0

A
5
4,1(10n+7)qn ≡ 10f1f

3
5 (mod 22)

≡ 2f 35 f25

(
a− q −

q2

a

)
(mod 22). (4.3.47)

Congruence (4.3.45) follows by extracting the terms involving q5n+i from both sides of

(4.3.47).

Extracting the terms involving q5n+1 from (4.3.47), dividing by q and then replacing

q5 by q, we obtain

∞∑
n=0

A
5
4,1(50n+17)qn ≡ 2f 31 f5 (mod 22). (4.3.48)

In view of congruences (4.3.27) and (4.3.48), we obtain

A
5
4,1(50n+17)qn ≡ A5

4,1(2n+1) (mod 22). (4.3.49)

Utilizing (4.3.49) and by mathematical induction on α, we get

A
5
4,1

(
2 · 25α+1n+ 2 · 25α+1 +1

3

)
≡ A5

4,1(2n+1) (mod 22). (4.3.50)

Utilizing (4.3.43) and (4.3.50), we get (4.3.42).
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Theorem 4.3.6. For all n ≥ 0,

A
5
4,1(32n+31) ≡ 0 (mod 23), (4.3.51)

∞∑
n=0

A
5
4,1(32n+15)qn ≡ 4f1f10 (mod 23). (4.3.52)

Proof. Using (1.31) in (4.3.26), we obtain

∞∑
n=0

A
5
4,1(2n+1)qn ≡ 2

f1f2f10
f5

(mod 23). (4.3.53)

Substituting (1.53) into (4.3.53), we arrive at

∞∑
n=0

A
5
4,1(2n+1)qn ≡ 2

f 22 f8f
3
20

f4f
2
10f40

− 2q
f2f

2
4 f40

f8f10
(mod 23). (4.3.54)

Extracting the terms involving q2n+1 from (4.3.54), dividing by q and then replacing q2

by q, we obtain
∞∑
n=0

A
5
4,1(4n+3)qn ≡ 6

f1f
2
2 f20
f4f5

(mod 23). (4.3.55)

Employing (1.53) in (4.3.55), we get

∞∑
n=0

A
5
4,1(4n+3)qn ≡ 6

f 32 f8f
4
20

f 24 f
3
10f40

− 6q
f 22 f4f20f40
f8f

2
10

(mod 23). (4.3.56)

Extracting the terms involving q2n+1 from (4.3.56), dividing by q and then replacing q2

by q, we obtain

∞∑
n=0

A
5
4,1(8n+7)qn ≡ 2

f 21 f2f10f20
f4f

2
5

(mod 23). (4.3.57)

Again substituting (1.53) in (4.3.57), we Vnd that

∞∑
n=0

A
5
4,1(16n+15)qn ≡ 4

f 21 f
4
10

f 45
(mod 23). (4.3.58)
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Using (1.31) in (4.3.58), we arrive at

∞∑
n=0

A
5
4,1(16n+15)qn ≡ 4f2f20 (mod 23), (4.3.59)

Congruence (4.3.51) follows by extracting the terms involving q2n+1 from (4.3.59).

Collecting the terms involving q2n from (4.3.59) and replacing q2 by q, we get

(4.3.52).

Theorem 4.3.7. For all n ≥ 0 and α ≥ 0,

A
5
4,1

(
32 · 52α+2(5n+ i) + 44 · 52α+2 +1

3

)
≡ 0 (mod 23), (4.3.60)

where i=3, 4.

A
5
4,1(32(5n+ i) + 15) ≡ 0 (mod 23), (4.3.61)

where i=3, 4.

A
5
4,1(160(5n+ j) + 47) ≡ 0 (mod 23), (4.3.62)

where j=1, 3.

Proof. Substituting (1.34) into (4.3.52), we Vnd that

∞∑
n=0

A
5
4,1(32n+15)qn ≡ 4f10f25

(
a− q −

q2

a

)
(mod 23). (4.3.63)

Congruence (4.3.61) follows by extracting the terms involving q5n+i from both sides of

(4.3.63).

Extracting the terms involving q5n+1 from (4.3.63), dividing by q and then replacing

q5 by q, we obtain

∞∑
n=0

A
5
4,1(160n+47)qn ≡ 4f2f5 (mod 23)

≡ 2f5f50

(
a(q2)− q2 −

q4

a(q2)

)
(mod 23). (4.3.64)
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Congruence (4.3.62) follows by extracting the terms involving q5n+j from both sides of

(4.3.64).

Extracting the terms involving q5n+2 from (4.3.64), dividing by q2 and then replacing

q5 by q, we obtain

∞∑
n=0

A
5
4,1(800n+367)qn ≡ 4f1f10 (mod 23). (4.3.65)

In view of congruences (4.3.52) and (4.3.65), we obtain

A
5
4,1(800n+367)qn ≡ A5

4,1(32n+15) (mod 23). (4.3.66)

Utilizing (4.3.66) and by mathematical induction on α, we get

A
5
4,1

(
32 · 25α+1n+ 44 · 25α+1 +1

3

)
≡ A5

4,1(32n+15) (mod 23). (4.3.67)

Utilizing (4.3.61) and (4.3.67), we get (4.3.60).

Theorem 4.3.8. For any prime p ≥ 5 with (−10p ) = −1, α ≥ 1 and n ≥ 0,

∞∑
n=0

A
5
4,1

(
32 · p2αn+

44 · p2α +1
3

)
qn ≡ 4f1f10 (mod 23). (4.3.68)

Proof. DeVne
∞∑
n=0

g(n)qn = f1f10 (mod 23). (4.3.69)

Combining (4.3.52) and (4.3.69), we Vnd that

∞∑
n=0

A
5
4,1(32n+15)qn ≡ 4

∞∑
n=0

g(n)qn (mod 23). (4.3.70)

Now, we consider the congruence equation

3k2 + k
2

+10 · 3m
2 +m
2

≡
11p2 − 11

24
(mod p), (4.3.71)
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which is equivalent to

(6k +1)2 +10 · (6m+1)2 ≡ 0 (mod p).

where −(p−1)2 ≤ k,m ≤ p−1
2 and p is a prime such that (−10p ) = −1. Since (−10p ) = −1

for p ≥ 5, the congruence relation (4.3.71) holds if and only if both k = m = ±p−1
6 .

Therefore, if we substitute (1.36) into (4.3.69) and then extracting the terms in which

the powers of q are congruent to 11 · p
2−1
24 modulo p and then divide by q11·

p2−1
24 , we

Vnd that
∞∑
n=0

g

(
pn+11 ·

p2 − 1
24

)
qpn = fpf10p, (4.3.72)

which implies that
∞∑
n=0

g

(
p2n+11 ·

p2 − 1
24

)
qn = f1f10 (4.3.73)

and for n ≥ 0,

g

(
p2n+ pi +11 ·

p2 − 1
24

)
= 0, (4.3.74)

where i is an integer and 1 ≤ i ≤ p − 1. By induction, we see that for n ≥ 0 and α ≥ 0,

g

(
p2αn+11 ·

p2α − 1
24

)
= g(n). (4.3.75)

Replacing n by p2αn+11 · p
2α−1
24 in (4.3.70), we arrive at (4.3.52).

Theorem 4.3.9. For any prime p ≥ 5 with (−10p ) = −1, α ≥ 1 and n ≥ 0,

A
5
4,1

(
32 · p2α+2n+32 · p2α+1i +

44 · p2α+2 +1
3

)
≡ 0 (mod 23).

where i = 1,2, ...,p − 1.

Proof. Replacing n by p2n+ pi + 11·p2−11
24 in (4.3.75) and using (4.3.74), we Vnd that for

n ≥ 0 and α ≥ 0,

g

(
p2α+2n+ p2α+1i +

11 · p2α+2 − 11
24

)
= 0. (4.3.76)

Comparing the coeXcients of qn from the both sides of (4.3.70), we see that for n ≥ 0,

A
5
4,1(32n+15) ≡ 4g(n) (mod 23). (4.3.77)
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The result follows from (4.3.76) and (4.3.77).

Theorem 4.3.10. For all n ≥ 0,

A
5
4,1(16n+13) ≡0 (mod 23), (4.3.78)

∞∑
n=0

A
5
4,1(16n+5)qn ≡4f2f5 (mod 23). (4.3.79)

Proof. Equation (4.3.26) can be rewritten as

∞∑
n=0

A
5
4,1(2n+1)qn = 2f 32 f10

f1
f5f

4
1

. (4.3.80)

Substituting (1.41) and (1.53) into (4.3.80), we obtain

∞∑
n=0

A
5
4,1(2n+1)q

n = 2
f 134 f 320

f 102 f 38 f
2
10f40

−8q2
f 44 f

3
8 f40

f 72 f10
−2q

f 164 f40

f 112 f 58 f10
+8q

f4f
5
8 f

3
20

f 62 f
2
10f40

. (4.3.81)

Collecting the terms involving q2n from (4.3.81) and replacing q2 by q, we get

∞∑
n=0

A
5
4,1(4n+1)qn = 2

f 132 f 310
f 101 f 34 f

2
5 f20

− 8q
f 42 f

3
4 f20

f 71 f5
. (4.3.82)

Using (1.31) in (4.3.82), we obtain

∞∑
n=0

A
5
4,1(4n+1)qn ≡ 2

f2f4f
2
5 f10

f 21 f20
(mod 8). (4.3.83)

Employing (1.52) into (4.3.83), we arrive at

∞∑
n=0

A
5
4,1(4n+1)qn ≡ 2

f4f
2
8 f10f

3
20

f 32 f
2
40

+2q2
f 74 f

3
10f

2
40

f 52 f
2
8 f

3
20

+4q
f 44 f

2
10

f 42
(mod 8). (4.3.84)

Extracting the terms involving q2n+1 from (4.3.84), dividing by q and then replacing q2

by q, we obtain
∞∑
n=0

A
5
4,1(8n+5)qn ≡ 4

f 42 f
2
5

f 41
(mod 8). (4.3.85)
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Using (1.31) in (4.3.85), we get

∞∑
n=0

A
5
4,1(8n+5)qn ≡ 4f4f10 (mod 8). (4.3.86)

Congruence (4.3.78) follows by extracting the terms involving q2n+1 from (4.3.86).

Collecting the terms involving q2n from (4.3.86) and replacing q2 by q, we get

(4.3.79).

Theorem 4.3.11. For all n ≥ 0 and α ≥ 0,

A
5
4,1

(
16 · 52α+2(5n+ i) + 14 · 52α+2 +1

3

)
≡ 0 (mod 23), (4.3.87)

where i=1, 3.

A
5
4,1(16(5n+ i) + 5) ≡ 0 (mod 23), (4.3.88)

where i=1, 3.

A
5
4,1(80(5n+ j) + 37) ≡ 0 (mod 23), (4.3.89)

where j=3, 4.

Proof. Employing (1.34) into (4.3.79), we arrive at

∞∑
n=0

A
5
4,1(16n+5)qn ≡ 4f5f50

(
a(q2)− q2 −

q4

a(q2)

)
(mod 23). (4.3.90)

Congruence (4.3.88) follows by extracting the terms involving q5n+i from both sides of

(4.3.90).

Extracting the terms involving q5n+2 from (4.3.90), dividing by q2 and then replac-

ing q5 by q, we obtain

∞∑
n=0

A
5
4,1(80n+37)qn ≡ 4f1f10 (mod 23)

≡ 4f10f25

(
a− q −

q2

a

)
(mod 23). (4.3.91)
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Congruence (4.3.89) follows by extracting the terms involving q5n+j from both sides of

(4.3.91).

Extracting the terms involving q5n+1 from (4.3.91), dividing by q and then replacing

q5 by q, we obtain

∞∑
n=0

A
5
4,1(400n+117)qn ≡ 4f2f5 (mod 23). (4.3.92)

In view of congruences (4.3.79) and (4.3.92), we obtain

A
5
4,1(400n+117)qn ≡ A5

4,1(16n+5) (mod 23). (4.3.93)

Utilizing (4.3.93) and by mathematical induction on α, we get

A
5
4,1

(
16 · 25α+1n+ 14 · 25α+1 +1

3

)
≡ A5

4,1(16n+5) (mod 23). (4.3.94)

Using (4.3.88) in (4.3.94), we get (4.3.87).

