

1

BIO-INSPIRED ALGORITHMS HARNESSING CRICKET CHIRPING

BEHAVIOUR FOR SINGLE AND MULTI-OBJECTIVE OPTIMIZATION

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE AND ENGINEERING

Submitted by

JONTI DEURI

Under the Supervision of

Dr. S. SIVA SATHYA

Associate Professor

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF ENGINEERING AND TECHNOLOGY

PONDICHERRY UNIVERSITY, PONDICHERRY– 605014

FEBRUARY 2018

Thesis submitted in partial fulfillment of the

requirements for the award of the Degree of

2

DEDICATION

To the almighty God

&

To my Father Mr. Bidyasing Deuri & my Mother

Mrs. Chenniprova Deuri

Thank you for your blessings and filling me with so much Hope,

Purpose and Ambition and giving me this wonderful opportunity.

i

CERTIFICATE

This is to certify that this thesis titled “BIO-INSPIRED ALGORITHMS

HARNESSING CRICKET CHIRPING BEHAVIOUR FOR SINGLE AND

MULTI-OBJECTIVE OPTIMIZATION” submitted by Ms. Jonti Deuri, to the

Department of Computer Science, School of Engineering and Technology, Pondicherry

University, Puducherry, India for the award of the degree of Doctor of Philosophy in

Computer Science and Engineering is a record of bonafide research work carried out

by her under my guidance and supervision.

This work is original and has not been submitted, in part or full of this or any other

University/Institution for the award of any other degree.

.

Place: Dr. S. Siva Sathya

Date: (Guide & Supervisor)

 Associate Professor

 Department of Computer Science

 School of Engineering and Technology

 Pondicherry University

 Puducherry – 605 014

 India.

ii

DECLARATION

I hereby declare that this thesis titled “BIO-INSPIRED ALGORITHMS

HARNESSING CRICKET CHIRPING BEHAVIOUR FOR SINGLE AND

MULTI-OBJECTIVE OPTIMIZATION” submitted to the Department of Computer

Science, School of Engineering and Technology, Pondicherry University, Puducherry,

India for the award of the degree of Doctor of Philosophy in Computer Science and

Engineering is a record of bonafide research work carried out by me under the guidance

and supervision of Dr. S. Siva Sathya.

This work is original and has not been submitted, in part or full of this or any other

University/Institution for the award of any other degree.

Place: JONTI DEURI

Date:

iii

ACKNOWLEDGEMENT

To begin with, I thank God for blessing me with some astonishing people who have spun

a web of support around me. There can never be enough words to express my

gratefulness to those incredible people, by whom this research can be made possible. This

is just an attempt to “THANK” them for making my period of research as a treasure to be

cherished forever.

It is an immense pleasure to express my deep sense of thanks and gratitude to my guide

and supervisor Dr. S. Siva Sathya, Associate Professor, Department of Computer

Science, School of Engineering and Technology, Pondicherry University, Pondicherry for

being beyond my guide, encouraging and soothing me with her invaluable suggestions,

support and direction throughout my research period. I am indebted to her for her

discerning guidance, for the copious trust she had on me and for the privilege she granted

me to explore my own path in research.

I gratefully acknowledge the perceptive remarks and guidance of my Doctoral Committee

members Dr. M. Ezhilarasan, Professor, Department of Information Technology,

Pondicherry Engineering College, Pondicherry and Dr. S. Ravi, Assistant Professor,

Department of Computer Science, School of Engineering and Technology, Pondicherry

University, Puducherry. Their comments, suggestions, and ideas have helped me a lot to

bring out this research successfully.

My sincere thanks to Dr. T. Chithralekha, the Head of the Department of Computer

Science, for providing institutional support to carry out the research work. I owe my

gratitude to our Dean Dr. P. Dhanavanthan, Dean, School of Engineering and

Technology, Pondicherry University, Puducherry for his support.

I would like to thank Dr. R. Sunitha, Dr. V. Uma, and Dr. P. Shanthi Bala for their

suggestions, advice, and encouragement throughout this research period and other faculty

members of the Department of Computer Science, Pondicherry University, Puducherry.

.

iv

I also would like to express my deepest gratitude to the Vice Chancellor of Pondicherry

University, the Registrar and the Assistant Registrar of all the Departments, at

Pondicherry University, Pondicherry for their official supports to make this thesis in time.

I am also thankful to the system administrators who maintained all the machines in my

Lab so efficiently and I express my deepest gratitude to the office staff of my Department

for their support. I extend my thanks towards the staffs of the Ananda Rangapillai

Library of Pondicherry University for their service and efforts to conduct many

workshops and seminar related to research, which helped to furnish the research in the

form of a thesis.

I must acknowledge and express my gratitude and deep appreciation to Ms. R.

Vasundhara Devi for her sisterly advice, suggestions and care and my research mates

Ms. M. Chitra, Mr. Naveen Kumar and Mr. Rajesh Kumar for their support and

invaluable help during my research period. I also thank all my colleagues and friends,

including but not limited to Richa Mishra, Ajit Kumar, Abhishek Kumar, Bithin

Thakur, T. Subair, V. Balaji, Chanti, A. Sivagnana Ganesan, Suresh Matla, R.

Gayatri, S. Sharmila Devi, Gunikhan Sonowal, Abid Islam and Anushreya.

My thanks must also go to my hostel friends Ms. Tripti Gogoi, Ms. Suchismita Jena,

Ms. Swatilekha Mahato, Ms. Samapti Dasmahapatra, Ms. Priyanka Sharma and

Ms. Arundhati Lahan. They have consistently helped me keep perspective on what is

important in life and shown me how to deal with reality.