Theorem 4.3.12. For any prime p ≥ 5 with (−10p ) = −1, α ≥ 1 and n ≥ 0,

∞∑
n=0

A
5
4,1

(
16 · p2αn+

14 · p2α +1
3

)
qn ≡ 4f2f5 (mod 23). (4.3.95)

Proof. DeVne
∞∑
n=0

h(n)qn = f2f5 (mod 23). (4.3.96)

Combining (4.3.79) and (4.3.96), we Vnd that

∞∑
n=0

A
5
4,1(16n+5)qn ≡ 4

∞∑
n=0

h(n)qn (mod 23). (4.3.97)

Now, we consider the congruence equation

2 · 3k
2 + k
2

+5 · 3m
2 +m
2

≡
7p2 − 7
24

(mod p), (4.3.98)
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which is equivalent to

(12k +2)2 +10 · (6m+1)2 ≡ 0 (mod p).

where −(p−1)2 ≤ k,m ≤ p−1
2 and p is a prime such that (−10p ) = −1. Since (−10p ) = −1

for p ≥ 5, the congruence relation (4.3.98) holds if and only if both k = m = ±p−1
6 .

Therefore, if we substitute (1.36) into (4.3.96) and then extracting the terms in which

the powers of q are congruent to 7 · p
2−1
24 modulo p and then divide by q7·

p2−1
24 , we Vnd

that
∞∑
n=0

h

(
pn+7 ·

p2 − 1
24

)
qpn = f2pf5p,

which implies that
∞∑
n=0

h

(
p2n+7 ·

p2 − 1
24

)
qn = f2f5 (4.3.99)

and for n ≥ 0,

h

(
p2n+ pi +7 ·

p2 − 1
24

)
= 0, (4.3.100)

where i is an integer and 1 ≤ i ≤ p − 1. By induction, we see that for n ≥ 0 and α ≥ 0,

h

(
p2αn+7 ·

p2α − 1
24

)
= h(n). (4.3.101)

Replacing n by p2αn+7 · p
2α−1
24 in (4.3.97), we arrive at (4.3.95).

Theorem 4.3.13. For any prime p ≥ 5 with (−10p ) = −1, α ≥ 1 and n ≥ 0,

A
5
4,1

(
16 · p2α+2n+16 · p2α+1i +

14 · p2α+2 +1
3

)
≡ 0 (mod 23).

where i = 1,2, ...,p − 1.

Proof. Replacing n by p2n+ pi + 7·p2−7
24 in (4.3.101) and using (4.3.100), we Vnd that for

n ≥ 0 and α ≥ 0,

h

(
p2α+2n+ p2α+1i +

7 · p2α+2 − 7
24

)
= 0. (4.3.102)

Comparing the coeXcients of qn from the both sides of (4.3.97), we see that for n ≥ 0,

A
5
4,1(16n+5) ≡ 4h(n) (mod 23). (4.3.103)
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The result follows from (4.3.102) and (4.3.103).

4.4 Some new congruences for Andrews’ singular over-

partition pairs

In this section, Mahadeva Naika and Shivashankar [61] have deVned the Andrews’

singular overpatition pairs of n. Let C
δ
i,j(n) denote the number of Andrews’ singular

overpatition pairs of n in which no part is divisible by δ and only parts congruent to

±i, ±j modulo δ may be overlined. Andrews’ singular overpatition pair π of n is a pair

of Andrews’ singular overpatitions (ν1,ν2) such that the sum of all of the parts is n.

For δ ≥ 3 and 1 ≤ i, j ≤ bδ2c, the generating function for C
δ
i,j(n) is

∞∑
n=0

C
δ
i,j(n)q

n =
f (qi ,qδ−i)f (qj ,qδ−j)

(q;q)2∞
. (4.4.1)

4.4.1 InVnite family of congruence modulo 27 for C
6
1,2(n)

Theorem 4.4.1. For any α ≥ 0 and n ≥ 0,

C
6
1,2

(
4α+2n+

4α+2 − 1
3

)
≡ 7α+1 ·C6

1,2(4n+1) (mod 27). (4.4.2)

Proof. Setting i = 1, j = 2 and δ = 6 in (4.4.1), we see that

∞∑
n=0

C
6
1,2(n)q

n =
f (q,q5)f (q2,q4)

(q;q)2∞
. (4.4.3)

By the deVnition of f (a,b) and the well-known Jacobi triple product identity, we get

∞∑
n=0

C
6
1,2(n)q

n =
f2f3f6
f 31

. (4.4.4)

Substituting (1.43) into (4.4.4), we have

∞∑
n=0

C
6
1,2(n)q

n = f2f6

(
f 64 f

3
6

f 92 f
2
12

+3q
f 24 f6f

2
12

f 72

)
. (4.4.5)
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Equating odd parts of the above equation, we obtain

∞∑
n=0

C
6
1,2(2n+1)qn = 3

f 22 f
2
3 f

2
6

f 61
. (4.4.6)

Employing (1.43) into (4.4.6), we arrive at

∞∑
n=0

C
6
1,2(2n+1)qn = 3

f 124 f 86
f 162 f 412

+18q
f 84 f

6
6

f 142

+27q2
f 44 f

4
6 f

4
12

f 122

. (4.4.7)

Extracting the terms involving q2n from both sides of (4.4.7), we have

∞∑
n=0

C
6
1,2(4n+1)qn = 3

f 122 f 83
f 161 f 46

+27q
f 42 f

4
3 f

4
6

f 121

, (4.4.8)

which implies,
∞∑
n=0

C
6
1,2(4n+1)qn ≡ 3

f 122 f 83
f 161 f 46

(mod 27). (4.4.9)

Invoking (1.31) in (4.4.9), we see that

∞∑
n=0

C
6
1,2(4n+1)qn ≡ 3

f 21 f
3
2 f

2
3

f6
(mod 27). (4.4.10)

Substituting (1.49) into (4.4.10), we obtain

∞∑
n=0

C
6
1,2(4n+1)qn ≡ 3

f 52 f
4
8 f

8
12

f 44 f
3
6 f

4
24

+3q2
f2f

8
4 f6f

4
24

f 48 f
4
12

− 6q
f 32 f

2
4 f

2
12

f6
(mod 27). (4.4.11)

Extracting the terms involving q2n+1 from (4.4.11), dividing by q and replacing q2 by q,

we get
∞∑
n=0

C
6
1,2(8n+5)qn ≡ 21

f 31 f
2
2 f

2
6

f3
(mod 27). (4.4.12)

Employing (1.45) into (4.4.12), the equation reduces to

∞∑
n=0

C
6
1,2(8n+5)qn ≡ 21

f 22 f
3
4 f

2
6

f12
+18q

f 42 f
3
12

f4
(mod 27), (4.4.13)
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which implies that

∞∑
n=0

C
6
1,2(16n+5)qn ≡ 21

f 21 f
3
2 f

2
3

f6
(mod 27). (4.4.14)

In view of congruences (4.4.10) and (4.4.14), we see that

C
6
1,2(16n+5) ≡ 7 ·C6

1,2(4n+1) (mod 27). (4.4.15)

Using the above relation and by induction on α, we arrive at (4.4.2).

4.4.2 Congruences modulo 4 for C
12
1,5(n)

Theorem 4.4.2. For all α ≥ 0 and n ≥ 0,

∞∑
n=0

C
12
1,5(3n)q

n ≡
f1f3f6
f2

(mod 4), (4.4.16)

∞∑
n=0

C
12
1,5(3n+1)qn ≡ 3

f 21 f
4
6

f 22 f
2
3

(mod 4), (4.4.17)

∞∑
n=0

C
12
1,5(3n+2)qn ≡ 3

f1f3f
3
12

f4f
2
6

(mod 4), (4.4.18)

C
12
1,5(3

α+1n+3α+1 − 1) ≡ 3α+1 ·C12
1,5(n) (mod 4). (4.4.19)

Proof. Setting i = 1, j = 5 and δ = 12 in (4.4.1), we Vnd that

∞∑
n=0

C
12
1,5(n)q

n =
f (q,q11)f (q5,q7)

(q;q)2∞

=
f 22 f3f

3
12

f 31 f4f
2
6

. (4.4.20)

Invoking (1.31) in (4.4.20), we see that

∞∑
n=0

C
12
1,5(n)q

n ≡
f1f3f

3
12

f4f
2
6

(mod 4). (4.4.21)
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Substituting (1.77) into (4.4.21), we obtain

∞∑
n=0

C
12
1,5(n)q

n ≡
f3f9f18
f6

− q
f 23 f

4
18

f 26 f
2
9

− q2
f3f9f

3
36

f12f
2
18

(mod 4). (4.4.22)

Extracting the terms involving q3n, q3n+1 and q3n+2 from the above equation, we obtain

respectively (4.4.16), (4.4.17) and (4.4.18).

In view of congruences (4.4.18) and (4.4.21), we deduce that

C
12
1,5(3n+2) ≡ 3 ·C12

1,5(n) (mod 4). (4.4.23)

Using the above relation and by induction on α, we arrive at (4.4.19).

Theorem 4.4.3. For all integers α ≥ 0 and n ≥ 0,

C
12
1,5(12n+6) ≡ 0 (mod 4), (4.4.24)

C
12
1,5(48n+27) ≡ 0 (mod 4), (4.4.25)

C
12
1,5(96n+87) ≡ 0 (mod 4), (4.4.26)

C
12
1,5(3 · 4α+3n+7 · 4α+2 − 1) ≡ 0 (mod 4). (4.4.27)

Proof. Substituting (1.49) in (4.4.16), we Vnd that

∞∑
n=0

C
12
1,5(3n)q

n ≡
f 28 f

4
12

f 24 f
2
24

− q
f 44 f

2
6 f

2
24

f 22 f
2
8 f

2
12

(mod 4). (4.4.28)

Collecting the terms involving q2n from (4.4.28) and replacing q2 by q, we get

∞∑
n=0

C
12
1,5(6n)q

n ≡
f 24 f

4
6

f 22 f
2
12

(mod 4). (4.4.29)

Using (1.31) in (4.4.29), we have

∞∑
n=0

C
12
1,5(6n)q

n ≡ f 22 (mod 4). (4.4.30)

Extracting the terms involving q2n+1 from (4.4.30), we obtain (4.4.24).

Extracting the terms involving q2n+1 from (4.4.28), dividing by q and replacing q2
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by q, we arrive at

∞∑
n=0

C
12
1,5(6n+3)qn ≡ 3

f 42 f
2
3 f

2
12

f 21 f
2
4 f

2
6

(mod 4). (4.4.31)

Invoking (1.31) in (4.4.31), we get

∞∑
n=0

C
12
1,5(6n+3)qn ≡ 3

f 23 f
2
6

f 21
(mod 4). (4.4.32)

Employing (1.47) into (4.4.32), we have

∞∑
n=0

C
12
1,5(6n+3)qn ≡ 3

f 44 f
3
6 f

2
12

f 52 f8f24
+2q

f4f
4
6 f8f24

f 42 f12
(mod 4). (4.4.33)

Collecting the even terms of the above equation, we Vnd that

∞∑
n=0

C
12
1,5(12n+3)qn ≡ 3

f 42 f
3
3 f

2
6

f 51 f4f12
(mod 4). (4.4.34)

Using (1.31) in (4.4.34), we see that

∞∑
n=0

C
12
1,5(12n+3)qn ≡ 3

f 22 f
3
3 f

2
6

f1f4f12
(mod 4). (4.4.35)

Substituting (1.42) into (4.4.35), we obtain

∞∑
n=0

C
12
1,5(12n+3)qn ≡ 3

f 24 f
4
6

f 212
+3q

f 22 f
2
6 f

2
12

f 24
(mod 4), (4.4.36)

which implies,
∞∑
n=0

C
12
1,5(24n+3)qn ≡ 3

f 22 f
4
3

f 26
(mod 4). (4.4.37)

Invoking (1.31) in (4.4.37), we have

∞∑
n=0

C
12
1,5(24n+3)qn ≡ 3f 22 (mod 4). (4.4.38)

Extracting the terms involving q2n+1 from the above equation, we get (4.4.25).
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Extracting the terms involving q2n+1 from (4.4.36), dividing by q and replacing q2

by q, we obtain
∞∑
n=0

C
12
1,5(24n+15)qn ≡ 3

f 21 f
2
3 f

2
6

f 22
(mod 4). (4.4.39)

Using (1.31) in (4.4.39), we see that

∞∑
n=0

C
12
1,5(24n+15)qn ≡ 3

f 23 f
2
6

f 21
(mod 4). (4.4.40)

Employing (1.47) into (4.4.40), we have

∞∑
n=0

C
12
1,5(24n+15)qn ≡ 3

f 44 f
3
6 f

2
12

f 52 f8f24
+2q

f4f
4
6 f8f24

f 42 f12
(mod 4), (4.4.41)

which implies,
∞∑
n=0

C
12
1,5(48n+15)qn ≡ 3

f 42 f
3
3 f

2
6

f 51 f4f12
(mod 4). (4.4.42)

Invoking (1.31) in (4.4.42), we get

∞∑
n=0

C
12
1,5(48n+15)qn ≡ 3

f 22 f
3
3 f

2
6

f1f4f12
(mod 4). (4.4.43)

In view of congruences (4.4.35) and (4.4.43), we obtain

C
12
1,5(48n+15) ≡ C12

1,5(12n+3) (mod 4). (4.4.44)

Using the above relation and by induction on α, we arrive at

C
12
1,5(3 · 4α+2n+4 · 4α+2 − 1) ≡ C12

1,5(12n+3) (mod 4). (4.4.45)

Using the congruence (4.4.25) in (4.4.45), we obtain (4.4.27).