Above all, I am much obliged to my parents, brothers, sisters and all my family

members for supporting me spiritually throughout my life in general and my best friend

Mr. Kalyan Jyoti Deori for his constant support and help.

JONTI DEURI

v

ABSTRACT

Optimization techniques find its application in almost every field of concern. The task of

optimization is obtaining the maxima or minima, subject to the various constraints

specified. The problems can be single objective or multi-objective and correspondingly

the techniques can be categorized as a single objective optimization technique and multi-

objective optimization techniques. Some techniques aim at finding only the optimal

solution and are termed as exact methods. They take exponential time in order to achieve

their motive. An alternative to this is the approximate methods that attempt to determine

a near optimal solution in a reasonable amount of time. The majority of the approximate

approaches derives their concepts from Biology and Mother Nature. Evolutionary and

swarm-based algorithms can be quoted as typical examples for this case.

Though there are numerous optimization techniques, there also exist certain barriers that

hurdle in attaining the maximum efficiency. They include the premature convergence,

rigorous parameter tuning, non-generalization, high computational cost and difficult

implementation. Further, the “No Free Lunch Theorem”, which states that all algorithms

perform similarly when averaged on all functions and designing an algorithm to suit all

applications will result in vain, encourages the formulation of new optimization

algorithms.

In this research, new optimization techniques to overcome the stated barriers have been

formulated. The chirping behavior and movement of the insect named cricket have placed

the primary emphasis while devising the algorithm. Initially, a cricket chirping algorithm

(CCA) for single objective optimization is designed. In this algorithm, the unique

chirping nature of male crickets while mating and aggression are exploited. The male

crickets chirp with an exclusive sound in order to attract the females for mating and

simultaneously repel the males. Another kind of chirping sound is emitted during

aggression when another male cricket nears it with the intent to fight. In the case of

aggression, the winner survives and takes the position of the loser and the loser is

discarded. This behavior of cricket has been harnessed for the design and development of

the bio-inspired algorithms for single and multi-objective optimization. The single

vi

objective CCA is tested on many test functions. The parameters are fine-tuned based on

an exhaustive analysis of the algorithm.

Subsequently, the cricket chirping algorithm is extended to deal with the MOO problems.

In order to achieve this, two approaches, namely the weighted sum and Pareto based are

adopted and thus two variants of Multi-Objective Cricket Chirping Algorithm (MOCCA)

namely MOCCA-W and MOCCA-P are formulated.

The CCA and MOCCA are then applied on various real-time problems and compared

against the existing popular and effective optimization algorithms in order to exhibit its

potential. The CCA is tested on engineering optimization problems such as Tension and

Compression Spring Design Optimization and Welded Beam Design Optimization and

Multilevel Threshold Optimization for image segmentation. The MOCCA is evaluated on

multi-objective Disc Brake Design Optimization and Welded Beam Design Optimization.

The outcomes along with statistical analysis reveal the outstanding performance of the

formulated optimization techniques.

vii

TABLE OF CONTENTS

 PAGE NO.

CERTIFICATE i

DECLARATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT v

LIST OF FIGURES xi

LIST OF TABLES

LIST OF ABBREVIATIONS

 xii

xiv

1. INTRODUCTION 1-16

1.1 OPTIMIZATION 1

 1.1.1 SINGLE OBJECTIVE OPTIMIZATION 3

 1.1.2 MULTI-OBJECTIVE OPTIMIZATION 3

 1.1.3

APPLICATIONS OF SINGLE OBJECTIVE AND MULTI-

OBJECTIVE OPTIMIZATION

5

1.2 OPTIMIZATION TECHNIQUES 6

 1.2.1 EXACT METHODS 6

 1.2.2 APPROXIMATE METHODS 8

1.3 CHARACTERISTICS OF CRICKET 12

1.4 RESEARCH OVERVIEW 13

1.5 ORGANIZATION OF THE THESIS 16

2. LITERATURE SURVEY 18-56

 2.1 META-HEURISTIC OPTIMIZATION TECHNIQUES FOR SINGLE

OBJECTIVE OPTIMIZATION

18

 2.2 FITNESS COMPUTATION STRATEGIES 30

 2.3 META-HEURISTIC OPTIMIZATION TECHNIQUES FOR MULTI- 36

viii

 OBJECTIVE OPTIMIZATION PROBLEMS

 2.4

OPTIMIZATION TECHNIQUES IN ENGINEERING

OPTIMIZATION PROBLEMS

51

 2.5 SUMMARY 56

3. PROBLEM STATEMENT AND RESEARCH METHODOLOGY 57-61

3.1 RESEARCH MOTIVATION 57

3.2 PROBLEM STATEMENT 59

3.3 RESEARCH OBJECTIVES 59

3.4 RESEARCH CONTRIBUTIONS 60

3.5 SCOPE OF THE RESEARCH 61

3.6 SUMMARY 61

4. CRICKET CHIRPING ALGORITHM FOR SINGLE-

OBJECTIVE OPTIMIZATION (CCA)