Extracting the terms involving q2n+1 from (4.4.41), dividing by q and replacing q2

by q, we have
∞∑
n=0

C
12
1,5(48n+39)qn ≡ 2

f2f
4
3 f4f12

f 41 f6
(mod 4). (4.4.46)
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Invoking (1.31) in (4.4.46), we get

∞∑
n=0

C
12
1,5(48n+39)qn ≡ 2f2f6f12 (mod 4). (4.4.47)

Congruence (4.4.26) follows by extracting the terms involving q2n+1 from the above

equation.

Theorem 4.4.4. For all α ≥ 0 and n ≥ 0,

C
12
1,5(24n+13) ≡ 0 (mod 4), (4.4.48)

C
12
1,5(24n+3) ≡ C12

1,5(12n+1) (mod 4), (4.4.49)

C
12
1,5(24n+15) ≡ C12

1,5(12n+7) (mod 4). (4.4.50)

Proof. Employing (1.48) into (4.4.17), we have

∞∑
n=0

C
12
1,5(3n+1)qn ≡ 3

f 24 f
4
12

f2f6f8f24
+2q

f 36 f8f12f24
f4

(mod 4). (4.4.51)

Extracting the terms involving q2n from (4.4.51) and replacing q2 by q, we obtain

∞∑
n=0

C
12
1,5(6n+1)qn ≡ 3

f 22 f
4
6

f1f3f4f12
(mod 4). (4.4.52)

Substituting (1.50) into (4.4.52), we arrive at

∞∑
n=0

C
12
1,5(6n+1)qn ≡ 3

f 28 f
4
12

f 24 f
2
24

+3q
f 44 f

2
6 f

2
24

f 22 f
2
8 f

2
12

(mod 4). (4.4.53)

Extracting the terms involving q2n from (4.4.53) and replacing q2 by q, we deduce that

∞∑
n=0

C
12
1,5(12n+1)qn ≡ 3

f 24 f
4
6

f 22 f
2
12

(mod 4). (4.4.54)

Invoking (1.31) in (4.4.54), we get

∞∑
n=0

C
12
1,5(12n+1)qn ≡ 3f 22 (mod 4). (4.4.55)
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Extracting the terms involving q2n+1 from (4.4.55), we obtain (4.4.48) and combining

(4.4.38) and (4.4.55), we get (4.4.49).

From the equation (4.4.53), which implies that

∞∑
n=0

C
12
1,5(12n+7)qn ≡ 3

f 42 f
2
3 f

2
12

f 21 f
2
4 f

2
6

(mod 4). (4.4.56)

Using (1.31) in (4.4.56), we have

∞∑
n=0

C
12
1,5(12n+7)qn ≡ 3

f 23 f
2
6

f 21
(mod 4). (4.4.57)

Combining (4.4.40) and (4.4.57), we arrive at (4.4.50).

Theorem 4.4.5. For each n ≥ 0 and α ≥ 0,

C
12
1,5(12 · 25α+1n+25α+1 − 1) ≡ C12

1,5(12n) (mod 4), (4.4.58)

C
12
1,5(60(5n+ i) + 24) ≡ 0 (mod 4), (4.4.59)

where i = 1, 2, 3, 4.

Proof. From the equation (4.4.30), we have

∞∑
n=0

C
12
1,5(12n)q

n ≡ f 21 (mod 4). (4.4.60)

Employing (1.34) in the above equation and then extracting the terms containing q5n+2,

dividing by q2 and replacing q5 by q, we get

∞∑
n=0

C
12
1,5(60n+24)qn ≡ f 25 (mod 4), (4.4.61)

which yields

∞∑
n=0

C
12
1,5(300n+24)qn ≡ f 21 ≡

∞∑
n=0

C
12
1,5(12n)q

n (mod 4). (4.4.62)

By induction on α, we obtain (4.4.58).
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The congruence (4.4.59) follows by extracting the terms involving q5n+i for i =

1,2,3,4 from both sides of (4.4.61).

Theorem 4.4.6. Let p be a prime ≥ 5,
(
−4
p

)
= −1. Then for all integers α ≥ 1, and n ≥ 0,

∞∑
n=0

C
12
1,5(192p

2αn+39p2α − 1)qn ≡ 2f1f4 (mod 4). (4.4.63)

Proof. Extracting the terms involving q2n from (4.4.47) and replacing q2 by q we have

∞∑
n=0

C
12
1,5(96n+39)qn ≡ 2f1f3f6 (mod 4). (4.4.64)

Substituting (1.49) into (4.4.64), we arrive at

∞∑
n=0

C
12
1,5(96n+39)qn ≡ 2

f2f
2
8 f

4
12

f 24 f
2
24

− 2q
f 44 f

2
6 f

2
24

f2f
2
8 f

2
12

(mod 4). (4.4.65)

Extracting the even terms in the above equation, we obtain

∞∑
n=0

C
12
1,5(192n+39)qn ≡ 2

f1f
2
4 f

4
6

f 22 f
2
12

(mod 4). (4.4.66)

Using (1.31) in (4.4.66), we see that

∞∑
n=0

C
12
1,5(192n+39)qn ≡ 2f1f4 (mod 4). (4.4.67)

DeVne
∞∑
n=0

f (n)qn = f1f4. (4.4.68)

Combining (4.4.67) and (4.4.68), we Vnd that

∞∑
n=0

C
12
1,5(192n+39)qn ≡ 2

∞∑
n=0

f (n)qn (mod 4). (4.4.69)
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For a prime, p ≥ 5 or −(p−1)2 ≤ k,m ≤ p−1
2 , consider

3k2 + k
2

+4 · 3m
2 +m
2

≡
5p2 − 5
24

(mod p), (4.4.70)

therefore,

(6k +1)2 +4 · (6m+1)2 ≡ 0 (mod p),

Since
(
−4
p

)
= −1 the congruence relation (4.4.70) holds if and only if both k =m = ±p−16 .

Therefore, if we substitute Lemma (1.36) into (4.4.68) and then extract the terms in

which the powers of q are congruent to 5p2−5
24 modulo p and then divide by q

5p2−5
24 , we

Vnd that
∞∑
n=0

f

(
pn+

5p2 − 5
24

)
qpn = fp2f4p2 ,

which implies that
∞∑
n=0

f

(
p2n+

5p2 − 5
24

)
qn = f1f4 (4.4.71)

and for n ≥ 0,

f

(
p2n+ pi +

5p2 − 5
24

)
= 0, (4.4.72)

where i is an integer and 1 ≤ i ≤ p − 1. By induction, we see that for n ≥ 0 and α ≥ 0,

f

(
p2αn+

5p2α − 5
24

)
= f (n). (4.4.73)

Replacing n by p2αn+ 5p2α−5
24 in (4.4.69), we arrive at (4.4.63).

Theorem 4.4.7. Let p be a prime ≥ 5,
(
−4
p

)
= −1. Then for all integers α ≥ 0, and n ≥ 0,

C
12
1,5(192p

2α+2n+192p2α+1i +40p2α+2 − 1) ≡ 0 (mod 4), (4.4.74)

where i is an integer and 1 ≤ i ≤ p − 1.

Proof. Replacing n by p2n + pi + 5p2−5
24 in (4.4.73) and using (4.4.72), we Vnd that for

n ≥ 0 and α ≥ 0,

f

(
p2α+2n+ p2α+1i +

5pα+2 − 5
24

)
= 0. (4.4.75)
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Comparing coeXcients of qn from both sides of (4.4.69), we see that for n ≥ 0,

C
12
1,5(192n+39) ≡ 2f (n) (mod 4). (4.4.76)

The required result follows from (4.4.75) and (4.4.76).

4.4.3 InVnite families of congruences modulo 4 for C
9
3,3(n)

Theorem 4.4.8. Let p be a prime ≥ 5,
(
−6
p

)
= −1. Then for all integers α ≥ 1, and n ≥ 0,

∞∑
n=0

C
9
3,3

(
4p2αn+

7p2α − 1
6

)
qn ≡ 2f1f6 (mod 4). (4.4.77)

Proof. Setting i = 3, j = 3 and δ = 9 in (4.4.1), we have

∞∑
n=0

C
9
3,3(n)q

n =
f (q3,q6)f (q3,q6)

(q;q)2∞
.

After q-product manipulation, we see that

∞∑
n=0

C
9
3,3(n)q

n =
f 26 f

4
9

f 21 f
2
3 f

2
18

. (4.4.78)

Invoking (1.31) in (4.4.78), we have

∞∑
n=0

C
9
3,3(n)q

n ≡
f 23
f 21

(mod 4). (4.4.79)

Employing (1.47) into (4.4.79), we obtain

∞∑
n=0

C
9
3,3(n)q

n ≡
f 44 f6f

2
12

f 52 f8f24
+2q

f4f
2
6 f8f24

f 42 f12
(mod 4). (4.4.80)

Extracting the odd terms of the above equation, we Vnd that

∞∑
n=0

C
9
3,3(2n+1)qn ≡ 2

f2f
2
3 f4f12

f 41 f6
(mod 4). (4.4.81)
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Using (1.31) in (4.4.81), we get

∞∑
n=0

C
9
3,3(2n+1)qn ≡ 2f2f12 (mod 4), (4.4.82)

which implies,

C
9
3,3(4n+3) ≡ 0 (mod 4). (4.4.83)

Extracting the even terms from (4.4.82), we have

∞∑
n=0

C
9
3,3(4n+1)qn ≡ 2f1f6 (mod 4). (4.4.84)

DeVne
∞∑
n=0

g(n)qn = f1f6. (4.4.85)

Combining (4.4.84) and (4.4.85), we Vnd that

∞∑
n=0

C
9
3,3(4n+1)qn ≡ 2

∞∑
n=0

g(n)qn (mod 4). (4.4.86)

For a prime, p ≥ 5 or −(p−1)2 ≤ k,m ≤ p−1
2 , consider

3k2 + k
2

+6 · 3m
2 +m
2

≡
7p2 − 7
24

(mod p), (4.4.87)

therefore,

(6k +1)2 +6 · (6m+1)2 ≡ 0 (mod p),

Since
(
−6
p

)
= −1 the congruence relation (4.4.87) holds if and only if both k =m = ±p−16 .

Therefore, if we substitute Lemma (1.36) into (4.4.85) and then extract the terms in

which the powers of q are congruent to 7p2−7
24 modulo p and then divide by q

7p2−7
24 , we

Vnd that
∞∑
n=0

g

(
pn+

7p2 − 7
24

)
qpn = fp2f6p2 ,

which implies that
∞∑
n=0

g

(
p2n+

7p2 − 7
24

)
qn = f1f6 (4.4.88)
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and for n ≥ 0,

g

(
p2n+ pi +

7p2 − 7
24

)
= 0, (4.4.89)

where i is an integer and 1 ≤ i ≤ p − 1. By induction, we see that for n ≥ 0 and α ≥ 0,

g

(
p2αn+

7p2α − 7
24

)
= g(n). (4.4.90)

Replacing n by p2αn+ 7p2α−7
24 in (4.4.86), we arrive at (4.4.77).

Theorem 4.4.9. Let p be a prime ≥ 5,
(
−6
p

)
= −1. Then for all integers α ≥ 0, and n ≥ 0,

C
9
3,3

(
4p2α+2n+4p2α+1i +

7p2α+2 − 1
6

)
≡ 0 (mod 4), (4.4.91)

where i is an integer and 1 ≤ i ≤ p − 1.

Proof. Replacing n by p2n + pi + 7p2−7
24 in (4.4.90) and using (4.4.89), we Vnd that for

n ≥ 0 and α ≥ 0,

g

(
p2α+2n+ p2α+1i +

7pα+2 − 7
24

)
= 0. (4.4.92)

Comparing coeXcients of qn from both sides of (4.4.86), we see that for n ≥ 0,

C
9
3,3(4n+1) ≡ 2g(n) (mod 4). (4.4.93)

The required result follows from (4.4.92) and (4.4.93).

4.4.4 InVnite families of congruences modulo 4 for C
15
5,5(n)

Theorem 4.4.10. For each n ≥ 0 and α ≥ 0,

C
15
5,5(16n+9) ≡ 0 (mod 4), (4.4.94)

C
15
5,5(20n+3) ≡ C15

5,5(8n+1) (mod 4), (4.4.95)

C
15
5,5(10n+3) ≡ C15

5,5(4n+1) (mod 4), (4.4.96)

C
15
5,5

(
2 · 4α+1n+ 4α+2 − 1

3

)
≡ C15

5,5(2n+1) (mod 4), (4.4.97)



Chapter 4. Andrews’ singular overpartitions 113

C
15
5,5

(
4 · 55α+6(5n+ i) + 2 · 55α+6 − 1

3

)
≡ 0 (mod 4), (4.4.98)

where i=1, 2, 3, 4.

C
15
5,5

(
2 · 52α+4(5n+ j) + 4 · 52α+4 − 1

3

)
≡ 0 (mod 4), (4.4.99)

where j=3, 4.

Proof. Putting i = 5, j = 5 and δ = 15 in (4.4.1), we Vnd that

∞∑
n=0

C
15
5,5(n)q

n =
f (q5,q10)2

(q;q)2∞
.

After q-product manipulation, we see that

∞∑
n=0

C
15
5,5(n)q

n =
f 210f

4
15

f 21 f
2
5 f

2
30

. (4.4.100)

Invoking (1.31) in (4.4.100), we have

∞∑
n=0

C
15
5,5(n)q

n ≡
f 25
f 21

(mod 4). (4.4.101)

Substituting (1.52) into (4.4.101), we get

∞∑
n=0

C
15
5,5(n)q

n ≡
(
f8f

2
20

f 22 f40
+ q

f 34 f10f40

f 32 f8f20

)2
(mod 4), (4.4.102)

which implies that
∞∑
n=0

C
15
5,5(2n+1)qn ≡ 2f1f

3
5 (mod 4). (4.4.103)

Employing (1.58) into (4.4.103), we obtain

∞∑
n=0

C
15
5,5(2n+1)qn ≡ 2f 32 f10 +2q

f 22 f
2
10f20
f4

(mod 4). (4.4.104)
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Extracting the terms involving q2n from (4.4.104) and replacing q2 by q, we arrive at

∞∑
n=0

C
15
5,5(4n+1)qn ≡ 2f 31 f5 (mod 4) (4.4.105)

Substituting (1.59) into (4.4.105), the equation reduces to

∞∑
n=0

C
15
5,5(4n+1)qn ≡ 2

f 22 f4f
2
10

f20
+2qf2f

3
10 (mod 4), (4.4.106)

which implies that
∞∑
n=0

C
15
5,5(8n+5)qn ≡ 2f1f

3
5 (mod 4). (4.4.107)

Combining (4.4.103) and (4.4.107), we get

C
15
5,5(8n+5) ≡ C15

5,5(2n+1) (mod 4). (4.4.108)

Using the above relation and by induction on α, we arrive at (4.4.97).

Extracting the terms involving q2n+1 from (4.4.104), dividing by q and replacing q2

by q, we obtain
∞∑
n=0

C
15
5,5(4n+3)qn ≡ 2

f 21 f
2
5 f10
f2

(mod 4). (4.4.109)

Using (1.31), the above equation reduces to

∞∑
n=0

C
15
5,5(4n+3)qn ≡ 2f 45 (mod 4). (4.4.110)

Collecting the terms involving q5n+i on both sides of (4.4.110), we Vnd that

C
15
5,5 (4(5n+ i) + 3)qn ≡ 0 (mod 4), i = 1,2,3,4. (4.4.111)

Extracting the terms involving q5n from (4.4.110), we obtain

∞∑
n=0

C
15
5,5(20n+3)qn ≡ 2f 41 (mod 4). (4.4.112)

Employing (1.34) into (4.4.112) and extracting the terms involving q5n+4 in the resultant
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equation, we have

∞∑
n=0

C
15
5,5(100n+83)qn ≡ 2f 45 (mod 4). (4.4.113)

In the view of congruences (4.4.110) and (4.4.113), we obtain

C
15
5,5(100n+83)qn ≡ C15

5,5(4n+3) (mod 4). (4.4.114)

Using the above relation and by induction on α, we have

C
15
5,5

(
4 · 55α+5n+ 2 · 55α+6 − 1

3

)
≡ C15

5,5(4n+3) (mod 4). (4.4.115)

Using congruence (4.4.111) in the above equation, we get (4.4.98).

Extracting the even terms of the equation (4.4.106), we obtain

∞∑
n=0

C
15
5,5(8n+1)qn ≡ 2

f 21 f2f
2
5

f10
(mod 4). (4.4.116)

Invoking (1.31) in (4.4.116), we deduce

∞∑
n=0

C
15
5,5(8n+1)qn ≡ 2f 22 (mod 4). (4.4.117)

Congruence (4.4.94) follows by extracting the terms involving q2n+1 from the above

equation.

Using (1.31) in (4.4.117) implies

∞∑
n=0

C
15
5,5(8n+1)qn ≡ 2f 41 (mod 4). (4.4.118)

Combining (4.4.112) and (4.4.118), we obtain (4.4.95).

Substituting (1.34) into (4.4.103), we arrive at

∞∑
n=0

C
15
5,5(2n+1)qn ≡ 2f 35 f25

(
a(q5)− q −

q2

a(q5)

)
(mod 4). (4.4.119)
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Extracting the terms involving q5n+j on both sides of (4.4.119), we obtain

∞∑
n=0

C
15
5,5(2(5n+ j) + 1) ≡ 0 (mod 4), j = 3,4. (4.4.120)

Extracting the terms involving q5n+1 from (4.4.119), dividing by q and replacing q5 by

q, we obtain
∞∑
n=0

C
15
5,5(10n+3)qn ≡ 2f 31 f5 (mod 4). (4.4.121)

From (4.4.105) and (4.4.121), we obtain (4.4.96).

Employing (1.34) into (4.4.121), we arrive at

∞∑
n=0

C
15
5,5(10n+3)qn

≡ f5f 325

(
a3(q5)− 3a2(q5)q+5q3 −

3q5

a2(q5)
−

q6

a3(q5)

)
(mod 4), (4.4.122)

which implies,

C
15
5,5 (10(5n+ k) + 3) ≡ 0 (mod 4), k = 2,4. (4.4.123)

Extracting the terms involving q5n+3 from (4.4.122), dividing by q3 and replacing q5 by

q, we have
∞∑
n=0

C
15
5,5(50n+33)qn ≡ 2f1f

3
5 (mod 4). (4.4.124)

Combining (4.4.103) and (4.4.124), we get

C
15
5,5(50n+33) ≡ C15

5,5(2n+1) (mod 4). (4.4.125)

Using the above relation and by induction on α, we have

C
15
5,5

(
2 · 52α+4n+ 4 · 52α+4 − 1

3

)
≡ C15

5,5(2n+1) (mod 4). (4.4.126)

Using (4.4.120) in (4.4.126), we obtain (4.4.99).



Chapter 5

`-REGULAR CUBIC PARTITION PAIRS

5.1 Introduction

In chapter (1), we deVned the `-regular cubic partition. Kim [40] has studied congru-

ence properties of b(n), which denotes overcubic partition pairs of n and generating

function is given by

∞∑
n=0

b(n)qn =
(−q;q)2∞(−q2;q2)2∞
(q;q)2∞(q2;q2)2∞

=
f 24
f 41 f

2
2

. (5.1.1)

Recently, Naika et al. [62] have established some new Ramanujan like congruences and

inVnite families of congruences modulo powers of 2 for b(n). Motivated by the above

works, we study bl(n), the number of `- regular cubic partition pairs and the generating

function is given by

∞∑
n=0

b`(n)q
n =

(q`;q`)2∞(q
2`;q2`)2∞

(q;q)2∞(q2;q2)2∞
=
f 2` f

2
2`

f 21 f
2
2

. (5.1.2)

5.2 Congruences for `- regular cubic partition pairs

In this section, we obtain some congruences and inVnite families of congruences mod-

ulo 4, 8, 27 and 81 for b`(n) for various values of `.

Reference [51] is based on this chapter

117
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5.2.1 Congruences modulo 4 for b2(n)

Theorem 5.2.1. For each α ≥ 0 and n ≥ 1,

b2(18n+8) ≡ 0 (mod 4), (5.2.1)

b2(18n+14) ≡ 0 (mod 4), (5.2.2)

b2

(
2 · 32α+4n+ 11 · 32α+3 − 1

4

)
≡ 0 (mod 4). (5.2.3)

b2

(
2p2α+1(pn+ j) +

10p2α+2 − 2
8

)
≡ 0 (mod 4), (5.2.4)

and for n ≥ 0, 1 ≤ j ≤ p − 1.

Proof. Setting ` = 2 in (5.1.2), we have

∞∑
n=0

b2(n)q
n =

f 24
f 21
. (5.2.5)

Invoking (1.31) in (5.2.5), we obtain

∞∑
n=0

b2(n)q
n ≡

f 42
f 21
≡ t2(n) (mod 4),

where t2(n) is the number of ways to write n as a sum of two triangular numbers. But

t2(n) =
1
4s2(8n + 2), where s2(n) is the number of ways to write n as the sum of two

squares. This gives the following: if 8n+2 = 2n1n2, where

n1 =
∏

p≡1 (mod 4)

pr , n2 =
∏

p≡3 (mod 4)

ps,

then

b2(n) ≡

d1(8n+2)− d3(8n+3) (mod 4) if all s are even,

0 (mod 4) else,

where d1(n) is the number of divisors of n that are congruent to 1 modulo 4 and d3(n)

is the number of divisors of n that are congruent to 3 modulo 4.

This implies the congruences (5.2.1), (5.2.2), (5.2.3) and (5.2.4) follow since 3 sharply

divides 144n + 66, 144n + 114, 16 · 32α+4n + 22 · 32α+3 and p2α+1 sharply divides
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16 · p2α+1(pn+ j) + 10 · p2α+2.

5.2.2 InVnite families of congruence modulo 27 for b3(n)

Theorem 5.2.2. For each n ≥ 1,

b3(9n+4) ≡2b3(3n+1) + 27b3(n) (mod 81). (5.2.6)

Proof. Setting ` = 3 in (5.1.2), we have

∞∑
n=0

b3(n)q
n =

f 23 f
2
6

f 21 f
2
2

. (5.2.7)

Substituting (1.64) into (5.2.7), we obtain

∞∑
n=0

b3(n)q
n

=
f 69 f

6
18

f 63 f
6
6

(
a(q3)2 +2qa(q3)b(q3) + q2b(q3)2 +6q2a(q3) + 6q3b(q3) + 9q4

)
. (5.2.8)

Extracting the terms involving q3n+1 from (5.2.8), dividing q and replacing q3 by q, we

have
∞∑
n=0

b3(3n+1)qn =
f 63 f

6
6

f 61 f
6
2

(2a(q)b(q) + 9q) . (5.2.9)

Using (1.61) in (5.2.9), we arrive at

∞∑
n=0

b3(3n+1)qn =
f 63 f

6
6

f 61 f
6
2

(2c(q) + 13q) . (5.2.10)

Employing (1.65) into (5.2.10), we get

∞∑
n=0

b3(3n+1)qn = 2
f 23 f

2
6

f 21 f
2
2

+27q
f 63 f

6
6

f 61 f
6
2

. (5.2.11)
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Invoking (1.31) in (5.2.11), we obtain

∞∑
n=0

b3(3n+1)qn ≡ 2
f 23 f

2
6

f 21 f
2
2

+27q
f 29 f

2
18

f 23 f
2
6

(mod 81). (5.2.12)

From (5.2.7) it follows that

∞∑
n=0

b3(3n+1)qn ≡ 2
∞∑
n=0

b3(n)q
n +27q

∞∑
n=0

b3(n)q
3n (mod 81). (5.2.13)

Extracting the terms involving q3n+1 from (5.2.13), dividing q and replacing q3 by q, we

get (5.2.6).