62-81

4.1 CRICKET’S NATURAL CHIRPING BEHAVIOUR 62

4.2 MAPPING CRICKET BEHAVIOUR TO PROBLEM-SOLVING 63

4.3 EXPERIMENTAL RESULTS AND ANALYSIS 66

 4.3.1 BENCHMARK TEST FUNCTIONS 66

 4.3.2 EXPERIMENTAL RESULTS 66

 4.3.3 COMPARISON WITH OTHER BIO-INSPIRED ALGORITHMS 69

 4.3.4 STATISTICAL ANALYSIS 80

4.4 SUMMARY 81

5. IMPACT OF PARAMETER TUNING ON THE CRICKET

CHIRPING ALGORITHM

82-104

5.1 PARAMETER TUNING IN CCA 82

 5.1.1 TEST FUNCTIONS 84

 5.1.2 IMPACT OF TEMPERATURE (Tc) 86

 5.1.3 IMPACT OF AGGRESSION RATE (Ar) 88

ix

 5.1.4 IMPACT OF CROSSOVER RATE (Cr) 91

 5.1.5 IMPACT OF FEMALE SELECTION (Fs) 94

5.2 COMPARISON OF CCA WITH OTHER META-HEURISTIC

ALGORITHMS

98

5.3 STATISTICAL ANALYSIS 103

5.4 SUMMARY 104

6. CRICKET CHIRPING ALGORITHM FOR MULTI-OBJECTIVE

OPTIMIZATION (MOCCA)

105-130

6.1 MULTI-OBJECTIVE CCA USING WEIGHTED SUM APPROACH

(MOCCA-W)

105

 6.1.1 MULTI-OBJECTIVE TEST FUNCTIONS 107

 6.1.2 EXPERIMENTAL RESULTS AND ANALYSIS 108

 6.1.3 COMPARISON WITH OTHER METHODS 108

6.2 MULTI-OBJECTIVE CCA USING PARETO BASED APPROACH

(MOCCA-P)