Corollary 5.2.1. For each α ≥ 0 and n ≥ 1,

b3

(
3α+1n+

3α+1 − 1
2

)
≡ 2α+1b3(n) (mod 27). (5.2.14)

Proof. Equation (5.2.13) implies (5.2.14).

5.2.3 Congruences modulo 8 for b5(n)

Theorem 5.2.3. For each α ≥ 0 and n ≥ 1,

b5(8n+5) ≡ 0 (mod 8), (5.2.15)

b5(16n+11) ≡ 0 (mod 8), (5.2.16)

b5
(
22α+6n+3 · 22α+4 − 1

)
≡ 0 (mod 8). (5.2.17)

Proof. Setting ` = 5 in (5.1.2), we have

∞∑
n=0

b5(n)q
n =

f 25 f
2
10

f 21 f
2
2

. (5.2.18)

Employing (1.52) into (5.2.18),we get

∞∑
n=0

b5(n)q
n =

f 28 f
2
10f

4
20

f 62 f
2
40

+2q
f 34 f

3
10f20

f 72
+ q2

f 64 f
4
10f

2
40

f 82 f
2
8 f

2
20

, (5.2.19)
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which implies that
∞∑
n=0

b5(2n+1)qn = 2
f 32 f

3
5 f10
f 71

. (5.2.20)

Invoking (1.31) in (5.2.20), we obtain

∞∑
n=0

b5(2n+1)qn ≡ 2
f1f

3
5 f10
f2

(mod 16). (5.2.21)

Substituting (1.58) into (5.2.21), we arrive at

∞∑
n=0

b5(2n+1)qn ≡ 4q2
f4f10f

3
20

f2
+2f 22 f

2
10 +12q3

f 44 f
2
10f

2
40

f 22 f
2
8

+14q
f2f

3
10f20
f4

(mod 16).

(5.2.22)

Extracting the terms involving q2n+1 from (5.2.22), dividing by q and then replacing q2

by q, we have

∞∑
n=0

b5(4n+3)qn ≡ 12q
f 42 f

2
5 f

2
20

f 21 f
2
4

+14
f1f

3
5 f10
f2

(mod 16). (5.2.23)

Using (1.31) in (5.2.23), we have

∞∑
n=0

b5(4n+3)qn ≡ 12q
f 25 f

2
20

f 21
+14

f1f
3
5 f10
f2

(mod 16). (5.2.24)

Substituting (1.52) and (1.58) into (5.2.24), we Vnd that

∞∑
n=0

b5(4n+3)qn ≡12q
f 28 f

6
20

f 42 f
2
40

+8q2
f 34 f10f

3
20

f 52
+12q3

f 64 f
2
10f

2
40

f 62 f
2
8

+12q2
f4f10f

3
20

f2

+14f 22 f
2
10 +4q3

f 44 f
2
10f

2
40

f 22 f
2
8

+2q
f2f

3
10f20
f4

(mod 16). (5.2.25)

Extracting the terms involving q2n+1 from (5.2.25), dividing q and replacing q2 by q, we

get

∞∑
n=0

b5(8n+7)qn ≡ 12
f 24 f

6
10

f 41 f
2
20

+12q
f 62 f

2
5 f

2
20

f 61 f
2
4

+4q
f 42 f

2
5 f

2
20

f 21 f
2
4

+2
f1f

3
5 f10
f2

(mod 16).

(5.2.26)
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Invoking (1.31) in (5.2.26), we obtain

∞∑
n=0

b5(8n+7)qn ≡ 12f 22 f
2
10 +12q

f 25 f
2
20

f 21
+4q

f 25 f
2
20

f 21
+2

f1f
3
5 f10
f2

(mod 16), (5.2.27)

which implies,

∞∑
n=0

b5(8n+7)qn ≡ 12f 22 f
2
10 +2

f1f
3
5 f10
f2

(mod 16), (5.2.28)

Employing (1.58) into the second term of the above equation, we get

∞∑
n=0

b5(8n+7)qn

≡ 12f 22 f
2
10 +4q2

f4f10f
3
20

f2
+2f 22 f

2
10 +12q3

f 44 f
2
10f

2
40

f 22 f
2
8

+14q
f2f

3
10f20
f4

(mod 16).

(5.2.29)

Extracting the terms involving q2n+1 from (5.2.29), dividing q and replacing q2 by q, we

get
∞∑
n=0

b5(16n+15)qn ≡ 12q
f 42 f

2
5 f

2
20

f 21 f
2
4

+14
f1f

3
5 f10
f2

(mod 16). (5.2.30)

Using the congruences (5.2.30) and (5.2.23), we can see that

b5(16n+15) ≡ b5(4n+3) (mod 16). (5.2.31)

By mathematical induction on α, we obtain

b5(2
2α+4n+22α+4 − 1) ≡ b5(4n+3) (mod 16). (5.2.32)

Using (5.2.16) in (5.2.32) we get (5.2.17).

Extracting the terms involving q2n from (5.2.22), replacing q2 by q, we have

∞∑
n=0

b5(4n+1)qn ≡ 4q
f2f5f

3
10

f1
+2f 21 f

2
5 (mod 16). (5.2.33)
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But

2f 21 f
2
5 ≡ 2

f 25 f
2
2

f 21
(mod 4), (5.2.34)

which implies,

∞∑
n=0

b5(4n+1)qn ≡ 4q
f2f5f

3
10

f1
+2

f 22 f
2
5

f 21
(mod 8). (5.2.35)

Substituting (1.52) into (5.2.35), we Vnd that

∞∑
n=0

b5(4n+1)qn

≡ 4q
f8f

3
10f

2
20

f2f40
+4q2

f 34 f
4
10f40

f 22 f8f20
+2

f 28 f
4
20

f 22 f
2
40

+4q
f 34 f10f20

f 32
+2q2

f 64 f
2
10f

2
40

f 42 f
2
8 f

2
10

(mod 8).

(5.2.36)

Extracting the terms involving q2n+1 from (5.2.36), dividing q and replacing q2 by q, we

get
∞∑
n=0

b5(8n+5)qn ≡ 4
f4f

3
5 f

2
10

f1f20
+4

f 32 f5f10
f 31

(mod 8). (5.2.37)

Using (1.31) in (5.2.37), we get

∞∑
n=0

b5(8n+5)qn ≡ 4
f 22 f5f10
f1

+4
f 22 f5f10
f1

(mod 8). (5.2.38)

Congruence (5.2.15) can be easily obtained from (5.2.38).

Extracting the terms involving q2n from (5.2.25), replacing q2 by q, we have

∞∑
n=0

b5(8n+3)qn ≡ 4q
f2f5f

3
10

f1
+6f 21 f

2
5 (mod 8),

which implies,

∞∑
n=0

b5(8n+3)qn ≡ 4q
f2f5f

3
10

f1
+6

f 41 f
2
5

f 21
(mod 8), (5.2.39)
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Substituting (1.52) into (5.2.39), we Vnd that

∞∑
n=0

b5(8n+3)qn

≡ 4q
f8f

3
10f

2
20

f2f40
+4q2

f 34 f
4
10f40

f 22 f8f20
+6

f 28 f
4
20

f 22 f
2
40

+4q
f 34 f10f20

f 32
+6q2

f 64 f
2
10f

2
40

f 42 f
2
8 f

2
20

(mod 8).

(5.2.40)

Extracting the terms involving q2n+1 from (5.2.40), dividing q and replacing q2 by q, we

have
∞∑
n=0

b5(16n+11)qn ≡ 4
f4f

3
5 f

2
10

f1f20
+4

f 32 f5f10
f 31

(mod 8). (5.2.41)

Using (1.31) in (5.2.41), we get

∞∑
n=0

b5(16n+11)qn ≡ 4
f4f5f10
f1

+4
f4f5f10
f1

(mod 8). (5.2.42)

Congruence (5.2.16) follows from (5.2.42).

5.2.4 Congruences modulo 27 and 81 for b9(n)

Theorem 5.2.4. For each α ≥ 0 and n ≥ 1,

b9(27n+25) ≡ 0 (mod 81), (5.2.43)

b9
(
3α+4n+3α+4 − 2

)
≡ 0 (mod 27). (5.2.44)

Proof. Setting ` = 9 in (5.1.2), we have

∞∑
n=0

b9(n)q
n =

f 29 f
2
18

f 21 f
2
2

. (5.2.45)

Substituting (1.64) into (5.2.45), we Vnd that

∞∑
n=0

b9(n)q
n =

f 89 f
8
18

f 83 f
8
6

(
a(q3)2 +2qa(q3)b(q3) + q2b(q3)2 +6q2a(q3) + 6q3b(q3) + 9q4

)
.

(5.2.46)
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Extracting the terms involving q3n+1 from (5.2.46), dividing q and replacing q3 by

q, we have
∞∑
n=0

b9(3n+1)qn =
f 83 f

8
6

f 81 f
8
2

(2a(q)b(q) + 9q) . (5.2.47)

Using (1.61) in (5.2.47), we obtain

∞∑
n=0

b9(3n+1)qn =
f 83 f

8
6

f 81 f
8
2

(2c(q) + 13q) . (5.2.48)

Employing (1.65) into (5.2.48), we get

∞∑
n=0

b9(3n+1)qn = 2
f 43 f

4
6

f 41 f
4
2

+27q
f 83 f

8
6

f 81 f
8
2

. (5.2.49)

Using (1.31) in (5.2.49), we have

∞∑
n=0

b9(3n+1)qn ≡ 2
f 43 f

4
6

f 41 f
4
2

+27qf1f2f
5
3 f

5
6 (mod 243). (5.2.50)

Employing (1.63) and (1.66) into (5.2.50), we can see that

∞∑
n=0

b9(3n+1)qn

≡ 2f 43 f
4
6

∞∑
n=0

h(n)qn +27qf 53 f
5
6 f9f18

(
1

x(q3)
− q − 2q2x(q3)

)
(mod 243), (5.2.51)

which implies that

∞∑
n=0

b9(9n+7)qn ≡ 2f 41 f
4
2

∞∑
n=0

h(3n+2)qn − 27f 51 f
5
2 f3f6 (mod 243). (5.2.52)

Substituting (1.67) into (5.2.52), we obtain

∞∑
n=0

b9(9n+7)qn ≡ 36
f 43 f

4
6

f 41 f
4
2

+162q
f 83 f

8
6

f 81 f
8
2

− 27f 51 f
5
2 f3f6 (mod 243). (5.2.53)

It follows from (1.31), we have
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f 51 f
5
2 f3f6 ≡

f 43 f
4
6

f 41 f
4
2

(mod 9). (5.2.54)

In view of (5.2.54), we can express (5.2.53) as

∞∑
n=0

b9(9n+7)qn ≡ 9
f 43 f

4
6

f 41 f
4
2

+162q
f 83 f

8
6

f 81 f
8
2

(mod 243)

≡ 9
f 43 f

4
6

f 41 f
4
2

(mod 81). (5.2.55)

Invoking (1.31) in (5.2.55), we get

∞∑
n=0

b9(9n+7)qn ≡ 9f3f6f
5
1 f

5
2 (mod 81). (5.2.56)

Employing (1.63) into (5.2.56), we obtain

∞∑
n=0

b9(9n+7)qn ≡ 9f3f6f
5
9 f

5
18(−5

q

x(q3)4
+30

q3

x(q3)2
− 15

q4

x(q3)

+ 30x(q3)q6 +120x(q3)2q7 − 80x(q3)4q9

− 32x(q3)5q10 + 1
x(q3)5

) (mod 81). (5.2.57)

Extracting the terms involving q3n+2 from (5.2.57) to obtain the congruence (5.2.43).

From (5.2.50) and (5.2.55), we obtain

∞∑
n=0

b9(9n+7)qn ≡ 18
∞∑
n=0

b9(3n+1)qn (mod 27). (5.2.58)

Equating the coeXcients of qn on both sides of the above equation, we get

b9(9n+7) ≡ 18b9(3n+1) (mod 27). (5.2.59)

For each α ≥ 0, we obtain by induction that

b9
(
3α+2n+3α+2 − 2

)
≡ 18α+1b9(3n+1) (mod 27). (5.2.60)

Using (5.2.43) in (5.2.60), we obtain (5.2.44).



Chapter 6

(`,m)-REGULAR BIPARTITION
TRIPLES

6.1 Introduction

In introductory chapter, we deVned the (`,m)-regular bipartition functions and denoted

by B`,m(n). Recently Dou [23] has discovered an inVnite family of congruences mod-

ulo 11 for B3,11(n) and she gave several conjectures on Bs,t(n). Xia and Yao [76] have

conVrmed three conjectures on B3,7(n) and obtained several inVnite families of con-

gruences modulo 3 and 5 for B3,s(n) and B5,s(n). In addition, also proved many inVnite

families of congruences modulo 7 for B3,7(n). Motivated by the above works, we study

the function BT`,m(n), the number of (`,m)-regular bipartition triples of a positive in-

teger n. The generating function for BT`,m(n) is given by

∞∑
n=0

BT`,m(n)q
n =

f 3` f
3
m

f 61
. (6.1.1)

6.2 On (`,m)-regular bipartition triples

In this section, we establish some congruences and inVnite families of congruences for

BT`,m(n) modulo 3, 9 and 27 for various values of ` and m.

Reference [53] is based on this chapter

127
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6.2.1 Congruences modulo 3 for BT2,3(n)

Theorem 6.2.1. For each n ≥ 0 and α ≥ 0,

BT2,3(3n+1) ≡ 0 (mod 3), (6.2.1)

BT2,3(3n+2) ≡ 0 (mod 3), (6.2.2)

BT2,3

(
32α+3n+

11 · 32α+2 − 3
8

)
≡ 0 (mod 3). (6.2.3)

Proof. Setting (`,m) = (2,3) in (6.1.1), we have

∞∑
n=0

BT2,3(n)q
n =

f 32 f
3
3

f 61
. (6.2.4)

Using (1.31) in (6.2.4), we get

∞∑
n=0

BT2,3(n)q
n ≡ f3f6 (mod 3). (6.2.5)

Congruences (6.2.1) and (6.2.2) easily follow from (6.2.5).

From (6.2.5) yields

∞∑
n=0

BT2,3(3n)q
n ≡ f1f2 (mod 3). (6.2.6)

Employing (1.74) in (6.2.6), we Vnd that

∞∑
n=0

BT2,3(3n)q
n ≡

f6f
4
9

f3f
2
18

+2qf9f18 +2q2
f3f

4
18

f6f
2
9

(mod 3), (6.2.7)

which yields
∞∑
n=0

BT2,3(9n+3)qn ≡ 2f3f6 (mod 3). (6.2.8)

By (6.2.8) and (6.2.5), we obtain

BT2,3(9n+3) ≡ 2BT2,3(n) (mod 3). (6.2.9)
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Using (6.2.9) and by mathematical induction

BT2,3

(
9α+1n+

3 · 9α+1 − 3
8

)
≡ 2α+1BT2,3(n) (mod 3). (6.2.10)

Congruence (6.2.3) follows from (6.2.10) and (6.2.1).

6.2.2 Congruences modulo 3 for BT2,9(n)

Theorem 6.2.2. For each nonnegative integer n and α ≥ 0,

BT2,9(3n+1) ≡ 0 (mod 3), (6.2.11)

BT2,9(3n+2) ≡ 0 (mod 3), (6.2.12)

BT2,9(27n+15) ≡ 0 (mod 3), (6.2.13)

BT2,9(27n+24) ≡ 0 (mod 3), (6.2.14)

BT2,9

(
32α+5n+

7 · 32α+4 − 3
4

)
≡ 0 (mod 3). (6.2.15)

Proof. Setting (`,m) = (2,9) in (6.1.1), we have

∞∑
n=0

BT2,9(n)q
n =

f 32 f
3
9

f 61
. (6.2.16)

By (1.31) in (6.2.16), we get

∞∑
n=0

BT2,9(n)q
n ≡

f6f18
f 23

(mod 3). (6.2.17)

From the above equation we obtain the congruences (6.2.11) and (6.2.12).

Equation (6.2.17) can be written as

∞∑
n=0

BT2,9(3n)q
n ≡

f2f6
f 21

(mod 3). (6.2.18)

Substituting (1.72) in (6.2.18), we Vnd that

∞∑
n=0

BT2,9(3n)q
n ≡

f 56 f
6
9

f 83 f
3
18

+2q
f 46 f

3
9

f 73
+ q2

f 36 f
3
18

f 63
(mod 3), (6.2.19)



Chapter 6. (`,m)-regular bipartition triples 130

which implies,
∞∑
n=0

BT2,9(9n+6)qn ≡
f 32 f

3
6

f 61
(mod 3). (6.2.20)

Using (1.31) in (6.2.20), we arrive at

∞∑
n=0

BT2,9(9n+6)qn ≡
f6f18
f 63

(mod 3). (6.2.21)

Congruences (6.2.13) and (6.2.14) follow from (6.2.21).

From (6.2.21) yields

∞∑
n=0

BT2,9(27n+6)qn ≡
f2f6
f 61

(mod 3). (6.2.22)

Using (6.2.22) and (6.2.18), we get

BT2,9(27n+6) ≡ BT2,9(3n) (mod 3). (6.2.23)

Using (6.2.23) and by mathematical induction

BT2,9

(
27α+1n+

27 · 9α − 3
4

)
≡ BT2,9(3n) (mod 3). (6.2.24)

From (6.2.24) and (6.2.13), we Vnd that (6.2.15).

6.2.3 InVnite family of congruences modulo 27 for BT3,3(n)

Theorem 6.2.3. For each n and α ≥ 0,

BT3,3(3n+2) ≡ 0 (mod 27), (6.2.25)

BT3,3

(
3α+2n+

5 · 3α+1 − 1
2

)
≡ 0 (mod 27). (6.2.26)

Proof. Setting (`,m) = (3,3) in (6.1.1), we have

∞∑
n=0

BT3,3(n)q
n =

f 63
f 61
. (6.2.27)
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Invoking (1.31) in (6.2.27), we obtain

∞∑
n=0

BT3,3(n)q
n ≡

f 211

f 33
≡
(f 31 )

7

f 33
(mod 27). (6.2.28)

Employing (1.75) in (6.2.28), we Vnd that

∞∑
n=0

BT3,3(n)q
n ≡

f 219

f 33 ζ
7
(1 + 6qζ + q3ζ3 +9q4ζ4 +12q6ζ6 +9q7ζ7

+26q9ζ9 +12q10ζ10 +23q12ζ12 +9q13ζ13 +12q15ζ15

+9q16ζ16 +25q18ζ18 +6q19ζ19 +22q21ζ21) (mod 27). (6.2.29)

Congruence (6.2.25) follows from the above equation.

Extracting the terms containing q3n+1, dividing throughout by q and then replacing

q3 by q from (6.2.29), we get

∞∑
n=0

BT3,3(3n+1)qn

≡
f 213

f 31
(6η−6 +9qη−3 +9q2 +12q3η3 +9q4η6 +9q5η9 +6q6η12) (mod 27),

(6.2.30)

which implies,

∞∑
n=0

BT3,3(3n+1)qn ≡
f 213

f 31

(
6(η−1 +4qη2)6

)
(mod 27). (6.2.31)

Using (1.76) in (6.2.31), we arrive at

∞∑
n=0

BT3,3(3n+1)qn ≡
f 213

f 31

6(
f 121

f 123

)2 (mod 27), (6.2.32)

which is equivalent to

∞∑
n=0

BT3,3(3n+1)qn ≡ 6
f 211

f 33
(mod 27). (6.2.33)
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From (6.2.33) and (6.2.28), we get

BT3,3(3n+1) ≡ 6BT3,3(n) (mod 27). (6.2.34)

Using (6.2.34) and by mathematical induction

BT3,3

(
3α+1n+

3α+1 − 1
2

)
≡ 6α+1BT3,3(n) (mod 27). (6.2.35)

Congruence (6.2.26) follows from (6.2.35) and (6.2.25).

6.2.4 Congruences modulo 9 for BT3,5(n)

Theorem 6.2.4. For each nonnegative integer n and α ≥ 0,

BT3,5(5n+2) ≡ 0 (mod 9), (6.2.36)

BT3,5(5n+4) ≡ 0 (mod 9), (6.2.37)

BT3,5

(
5α+2n+

11 · 5α+1 − 3
4

)
≡ 0 (mod 9). (6.2.38)

Proof. Setting (`,m) = (3,5) in (6.1.1), we have

∞∑
n=0

BT3,5(n)q
n =

f 33 f
3
5

f 61
=
f 31 f

3
3 f

3
5

f 91
. (6.2.39)

Using (1.31) in (6.2.39), we obtain

∞∑
n=0

BT3,5(n)q
n ≡ f 31 f

3
5 (mod 9). (6.2.40)

Substituting (1.34) in (6.2.40), we Vnd that

∞∑
n=0

BT3,5(n)q
n ≡ f 35 f

3
25

(
a3 +6a2q+5q3 +

6q5

a2
+
8q6

a3

)
(mod 9). (6.2.41)

Congruences (6.2.36) and (6.2.37) follow from (6.2.41).
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From (6.2.41) yields

∞∑
n=0

BT3,5(5n+3)qn ≡ 5f 31 f
3
5 (mod 9). (6.2.42)

By (6.2.42) and (6.2.40), we get

BT3,5(5n+3) ≡ 5BT3,5(n) (mod 9). (6.2.43)

From (6.2.43) and by mathematical induction

BT3,5

(
5α+1n+

3 · 5α+1 − 3
4

)
≡ 5α+1BT3,5(n) (mod 9). (6.2.44)

Using (6.2.44) and (6.2.36) we arrive at (6.2.38).

6.2.5 Congruences modulo 3 for BT3,7(n)

Theorem 6.2.5. For each n and α ≥ 0,

BT3,7(3n+1) ≡ 0 (mod 3), (6.2.45)

BT3,7(3n+2) ≡ 0 (mod 3), (6.2.46)

BT3,7(12n+9) ≡ 0 (mod 3), (6.2.47)

BT3,7
(
3 · 4α+2n+10 · 4α+1 − 1

)
≡ 0 (mod 3). (6.2.48)

Proof. Setting (`,m) = (3,7) in (6.1.1), we have

∞∑
n=0

BT3,7(n)q
n =

f 33 f
3
7

f 61
. (6.2.49)

By (1.31) in (6.2.49), we Vnd that

∞∑
n=0

BT3,7(n)q
n ≡ f3f21 (mod 3). (6.2.50)

From (6.2.50) follow the congruences (6.2.45) and (6.2.46).
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Identity (6.2.50) yields

∞∑
n=0

BT3,7(3n)q
n ≡ f1f7 (mod 3). (6.2.51)

Substituting (1.55) in (6.2.51) and extracting the odd terms

∞∑
n=0

BT3,7(6n+3)qn ≡ 2f2f14 (mod 3). (6.2.52)

Congruence (6.2.47) follows from the above equation.

From (6.2.52) yields

∞∑
n=0

BT3,7(12n+3)qn ≡ 2f1f7 (mod 3). (6.2.53)

Using (6.2.53) and (6.2.51), we arrive at

BT3,7(12n+3) ≡ 2BT3,7(3n) (mod 3). (6.2.54)

Form (6.2.54) and by mathematical induction

BT3,7
(
12α+1n+4α+1 − 1

)
≡ 2α+1BT3,7(3n) (mod 3). (6.2.55)

By (6.2.55) and congruence (6.2.47), we obtain (6.2.48).