110

 6.2.1 GENERAL FRAMEWORK OF MOCCA-P 112

 6.2.2 EXPERIMENTAL RESULTS AND ANALYSIS 117

 6.2.2.1 MULTI-OBJECTIVE TEST FUNCTIONS 117

 6.2.2.2 PERFORMANCE METRICS 117

 6.2.2.3 PARAMETER SETTINGS 120

 6.2.2.4 EXPERIMENT RESULTS 121

 6.2.3 COMPARISON WITH OTHER ALGORITHMS 126

 6.2.4 STATISTICAL ANALYSIS 127

6.3 SUMMARY 130

7. CASE STUDY 131-163

7.1 ENGINEERING DESIGN OPTIMIZATION USING CCA 131

 7.1.1 SPRING DESIGN OPTIMIZATION PROBLEM (SDOP) 131

 7.1.2 WELDED BEAM DESIGN OPTIMIZATION PROBLEM (WBDOP) 132

x

 7.1.3 EXPERIMENTAL RESULTS AND ANALYSIS 133

7.2 MULTILEVEL THRESHOLDING FOR IMAGE SEGMENTATION USING

CCA

136

 7.2.1 MULTILEVEL THRESHOLDING (MT) 136

 7.2.2 MULTI-LEVEL THRESHOLDING USING CRICKET CHIRPING

ALGORITHM

141

 7.2.3 EXPERIMENTAL RESULTS AND ANALYSIS 143

 7.2.4 COMPARISONS AND STATISTICAL ANALYSIS 144

 7.2.4.1 COMPARISON BETWEEN OTSU AND KAPUR IN CCA 153

 7.2.4.2 COMPARISON OF CCA WITH MTEMO 153

 7.2.4.3 STATISTICAL ANALYSIS 157

7.3 MULTI-OBJECTIVE ENGINEERING DESIGN OPTIMIZATION USING

MOCCA-W

158

 7.3.1 DESIGN OF A WELDED BEAM 158

 7.3.2 DESIGN OF A DISC BRAKE 159

 7.3.3 EXPERIMENTAL RESULTS 160

7.4 MULTI-OBJECTIVE ENGINEERING DESIGN OPTIMIZATION USING

MOCCA-P

161

7.5 SUMMARY 163

8. CONCLUSION AND FUTURE ENHANCEMENTS 164-166

8.1 CONCLUSION 164

8.2 FUTURE ENHANCEMENTS 166

REFERENCES 167-182

LIST OF PUBLICATIONS 183

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

1.1 Pareto Front 4

1.2 Cricket’s Natural Behavior 13

1.3 Research Overview 14

2.1 Fitness assignment method of MOOT 31

4.1 Cricket’s behavior: (a) Calling Chirp and (b) Aggressive Chirp 65

4.2 Flowchart of CCA 67

4.3. Comparison of the convergence in 100 iterations of all functions 75-79

5.1 Two-dimensional graph representation of the test functions 83-84

5.2 The number of iterations to find the global optimal value of the test

Functions at different Temperature

86-88

5.3 The number of iterations to find the global optimal value of the test functions

with different Aggression Rate

89-91

5.4 The number of iterations to find the global optimal value of the test Functions

with different Crossover Rate

92-94

5.5 The fitness value of test Functions with different female selection methods 95-98

5.6 Fitness value of BA, CS, and CCA for each test function 100-101

6.1 Pareto front produced by MOCCA-W and true Pareto front of ZDT1 109

6.2 Pareto front produced by MOCCA-W and true Pareto front of ZDT2 109

6.3 Pareto front produced by MOCCA-P for various test problem 121-123

6.4 Pareto front produced by MOCCA-P for test functions with Constraints 124-125

7.1 Pareto front of the Welded Beam Design using CCA 160

7.2 Pareto front of Disc Brake Design using CCA 161

7.3 Pareto front of welded beam design using MOCCA-P 162

7.4 Pareto front of Disc brake design using MOCCA-P 162

xii

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

4.1 Pseudo code for Cricket Chirping Algorithm (CCA) 68

4.2 The benchmark test functions with their global optimal value 70

4.3 The mean of iterations and time for different benchmark functions and to

find global optimal value using CCA

71

4.4 Comparison of Mean, Standard Deviation and success rate to find optimal

value among GA, PSO, ABC, BA, CS, and CCA

73

4.5 Comparison Mean and Standard Deviation of Error rate of the benchmark

test functions among GA, PSO, ABC, BA, CS and CCA

74

4.6 ANOVA test of the methods CCA with GA, PSO, ABC, BA, CS based on

iteration numbers

80

5.1 Parameter values of CCA 98

5.2 Comparison of fitness value of CCA with BA and CS in 100 generations 99

5.3 Comparison of the mean of the number of iterations and time among BA,

CS, and CCA

102

5.4 Comparison of CCA before parameter tuning and after parameter tuning

and improvement

102

5.5 ANOVA test on the methods CCA before and after tuning 103

5.6 ANOVA test on the methods BA, CS, and CCA before and after tuning 104

6.1 Algorithm for multi-objective CCA with Weighted Sum 107

6.2 Comparison of the error rate of the test problems 110

6.3 Algorithm for Multi-objective Cricket Chirping algorithm with Pareto

based

111

6.4 Algorithm for fitness calculation of cricket 113

6.5 Test problem without Constraint 118

6.6 Test problem with Constraints 119

xiii

6.7 Parameters used in MOCCA and the other algorithms 121

6.8 Comparison of MOCCA with other algorithms regarding the mean of SP 126

6.9 Comparison of MOCCA with other algorithms regarding the mean of MS 126

6.10 Comparison of MOCCA with other algorithms regarding the mean of GD 127

6.11 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2,

NSGA2 based on SP

127

 6.12 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2,

NSGA2 based on MS

128

6.13 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2,

NSGA2 based on GD

129

7.1 Best solution for SDOP 134

7.2 Best solution for WBDOP 135

7.3 Comparison of SiC-PSO, CS and CCA 135

7.4 An algorithm for multilevel image segmentation using CCA 142

7.5 Control parameters of CCA 142

7.6 Resultant images after applying the CCA to the set of benchmark images

using Kapur’s Function

145

7.7 Best Results after applying the CCA using Kapur’s function to the set of

benchmark images

148

7.8 Resultant images after applying the CCA to the set of benchmark images

using Otsu’s function

149

7.9 Results after applying the CCA using Otsu’s function to the set of

benchmark images

152

7.10 Wilcoxon’s rank test comparing Otsu vs. Kapur over PSNR 154

7.11 Comparison of CCA and MTEMO using Kapur's method 155

7.12 Comparison of CCA with MTEMO using Otsu’s method 156

7.13 ANOVA test Over the CCA and MTEMO based on Kapur’s method. 157

7.14 ANOVA test Over the CCA and MTEMO based on Otsu’s method 157

xiv

LIST OF ABBREVIATIONS

AE Average Error

ANOVA Analysis of variance

Ar Aggression rate.

Cr Crossover Rate.

CCA Cricket Chirping Algorithm.

Fs Female Selection.

GD Generational Distance

MOCCA Multi-Objective Cricket Chirping Algorithm

MOCCA- W Multi-Objective Cricket Chirping Algorithm Using Weighted Sum

MOCCA- P Multi-Objective Cricket Chirping Algorithm Using Pareto Approach.

MOO Multi-Objective Optimization.

MOOT Multi Objective Optimization Techniques

MOP Multi Objective Optimization Problem.

MS Maximum Spread

MT Multilevel Threshold

SD Standard Deviation.

SOO Single Objective Optimization

SP Spacing

SDOP Spring Design Optimization Problem.

SPSS Statistical Package for the Social Sciences

Tc Temperature.

WBDOP Welded Beam Design Optimization Problem.

1

Chapter 1

INTRODUCTION

Nature inspired meta-heuristic algorithms have been recognized to be very proficient

in solving complex optimization problems in the recent times. Literature reports

several inspirations from nature and biology that have been exploited to solve

complex computational problems. This research is yet another effort in the journey

towards the utilization of bio-inspired techniques for seeking solutions to complex

optimization problems. In this chapter, initially, the significance of optimizing is

highlighted. Then, the solutions towards optimization are presented. Followed by that,

a glimpse of various nature and bio-inspired algorithms are provided. Subsequently,

the biological aspects of cricket, the insect that has inspired in accomplishing this

research is presented. After that, the research overview of the thesis and the

organization of the chapters are provided. The following section presents the

importance of optimization in real-world problems.

1.1 OPTIMIZATION

Generally speaking, optimization can be termed as the process of identifying the most

cost-effective method for accomplishing the maximum performance under the

provided constraints, by maximizing the desired factors and minimizing the undesired

aspects. It can also be visualized as a minimization or maximization problem based on

the problem at hand. In day to day life, every individual is posed with many options

and is forced to choose one of them to get through the situation. Naturally, individuals

choose one of the many available choices such that it is beneficial for them in some

way or the other. The benefits can be related to finance, quality, personal

development, satisfaction and many more. It is to be noted that sometimes, the

benefits can be related to one or more aspects.

To typify the maximization problem, a general business scenario is considered. In a

business, the objective will be to optimize the effectiveness of the production process

or the quality and desirability of their existing goods and commodities with minimal

runtime or resources, etc. To illustrate an example of the minimization problem, the

scenario of purchase of mobile can be quoted. While buying a mobile, optimization

2

can mean cost to some customers. In this context, minimizing cost will be the

objective and hence it is easy to provide a solution. In other cases, purchasing mobile

may be related to many factors such as cost, power backup, screen size, front camera

resolution, back camera resolution, music quality, RAM capacity and many more. In

such cases, the goal of a selfie lover will be to find mobiles that satisfy conditions

such as the affordable price, average power backup, large screen size, high front

camera resolution, average back camera resolution, average music quality and high

RAM capacity. In the case of a music lover, the optimization constraints can differ

such as the affordable price, high power back up, medium screen size, average front

and back camera resolution, high music quality and high RAM capacity.

The first scenario of purchasing mobile can be described as a Single Objective

Optimization (SOO) problem while the second and third scenarios can be defined as

Multi-Objective Optimization (MOO). Therefore, optimization can be generally

categorized into single objective and multi-objective optimization. SOO is relatively

easy whereas MOO problems are complex, expensive and time-consuming.

In computational terms, optimization involves minimization or maximization of one

or more objective functions involving some integer or real variables. On being

provided with a specific domain along with its constraints, the main motive of

optimization is to investigate the means of attaining the best value of the objective

function. A simple mathematical representation of the optimization problem can be

formulated as follows:

Given a function 𝑓: 𝐵 → 𝑆 from some set of the real numbers, the goal is to find an

element x0 in B such that 𝑓(𝑥0) ≤ 𝑓(𝑥) for all x in B in the case of minimization or

𝑓(𝑥0) ≥ 𝑓(𝑥) for all x in B in the case of maximization problems. Here B refers to a

subset of the Euclidean space S. S is a collection of entities, namely constraints,

equalities, and inequalities. The elements of B owe to satisfy these entities and are

called as a candidate or feasible solutions. B, which defines the domain of f, is

referred to as the search space. A feasible solution which optimizes the objective is

called the optimal solution. Thus, optimization can also be realized by exploring and

exploiting the search space of solutions to a problem in order to identify the optimal

solution. The following sub-sections provide a detailed overview of SOO and MOO

techniques.

3

1.1.1 SINGLE OBJECTIVE OPTIMIZATION (SOO)

As the name suggests, the primary motive of SOO is to identify the best solution that

is associated with the minimum or maximum of a single objective function. There can

be only one global solution in this case. Hence it is relatively easy to identify the

solution. MOO problems are more complex than SOO problems and are discussed in

the following sub-section.

1.1.2 MULTI-OBJECTIVE OPTIMIZATION (MOO)

MOO deals with two or more objectives [1] and these objectives may be conflicting

and contrary. In such cases, it is very difficult to get a single optimal solution. The

interactions among the different objectives may give rise to a collection of

compromised solutions. It is often termed as trade-off or pseudo-optimal or quasi-

optimal solutions. Many real-world problems involve many objectives and MOO can

best fit the scenario to identify the optimal solution. Some basic and primary

definitions of the support of MOO are stated briefly as follows.

MOO problems [2] can either be convex or non-convex. All the objective functions of

an MOO problem are convex when the function is convex. A function f: Rn →R is

convex if for any two pairs of solutions x1, x2∈ Rn, it satisfies the

condition 𝑓(𝛿𝑥1 + (1 − 𝛿)𝑥2 ≤ 𝛿𝑓(𝑥1) + (1 − 𝛿)𝑓(𝑥2) for all 0 ≤ 𝛿 ≤ 1

A characteristic means to express a solution is by means of Pareto Optimality [3]. The

strategy has been initially introduced in [2] and later worked out by Vilfredo Pareto.

A solution of 𝑥 ∈ 𝑅 is considered Pareto Optimal with regard to R only when there

exists no 𝑥 ∈ 𝑅 for which 𝑣 = 𝐹(𝑥) = (𝑓1 (𝑥), . . . , 𝑓𝑘(𝑥)) dominates 𝑢 = 𝐹(𝑥) =

(𝑓1(𝑥), . . , 𝑓𝑘(𝑥)). Such a solution is also known as non-dominated solution. In other

words, a solution is called Pareto optimal if there are no other solutions that can

dominate it. This solution cannot be enhanced through any one of the objectives

without adversely affecting at least one other objective.

Another commonly used terminology is Pareto Dominance [4]. A vector 𝑢 =

 (𝑢1, , . . . , 𝑢𝑘) is considered to dominate another vector 𝑣 = (𝑣1, . . . , 𝑣𝑘) (denoted by u

≤ v) only when u is partially less than v, i.e., ∀𝑖 ∈ {1, . . . , 𝑘}, 𝑢𝑖 ≤ 𝑣𝑖 ∧ ∃𝑖 ∈

{1, . . . , 𝑘} ∶ 𝑢𝑖 < 𝑣𝑖 . This concept is incorporated in multi-objective optimization for

4

the purpose of comparing and ranking the decision vectors: if u dominates v in the

Pareto sense, then it signifies that F(u) is better than F(v) objectives, and there is at

least one objective function for which F(u) is strictly better than F(v).

Let 𝐹(𝑥) denote a MOO problem. Then, the Pareto Optimal Set 𝑃∗ for 𝐹(𝑥) can be

interpreted as 𝑃∗ = {𝑥 ∈ Ω |¬∃ 𝑥′ ∈ Ω 𝐹(𝑥′) ≤ 𝐹(𝑥)}. Based on this, the Pareto

Front 𝑃𝐹∗ can be interpreted as 𝑃𝐹∗ = {𝑢 = 𝐹(𝑥) | 𝑥 ∈ 𝑃∗}. Typically, the Pareto

Optimal set 𝑃∗ constitutes the entire collection of Pareto-optimal solutions while

Pareto-Optimal Front 𝑃𝐹∗ comprises the mapping of Pareto-Optimal solutions in the

objective space. In the Pareto spirit, minimum in the Pareto sense becomes the border

of the design space. Alternatively, it can also be defined as the locus of the tangent

points of the objective functions [5]. Figure 1.1 shows this strategy evidently. In the

figure, a bold line is used to denote the border line of a problem that has two

objectives for optimization. The region of points defined by this bold line is called the

Pareto Front.