6.2.6 Congruences modulo 9 and 27 for BT3,9(n)

Theorem 6.2.6. For each n ≥ 0,

BT3,9(3n+2) ≡ 0 (mod 27), (6.2.56)

BT3,9(9n+4) ≡ 0 (mod 27), (6.2.57)

BT3,9(9n+7) ≡ 0 (mod 27), (6.2.58)

BT3,9(27n+19) ≡ 0 (mod 27), (6.2.59)

BT3,9(27n+10) ≡ 0 (mod 9). (6.2.60)
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Proof. Setting (`,m) = (3,9) in (6.1.1), we have

∞∑
n=0

BT3,9(n)q
n =

f 33 f
3
9

f 61
. (6.2.61)

Invoking (1.31) in (6.2.61), we obtain

∞∑
n=0

BT3,9(n)q
n ≡

f 211 f 39
f 63

≡
(f 31 )

7f 39
f 63

(mod 27). (6.2.62)

Employing (1.75) in (6.2.62), we Vnd that

∞∑
n=0

BT3,9(n)q
n ≡

f 249

f 63 ζ
7
(1 + 6qζ + q3ζ3 +9q4ζ4 +12q6ζ6 +9q7ζ7

+26q9ζ9 +12q10ζ10 +23q12ζ12 +9q13ζ13 +12q15ζ15

+9q16ζ16 +25q18ζ18 +6q19ζ19 +22q21ζ21) (mod 27). (6.2.63)

Congruence (6.2.56) follows from the above equation.

Extracting the terms containing q3n+1, dividing throughout by q and then replacing

q3 by q from (6.2.63), we Vnd that

∞∑
n=0

BT3,9(3n+1)qn

≡
f 243

f 61
(6η−6 +9qη−3 +9q2 +12q3η3 +9q4η6 +9q5η9 +6q6η12) (mod 27),

(6.2.64)

which implies that

∞∑
n=0

BT3,9(3n+1)qn ≡
f 243

f 61

(
6(η−1 +4qη2)6

)
(mod 27). (6.2.65)

Using (1.76) in (6.2.65), we arrive at

∞∑
n=0

BT3,9(3n+1)qn ≡
f 243

f 61

6(
f 121

f 123

)2 (mod 27), (6.2.66)
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which is equivalent to

∞∑
n=0

BT3,9(3n+1)qn ≡ 6f 181 (mod 27). (6.2.67)

By (1.31) in (6.2.67), we get

∞∑
n=0

BT3,9(3n+1)qn ≡ 6f 63 (mod 27). (6.2.68)

Congruences (6.2.57) and (6.2.58) easily follow from (6.2.68).

From (6.2.68) yields

∞∑
n=0

BT3,9(9n+1)qn ≡ 6f 61 ≡ 6(f 31 )
2 (mod 27). (6.2.69)

Substituting (1.75) in (6.2.69), we obtain

∞∑
n=0

BT3,9(9n+1)qn ≡ f 69 (6ζ
−2 +18qζ−1 +21q3ζ +18q4ζ2 +15q6ζ4) (mod 27).

(6.2.70)

Congruences (6.2.59) and (6.2.60) follow from (6.2.70).

6.2.7 Congruences modulo 9 and 27 for BT9,9(n)

Theorem 6.2.7. For each n and α ≥ 0,

BT9,9(3n+2) ≡ 0 (mod 27), (6.2.71)

BT9,9(9n+7) ≡ 0 (mod 27), (6.2.72)

BT9,9(9n+4) ≡ 0 (mod 9), (6.2.73)

BT9,9(36n+28) ≡ 0 (mod 9), (6.2.74)

BT9,9
(
9 · 4α+2n+30 · 4α+1 − 2

)
≡ 0 (mod 9). (6.2.75)

Proof. Setting (`,m) = (9,9) in (6.1.1), we have

∞∑
n=0

BT9,9(n)q
n =

f 69
f 61
. (6.2.76)
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By (1.31) in (6.2.76), we get

∞∑
n=0

BT9,9(n)q
n ≡

f 69 f
21
1

f 93
≡
f 69 (f

3
1 )

7

f 93
(mod 27). (6.2.77)

Employing (1.75) in (6.2.77), we arrive at

∞∑
n=0

BT9,9(n)q
n ≡

f 279

f 93 ζ
7
(1 + 6qζ + q3ζ3 +9q4ζ4 +12q6ζ6 +9q7ζ7

+26q9ζ9 +12q10ζ10 +23q12ζ12 +9q13ζ13 +12q15ζ15

+9q16ζ16 +25q18ζ18 +6q19ζ19 +22q21ζ21) (mod 27). (6.2.78)

Congruence (6.2.71) follows from (6.2.78).

Extracting the terms containing q3n+1, dividing throughout by q and then replacing

q3 by q from (6.2.78), we deduce that

∞∑
n=0

BT9,9(3n+1)qn

≡
f 273

f 91
(6η−6 +9qη−3 +9q2 +12q3η3 +9q4η6 +9q5η9 +6q6η12) (mod 27),

(6.2.79)

which implies,

∞∑
n=0

BT9,9(3n+1)qn ≡
f 273

f 91

(
6(η−1 +4qη2)6

)
(mod 27). (6.2.80)

Using (1.76) in (6.2.80), we obtain

∞∑
n=0

BT9,9(3n+1)qn ≡
f 273

f 91

6(
f 121

f 123

)2 (mod 27), (6.2.81)

which is equivalent to

∞∑
n=0

BT9,9(3n+1)qn ≡ 6f 151 f 33 ≡ 6(f 31 )
5f 33 (mod 27). (6.2.82)

Substituting (1.75) in (6.2.82), we Vnd that
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∞∑
n=0

BT9,9(3n+1)qn ≡f 33 f
15
9 (6ζ−5 +18qζ−4 +12q3ζ−2 +18q4ζ−1

+15q6ζ +6q9ζ4 +18q10ζ5 +12q12ζ7

+18q13ζ8 +15q15ζ10) (mod 27). (6.2.83)

Congruence (6.2.72) follows from (6.2.83).

From (6.2.82) can be written as

∞∑
n=0

BT9,9(3n+1)qn ≡ 6f 83 (mod 9). (6.2.84)

Congruence (6.2.73) easily obtained from the above equation.

From (6.2.84) yields

∞∑
n=0

BT9,9(9n+1)qn ≡ 6f 81 ≡ 6
f 33
f1

(mod 9). (6.2.85)

Employing (1.42) in (6.2.85) and extracting the odd terms

∞∑
n=0

BT9,9(18n+10)qn ≡ 6
f 36
f2

(mod 9). (6.2.86)

Congruence (6.2.74) follows from (6.2.86).

From (6.2.86), we have

∞∑
n=0

BT9,9(36n+10)qn ≡ 6
f 33
f1

(mod 9). (6.2.87)

Using (6.2.85) and (6.2.87), we obtain

BT9,9(36n+10) ≡ BT9,9(9n+1) (mod 9). (6.2.88)

From (6.2.43) and by mathematical induction

BT9,9
(
36α+1n+12 · 4α − 2

)
≡ BT9,9(9n+1) (mod 9). (6.2.89)

Using (6.2.89) and congruence (6.2.74) we get (6.2.75).



Chapter 7

PARTITION QUADRUPLES WITH
t-CORES

7.1 Introduction

In chapter (1), we have deVned partition with t-cores at(n) and partition quadruple

with t-cores Ct(n). Many mathematicians studied the arithmetic properties of at(n).

For instance Hirschhorn and Sellers [31,32] have studied the 4-core partition a4(n) and

established some inVnite families of arithmetic relations for a4(n). Baruah and Nath [8]

have proved some more inVnite families of arithmetic identities for a4(n). With the

above motivation, we study the divisibility properties of the function Ct(n).

7.2 Congruences for partition quadruples with t-cores

In this section, we obtain some congruences and inVnite families of congruences for

Ct(n) modulo 5, 7 and 8 for various values of t.

Reference [52] is based on this chapter
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7.2.1 Generating functions for C3(4n), C3(4n + 1), C3(4n + 2) and

C3(4n+3)

Theorem 7.2.1. For each n ≥ 0,

∞∑
n=0

C3(4n)q
n =

f 162 f 86
f 81 f

4
4 f

4
12

+24q
f 102 f 23 f

2
6

f 61
+16q2

f 42 f
4
3 f

4
4 f

4
12

f 41 f
4
6

+24q
f 52 f

7
3 f6
f 51

+ q
f 123

f 41
, (7.2.1)

∞∑
n=0

C3(4n+1)qn = 4
f 122 f 33 f

6
6

f 71 f
3
4 f

3
12

+48q
f 62 f

5
3 f4f12
f 51

+8q
f2f

10
3 f4f12

f 41 f6
, (7.2.2)

∞∑
n=0

C3(4n+2)qn = 8
f 132 f3f

5
6

f 71 f
2
4 f

2
12

+32q
f 72 f

3
3 f

2
4 f

2
12

f 51 f6
+6

f 82 f
6
3 f

4
6

f 61 f
2
4 f

2
12

+24q
f 22 f

8
3 f

2
4 f

2
12

f 41 f
2
6

,

(7.2.3)
∞∑
n=0

C3(4n+3)qn = 24
f 92 f

4
3 f

3
6

f 61 f4f12
+32q

f 32 f
6
3 f

3
4 f

3
12

f 41 f
3
6

+4
f 42 f

9
3 f

2
6

f 51 f4f12
. (7.2.4)

Proof. Setting t = 3 in (1.25), we have

∞∑
n=0

C3(n)q
n =

f 123

f 41
=

(
f 33
f1

)4
. (7.2.5)

Substituting (1.42) into (7.2.5), we arrive at

∞∑
n=0

C3(n)q
n =

f 124 f 86
f 82 f

4
12

+4q
f 84 f

6
6

f 62
+6q2

f 44 f
4
6 f

4
12

f 42
+4q3

f 26 f
8
12

f 22
+ q4

f 1212

f 44
. (7.2.6)

Extracting the even terms of the above equation

∞∑
n=0

C3(2n)q
n =

f 122 f 83
f 81 f

4
6

+6q
f 42 f

4
3 f

4
6

f 41
+ q2

f 126

f 42
, (7.2.7)

which yields

∞∑
n=0

C3(2n)q
n =

f 122

f 46

(
f 23
f 21

)4
+6qf 42 f

4
6

(
f 23
f 21

)2
+ q2

f 126

f 42
. (7.2.8)
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Employing (1.47) into (7.2.8) and extracting the terms involving q2n and q2n+1, we get

(7.2.1) and (7.2.3).

From (7.2.6), we have

∞∑
n=0

C3(2n+1)qn = 4
f 82 f

6
3

f 61
+4q

f 23 f
8
6

f 21
, (7.2.9)

which implies,

∞∑
n=0

C3(2n+1)qn = 4f 82

(
f 23
f 21

)3
+4qf 86

(
f 23
f 21

)
. (7.2.10)

Substituting (1.47) into (7.2.10) and extracting the even and odd terms of the above

equation, we obtain (7.2.2) and (7.2.4).

7.2.2 InVnite families of congruences modulo 8 for C3(n)

Theorem 7.2.2. For each α ≥ 0 and n ≥ 0,

C3(16n+14) ≡ 0 (mod 8), (7.2.11)

C3(48n+30) ≡ 0 (mod 8), (7.2.12)

C3

(
16α+1n+

16 · 4α − 4
3

)
≡ C3(4n) (mod 8). (7.2.13)

Proof. From (7.2.3), we have

∞∑
n=0

C3(4n+2)qn ≡ 6
f 82 f

6
3 f

4
6

f 61 f
2
4 f

2
12

(mod 8). (7.2.14)

Using (1.31) in (7.2.14), we get

∞∑
n=0

C3(4n+2)qn ≡ 6
f 63
f 61
≡ 6

(
f 23
f 21

)3
(mod 8). (7.2.15)

Employing (1.47) into (7.2.15), we Vnd that

∞∑
n=0

C3(4n+2)qn ≡ 6
f 124 f 36 f

6
12

f 152 f 38 f
3
24

+4q
f 94 f

4
6 f

3
12

f 142 f8f24
(mod 8). (7.2.16)
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Extracting the terms involving q2n+1 from (7.2.16), dividing by q and then replacing q2

by q, we arrive at

∞∑
n=0

C3(8n+6)qn ≡ 4
f 92 f

4
3 f

3
6

f 141 f4f12
(mod 8). (7.2.17)

Invoking (1.31) in (7.2.17), we obtain

∞∑
n=0

C3(8n+6)qn ≡ 4f 36 (mod 8). (7.2.18)

Congruence (7.2.11) follows from (7.2.18).