.

f2min

f1min

Pareto Front

Feasible Region

f2

f1

Figure 1.1: Pareto Front

5

The concept of trade-off in the MOO can be defined in terms of Pareto optimality

where the goal is to achieve the set of all Pareto optimal solutions or, at least, a good

approximation of this set. An alternative method would be to convert the MOO

problem into a single objective by using an approximation approach of the multiple

objectives and can be found Pareto optimal solutions by solving these SOO problems

using various weights. However, if certain conditions are not met, not all Pareto

optimal solutions will be found by means of such method.

Some strategies are followed for computing the fitness based on the various

conflicting objectives. The fitness assignment for MOO techniques can be grouped

into different categories such as Aggregative, Lexicographic, Sub-population, Pareto-

based, and Hybrid methods. Both SOO and MOO problems find manifold

applications. The next sub-section spotlights on these applications.

1.1.3 APPLICATIONS OF SINGLE OBJECTIVE AND MULTI-OBJECTIVE

OPTIMIZATION

Optimization is indeed a part of human life. It has its application in almost every field

of concern. However, a few domains demand computationally effective solutions.

They include engineering optimization problems such as tension/compression spring

design optimization, welded beam design optimization, pressure vessel design

optimization, speed reducer design optimization, disc brake optimization etc.,

computer vision and image processing optimization problems such as curve fitting

optimization, threshold optimization, segmentation optimization, registration

optimization, filtering optimization etc. Out of the diverse applications,

tension/compression spring design optimization, welded beam design optimization,

disc brake optimization and multi-level threshold optimization have been taken as

case studies in this research.

In the perspective of SOO optimization, tension and compression spring design

optimization problem deal with weight minimization of the spring, subject to

constraints of minimum deflection, surge frequency, shear stress, and limits on

outside diameter and on design variables. Similarly, the motive of welded beam

design optimization is cost minimization, subject to a set of constraints on shear

stress, bending stress in the beam, buckling load on the bar PC, end reflection of the

6

beam and side constraints. In the case of multi-level Thresholding for image

segmentation, the task is to determine the optimal value of the threshold, a parameter

used for Thresholding.

In the perspective of MOO, the goal of the welded beam problem is to minimize both

the end deflection and the fabrication cost, subject to length of the welded area, the

thickness of the main beam and its width and depth. Similarly, the aim of disc brake

design optimization is to minimize the braking time and overall mass, subject to

design variables such as outer radius of the discs, the inner radius, the number of the

friction surface and the engaging force and design constraints such as temperature,

pressure, length of the brake and torque.

Having presented an overview of the problem of optimization and its kinds, the

following section presents the various optimization techniques adopted.

1.2 OPTIMIZATION TECHNIQUES

As mentioned earlier, optimization is the finding of the optimal (maxima or minima)

solution of a given problem under some circumstances. It may be single objective or

multi-objective and constrained or unconstrained in nature.

Optimization techniques can be categorized into two types namely exact methods and

stochastic (approximate) methods [6]. The exact methods identify the best possible

solution. Brute force search, branch and bound, dynamic programming, cutting plane

method etc., come under this category. These are highly efficient for small sized

problems. On the other hand, stochastic (approximate) approaches are efficient for

large and complex NP-hard problems [7]. These do not guarantee for optimal

solutions but attempt to obtain quasi-optimal solutions in a reasonable amount of

time. Evolutionary algorithms, stochastic hill climbing, swarm algorithms, simulated

annealing etc., belong to this category. Most of these stochastic approaches have been

derived from the concepts of nature and biology. A brief overview of these techniques

is provided in the following sub-section.

1.2.1 EXACT METHODS

Exact methods are designed to find only the optimal solution without any

compromise. They consume long time to arrive at the solutions and hence become

7

inappropriate when the search space is very large. On the other hand, for problems

with a smaller search space, they provide the best solutions. A few kinds of exact

methods are presented here.

 BRUTE FORCE SEARCH

Brute Force search involves building all the admissible solutions and thereby attaining

the optimal solution. This is the best method to find the optimal solution but is not

efficient as it will take exponentially longer times even if there is a marginal growth

in the size of the search space. Hence, other techniques which do not explore the

entire search space but find the global optimal solution is sought. One such method is

a branch and bound technique and is discussed subsequently.

 BRANCH AND BOUND

The branch and bound technique assume the candidate solutions as a tree with the root

holding all the solutions. The branches depict the subset of the solutions. Hence, the

branches are explored from top to bottom till a particular optimal solution is

identified. Prior to the exploration of a particular branch, it is checked against the

upper and lower bounds on the optimal solution. The branch is discarded without

further exploration if it cannot yield a better solution than the one identified by the

algorithm till then. Thus, a few admissible solutions, which cannot be optimal

solutions, are discarded without building it thus saving time.

 DYNAMIC PROGRAMMING

Dynamic programming views a complicated problem as a collection of simpler sub-

problems. It finds the solutions of the simpler sub-problems only once and saves it for

future use. In case, the sub-problem is encountered again, then it is not computed but

the already obtained solution is utilized thus, saving the computational time. Dynamic

programming is advantageous if the complex problem can be divided into overlapping

simpler sub-problems.

 CUTTING PLANES

The cutting plane technique involves cutting planes which are hyperplanes delineating

the current point from the optimal point. The process refines the candidate set by

means of linear equalities called cuts. They are highly appropriate for mixed integer

8

linear programming problems. The technique operates through solving a non-integer

linear program with an assumption that an extreme or corner point that is optimal can

be found. The hence obtained optimum is checked for being an integer solution. If it

is not an integer solution, then a linear inequality that separates the optimum from the

convex hull of the candidate solution set will exist. Determining this inequality is the

problem of identifying the cut. This process is repeated until an optimal integer

solution is found.

Having provided an account on a few of the exact optimization techniques, the

following sub-section presents the approximate techniques for optimization.

1.2.2 APPROXIMATE METHODS

The approximate methods aim to identify the quasi-optimal solution in a considerable

time. These methods primarily adopt many heuristics to explore the search space and

can also be called as meta-heuristic algorithms [8]. Some heuristics have their roots in

the concepts of nature and biology and hence these techniques are formulated based

on the concepts of nature and biology and referred to as bio-inspired algorithms. The

following section provides a brief note on the meta-heuristic and bio-inspired

optimization methods [9].

 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms, one of the typical illustrations of bio-inspired algorithms, are

inspired by the biological evolution process [10], It incorporates concepts such as

selection, reproduction, crossover, mutation, and survival of the fittest. Feasible

candidate solution set forms the population and each solution represents an individual.

Initially, a few individuals are selected for the process. The fitness function evaluates

its quality. Then, the reproduction process is performed to produce offsprings. The

process continues until a termination criterion is met. It may be the number of

generations or the ideal fitness value. Genetic algorithms, Genetic programming,

Evolutionary programming etc., are the widely adopted evolutionary algorithms in the

context of optimization.

Genetic Algorithms are one of the extensively used evolutionary algorithms It

realizes the solution in the form of bit vectors or string of numbers, characters etc.

9

Genetic Programming represents solutions in terms of computer programs or tree

structures. The fitness function evaluates the potential of the program to solve a

computational problem.

Evolutionary Programming is similar to Genetic Programming in the context that it

also represents solutions in the form of computer programs. But in this case, the

structure of the computer program is fixed while the numeric parameters of the

program evolve.

 SWARM ALGORITHMS

Swarm algorithms are inspired by the biological ecosystems and mimic the

interactions among various organisms and its interactions with the environment [11].

The intelligent agents interact with each other and with the environment through

simple rules in a decentralized environment where no central control structure would

instruct on how to behave and interact. Particle Swarm Optimization, Artificial Bee

Colony, and Ant Colony Optimization etc. are the sterling examples of swarm

algorithms.

Particle Swarm Optimization (PSO) algorithm considers the solution as a point or

surface in the n-dimensional space [12]. Initially, the particles are randomly chosen

with an initial velocity and a communication channel is established among the

particles. The algorithm proceeds by moving the particles and computing the fitness at

regular time intervals. Over time, the particles accelerate towards an optimal solution,

thereby producing higher fitness values.

Ant Colony Optimization (ACO) algorithm depicts the behavior of ant colonies

[13]. The ants lay down pheromones leading each other to resources while at the same

time exploring the environment. In an ant colony algorithm, the intelligent ant agents

marked their best positions and the potential of their solutions so that in a lesser

amount of time more ants find better solutions.

Artificial Bee Colony Algorithm (ABC) is an optimization algorithm that is inspired

by the honey bee [14] The algorithm imitates the food foraging behavior of bees. In a

bee hive, scout bees go in search of food source. After some time they return to their

hive and harvest the food. The bee that has identified the huge amount of profitable

10

food source performs a waggle dance to notify other members about the rich source of

food. The length of the dance will be proportional to the quality of profitability. Then,

more foragers are recruited to proceed with further exploration of the identified area

of the rich source of food. Similarly, in bee optimization, the candidate solutions are

analogous to the food source and a population of bee agents is used to explore the

search space. The algorithm involves recruitment, local search, neighborhood

shrinking, site abandonment and global search. The cycle is iterated for a specified

number of times or until an optimal solution is attained.

Cuckoo Search (CS) emulates the brooding behavior of cuckoos [15]. Cuckoo lays

its egg in the nest of other hosts . When the host identifies it as an alien egg, it either

gets rid of the egg or abandons the nest. In cuckoo search algorithm, the eggs form the

potential solutions and the number of nests remains fixed. The host can identify the

alien egg based on a probability. On identifying the egg, it abandons the nest and

builds a completely new nest.

Bat Algorithm (BA) is inspired by the hunting behavior of bats [16]. It is rooted in

the concept of echolocation behavior of microbats. During the search for its prey,

pulse emission rate and loudness revealed by bats is mimicked in the bat algorithm. It

incorporates tuning of frequency to elevate the diversity of the solution in the

population, but at the same time, it adopts the automatic zooming concept and

attempts to maintain a balance between the exploration and exploitation during the

search process. The auto zooming ability in microbats is manifested as the automatic

adjustment from exploration to exploitation to approach the global optimality. Bat

Algorithms is considered as one of the first kind of algorithms that balance these two

key components in the search process.

Firefly algorithm (FA) is another optimization algorithm that imitates the behavior

of insects [17]. This algorithm is inspired by the flashing light behavior of fireflies.

The flashing light is used for courtship signals and as a protective mechanism. The

firefly search algorithm is based on the light intensity and attractiveness of fireflies.

The brightest firefly represents the optimal solution.

11

 SIMULATED ANNEALING

Simulated Annealing (SA) is based on the strategies adopted in the field of metallurgy

[18]. The concept of heating and controlled cooling to increase the size of the crystal

and decrease its defect is grabbed in simulated annealing. The technique operates on a

search space where the choice of moving to another solution is based on one of the

two probabilities, which are based on whether the new solution is better or worse than

the current solution. The temperature is decreased from a positive value towards zero

and this affects both the probabilities.