From (7.2.18), we have

∞∑
n=0

C3(24n+6)qn ≡ 4f 32 (mod 8). (7.2.19)

Congruence (7.2.12) easily follows from above equation.

From (7.2.1), we get

∞∑
n=0

C3(4n)q
n ≡

f 162 f 86
f 81 f

4
4 f

4
12

+ q
f 123

f 41
(mod 8). (7.2.20)

Invoking (1.31) in (7.2.20), we Vnd that

∞∑
n=0

C3(4n)q
n ≡ f 42 + q

(
f 33
f1

)4
(mod 8). (7.2.21)

Substituting (1.42) into second term of (7.2.21) and extracting the odd terms of the

required equation. we deduce that

∞∑
n=0

C3(8n+4)qn ≡
f 122 f 83
f 81 f

4
6

+6q
f 42 f

4
3 f

4
6

f 41
+ q2

f 126

f 42
(mod 8). (7.2.22)

Using (1.31) in (7.2.22), we get

∞∑
n=0

C3(8n+4)qn ≡ f 82 +6qf 22 f
6
6 + q2

f 126

f 42
(mod 8). (7.2.23)
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Extracting the terms involving q2n from (7.2.23) and then replacing q2 by q, we Vnd

that
∞∑
n=0

C3(16n+4)qn ≡ f 81 + q
f 123

f 41
(mod 8). (7.2.24)

Invoking (1.31) in (7.2.24), we arrive at

∞∑
n=0

C3(16n+4)qn ≡ f 42 + q
(
f 33
f1

)4
(mod 8). (7.2.25)

Using (7.2.25) and (7.2.21), we get

C3(16n+4) ≡ C3(4n) (mod 8). (7.2.26)

By mathematical induction on α, we obtain (7.2.13).

Theorem 7.2.3. For α, β and γ ≥ 0,

∞∑
n=0

C3

(
16 · 32α+1 · 52β · 72γn+2 · 32α+1 · 52β · 72γ

)
qn ≡ 4f 31 (mod 8), (7.2.27)

∞∑
n=0

C3

(
16 · 32α+1 · 52β · 72γ+1n+2 · 32α+1 · 52β · 72γ+2

)
qn ≡ 4f 37 (mod 8), (7.2.28)

∞∑
n=0

C3

(
16 · 32α+1 · 52β+1 · 72γn+2 · 32α+1 · 52β+2 · 72γ

)
qn ≡ 4f 35 (mod 8), (7.2.29)

∞∑
n=0

C3

(
16 · 32α+2 · 52β · 72γn+2 · 32α+3 · 52β · 72γ

)
qn ≡ 4f 33 (mod 8). (7.2.30)

C3

(
16 · 32α+2 · 52β · 72γn+2 · 32α+1 · 52β · 72γ

)
≡

4 (mod 8) if n = k(3k +1)/2 for some k ∈ Z,

0 (mod 8) otherwise,
(7.2.31)

Proof. Extracting the terms involving q2n from (7.2.19) and replacing q2 by q, we obtain

∞∑
n=0

C3(48n+6)qn ≡ 4f 31 (mod 8). (7.2.32)



Chapter 7. Partition quadruples with t-cores 144

The equation (7.2.32) is the α = β = γ = 0 case of (7.2.27).

Let us consider the case β = γ = 0. Suppose that the congruence (7.2.27) holds for some

integer α ≥ 0. Employing the equation (1.75) in (7.2.27) with β = γ = 0,

∞∑
n=0

C3(16 · 32α+1n+2 · 32α+1)qn ≡ 4(f3 + qf
3
9 ) (mod 8), (7.2.33)

which implies,

∞∑
n=0

C3(16 · 32α+2n+2 · 32α+3)qn ≡ 4f 33 (mod 8). (7.2.34)

Therefore
∞∑
n=0

C3(16 · 32α+3n+2 · 32α+3)qn ≡ 4f 31 (mod 8), (7.2.35)

which implies that (7.2.27) is true for α +1. Hence by induction (7.2.27) is true for any

non-negative integer α and β = γ = 0.

Let us consider the case γ = 0, suppose that the congruence (7.2.27) holds for some

integer α, β ≥ 0. Substituting (1.34) in (7.2.27),

∞∑
n=0

C3(16 ·32α+1 ·52βn+2 ·32α+1 ·52β)qn ≡ 4f 325
(
a− q − q2/a

)3
(mod 8). (7.2.36)

Extracting the terms involving q5n+3 from (7.2.36), we arrive at

∞∑
n=0

C3(16 · 32α+1 · 52β+1n+2 · 32α+1 · 52β+2)qn ≡ 4f 35 (mod 8), (7.2.37)

which yields

∞∑
n=0

C3(16 · 32α+1 · 52β+2n+2 · 32α+1 · 52β+2)qn ≡ 4f 31 (mod 8), (7.2.38)

which implies that (7.2.27) is true for β + 1. Hence by induction (7.2.27) is true for

α,β ≥ 0 and γ = 0.

Now, Suppose that the congruence (7.2.27) holds for some integers α, β and γ ≥ 0.
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Employing (1.35) in the equation (7.2.27), we Vnd that

∞∑
n=0

C3

(
16 · 32α+1 · 52β · 72γn+2 · 32α+1 · 52β · 72γ

)
qn

≡ 4f 349

(
B(q7)
C(q7)

− q
A(q7)
B(q7)

− q2 + q5
C(q7)
A(q7)

)3
(mod 8). (7.2.39)

Extracting the terms involving q7n+6 from (7.2.39), we get

∞∑
n=0

C3

(
16 · 32α+1 · 52β · 72γ+1n+2 · 32α+1 · 52β · 72γ+2

)
qn ≡ 4f 37 (mod 8), (7.2.40)

which prove (7.2.28). Extracting the coeXcient of q7n in (7.2.40), we arrive at

∞∑
n=0

C3

(
16 · 32α+1 · 52β · 72γ+2n+2 · 32α+1 · 52β · 72γ+2

)
qn ≡ 4f 31 (mod 8), (7.2.41)

which implies that (7.2.27) is true for γ +1. Hence, by induction (7.2.27) is true for any

non-negative integers α, β and γ . This completes the proof.

Employing (1.34) in (7.2.27), we get (7.2.29).

Substituting (1.75) in (7.2.27) and then extracting q3n+1 and q3n, we obtain (7.2.30) and

(7.2.31) respectively.

Corollary 7.2.1. For α, β and γ ≥ 0, p ∈ {30,46,62,78,94,110}, q ∈ {34,66}, r ∈
{26,42,58,74} and s ∈ {22,38},

C3

(
16 · 32α+2 · 52β · 72γn+34 · 32α+1 · 52β · 72γ

)
≡ 0 (mod 8), (7.2.42)

C3

(
16 · 32α+1 · 52β · 72γ+2n+ p · 32α+1 · 52β · 72γ+2

)
≡ 0 (mod 8), (7.2.43)

C3

(
16 · 32α+1 · 52β · 72γ+1n+ q · 32α+1 · 52β · 72γ

)
≡ 0 (mod 8), (7.2.44)

C3

(
16 · 32α+1 · 52β+2 · 72γn+ r · 32α+1 · 52β+1 · 72γ

)
≡ 0 (mod 8), (7.2.45)

C3

(
16 · 32α+3 · 52β · 72γn+ s · 32α+2 · 52β · 72γ

)
≡ 0 (mod 8). (7.2.46)
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7.2.3 Congruences modulo 5 for C5(n)

Theorem 7.2.4. For each n ≥ 0,

C5(5n+3) ≡ 0 (mod 5), (7.2.47)

C5(5n+4) ≡ 0 (mod 5), (7.2.48)

C5(25n+21) ≡ 0 (mod 5). (7.2.49)

Proof. Setting t = 5 in (1.25), we have

∞∑
n=0

C5(n)q
n =

f 205

f 41
. (7.2.50)

Using (1.31) in (7.2.50), we get

∞∑
n=0

C5(n)q
n ≡ f1f 195 (mod 5). (7.2.51)

Substituting (1.34) into (7.2.51), we Vnd that

∞∑
n=0

C5(n)q
n ≡ f 195 f25

(
a− q −

q2

a

)
(mod 5). (7.2.52)

Congruences (7.2.47) and (7.2.48) follow from (7.2.52).

Extracting the terms involving q5n+1 from (7.2.52), dividing by q and then replacing

q5 by q, we get
∞∑
n=0

C5(5n+1)qn ≡ 4f 191 f5 (mod 5). (7.2.53)

Invoking (1.31) in (7.2.53), we obtain

∞∑
n=0

C5(5n+1)qn ≡ 4f 41 f
4
5 (mod 5). (7.2.54)
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Again substituting (1.34) into (7.2.54), we Vnd that

∞∑
n=0

C5(5n+1)qn ≡ 4a4f 45 f
4
25 +4a3qf 45 f

4
25 +2aq3f 45 f

4
25

+
3q5f 45 f

4
25

a
+
3q6f 45 f

4
25

a2
+3a2q2f 45 f

4
25

+
q7f 45 f

4
25

a3
+
4q8f 45 f

4
25

a4
(mod 5). (7.2.55)

Congruence (7.2.49) easily follows from (7.2.55).

7.2.4 Congruences modulo 7 for C7(n)

Theorem 7.2.5. For each n ≥ 0,

C7(7n+6) ≡ 0 (mod 7). (7.2.56)

Proof. Setting t = 7 in (1.25), we have

∞∑
n=0

C7(n)q
n =

f 287

f 41
. (7.2.57)

Invoking (1.31) in (7.2.57), we get

∞∑
n=0

C7(n)q
n ≡ f 31 f

27
7 (mod 7). (7.2.58)

Employing (1.35) into (7.2.58), we deduce that

∞∑
n=0

C7(n)q
n ≡ f 277 f 349

B(q7)3

C(q7)3
+4qf 277 f 349

B(q7)A(q7)
C(q7)2

+3q5f 277 f 349
B(q7)2

C(q7)A(q7)
+ 3q2f 277 f 349

A(q7)2

B(q7)C(q7)

+ 6q3f 277 f 349
A(q7)
C(q7)

+ q7f 277 f 349
B(q7)
A(q7)

+ 3q10f 277 f 349
B(q7)C(q7)
A(q7)2

+3q7f 277 f 349
A(q7)C(q7)
B(q7)2
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+6q8f 277 f 349
C(q7)
B(q7)

+ 4q11f 277 f 349
C(q7)2

A(q7)B(q7)

+ 3q9f 277 f 349
C(q7)
A(q7)

+ 4q12f 277 f 349
C(q7)2

A(q7)2

+ q15f 277 f 349
C(q7)3

A(q7)3
+4q2f 277 f 349

B(q7)2

C(q7)2

+3q4f 277 f 349
B(q7)
C(q7)

+ 6q3f 277 f 349
A(q7)3

B(q7)3

+4q4f 277 f 349
A(q7)2

B(q7)2
+4q5f 277 f 349

A(q7)
B(q7)

(mod 7). (7.2.59)

Congruence (7.2.56) follows from (7.2.59).

7.2.5 Congruences modulo 5 for C25(n)

Theorem 7.2.6. For each n ≥ 0,

C25(5n+3) ≡ 0 (mod 5), (7.2.60)

C25(5n+4) ≡ 0 (mod 5), (7.2.61)

C25(25n+21) ≡ 0 (mod 5). (7.2.62)

Proof. Setting t = 25 in (1.25), we have

∞∑
n=0

C25(n)q
n =

f 10025

f 41
. (7.2.63)

Using (1.31) in (7.2.50), we Vnd that

∞∑
n=0

C25(n)q
n ≡

f1f
100
25

f5
(mod 5). (7.2.64)

The rest of the proof is similar to the theorem (7.2.4) therefore we omitte the details.
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