 GRAVITATIONAL SEARCH OPTIMIZATION

Gravitational Search Optimization (GSO) is another class of optimization technique

with a different strategy for searching [19] . It is primarily rooted on the basis of the

law of gravity and the idea of mass interactions. This technique considers the distance

between the neighboring agents to update the position of the currently considered

agent. In this algorithm, the agent is characterized by four parameters namely (i)

position (ii) inertial mass (iii) active gravitational mass and (iv) passive gravitational

mass. The solution is indicated by the position of the mass. Fitness measures are

incorporated for the purpose of calculating the gravitational and inertial masses. The

inertia mass parameter, which is used for updating the agent movement, is inversely

proportional to the motion of the agent. A bigger inertia mass facilitates slower

motion of the agents in the search space. This leads to a more precise local search

with increased diversity in search space. On the other hand, higher the gravitational

mass, higher will be the attraction of agents, thus leading to a faster convergence. The

algorithm proceeds by adjusting these two masses namely the gravitational and inertia

masses, wherein each mass signifies a solution. The masses are attracted by the

heaviest mass. Hence, the heaviest mass offers an optimal solution in the search

space.

 ELECTRO-MAGNETISM OPTIMIZATION

Electro-Magnetism Optimization (EMO) is a metaheuristic algorithm based on the

attraction-repulsion mechanism to move the sample points towards the optimality

[20]. Here, each sample point is anticipated as a charged particle that is released to

space. The objective function value is the charge of each point that has to be

optimized. This charge defines the magnitude of attraction or repulsion of the point

12

over the sample population; the higher the magnitude of attraction, the better the

objective function value. After calculating these charges, they are used to find a

direction for each point to move in subsequent iterations. This direction is selected by

evaluating a combination force applied to the point via other points.

 STOCHASTIC HILL CLIMBING

Stochastic hill climbing is a variant of the deterministic hill climbing. The algorithm

moves to a nearby solution only if it can yield improvement over the current solution.

The stochastic version is implemented to overcome the local optima problem

encountered by the deterministic version.

Mother Nature has always been an unending source of inspiration for the scientific

community. The behavior of genes, bees, bacteria, glow worms, slime molds,

cockroaches, mosquitoes, crickets, Firefly, cuckoo and other organisms have inspired

researchers to develop new optimization algorithms for solving numerous SOO and

MOO problems due to the inherent simplicity, effectiveness, and efficiency observed

in their behavior. A few of these algorithms are spotlighted here.

Similarly, the behavior of many insects, birds, and animals are imitated to devise

optimization algorithms. The following section presents an account of the swarm

characteristics of another insect cricket, whose characteristics are exploited to

formulate an optimization technique in this research.

1.3 CHARACTERISTICS OF CRICKET

Cricket belongs to the family of Gryllidae. They are insects resembling very close to

bush crickets and grasshoppers. They are nocturnal and hide themselves during the

day. For their defense, they adopt camouflaging, fleeing, colorings and aggression

[21] [22]–[26]. Another unique characteristic of the crickets is their chirping. Mostly,

only male crickets possess this feature while female crickets do not chirp. The male

crickets produce a loud chirping sound by scraping two specially textured limbs

together. The crickets chirp differently on different occasions. The chirping song can

be categorised as (i) calling song, which attracts female crickets for mating and repels

the male crickets (ii) counting song, which signifies that the female cricket is ready to

mate (iii) the triumph song after mating to encourage the female to lay eggs and (iv)

13

the aggressive calling, which is triggered when another male cricket nears it with the

intention of fighting. Figure 1.2 shows the natural behaviors of cricket.

The chirping rate varies among the various species of the crickets and is dependent on

the temperature of the surroundings. The chirping rate increases with the increase in

temperature. The forecasting of temperature through chirping rate and frequency

tuning of chirping has been modeled to solve computational problems. The chirping

behavior is a unique feature of these insects and they chirp with unique frequency and

loudness for every action. The chirping of the crickets thus inspires this research to

formulate an optimization algorithm that could solve both single and MOO problems.

The following section provides a note on the research overview.

1.4 RESEARCH OVERVIEW

The outline of the work done in this research is presented in this section. The research

focuses on formulating a nature-inspired optimization technique that suits SOO and

MOO problems. Primarily, the chirping behavior of crickets is mimicked to devise the

optimization technique. The chirping behavior is a specialty for these insects. This

specialty is incorporated to develop a new optimization technique that can solve real-

world complex optimization problems.

Cricket

Mating Fighting

Figure 1.2 Cricket’s Natural Behavior

14

Figure 1.3: Research Overview

15

Initially, an SOO technique is developed. To devise this technique, the chirping

characteristics of crickets and their movement in the environment for mating and

aggression is emulated. Each cricket is considered as a feasible solution and is

characterized by its position in the search space. Few of the crickets are assigned as

females by the user. As mentioned already, only the male crickets can chirp and its

chirping rate is based on the outside temperature.

As any meta-heuristic algorithm is greatly influenced by the parameter settings, the

fixing of parameter values is very important. Thus, subsequently, the parameters are

tuned to suit the problems in hand.

Subsequently, an MOO technique is designed to handle multi-objective problems. In

this case, the algorithm has to handle conflicting objectives to provide an optimal

solution.

The multi-objective variant is extended and two variants are proposed. The variation

is based on the fitness computation strategy. In the first type, the weighted sum

strategy is adopted while in another, the Pareto notion is incorporated. Then, the

potential of the proposed algorithms is justified through appropriate case studies.

In figure 1.3, the complete research undertaken is shown. The Cricket Chirping

Algorithm for single objective optimization (CCA) is inspired by the chirping of

crickets during mating and aggression. It is formulated in the view of providing

efficient solutions to SOO problems.

Further, as the parameters of optimization algorithms greatly influence their

performance, the performance tuning of the algorithm is emphasized.

Then, Multi-Objective Cricket Chirping Algorithm (MOCCA) is developed as an

extension to CCA in order to support the MOO problems. The strategy of weighted

sum and Pareto has been used for this purpose.

Then, appropriate case studies are taken to justify the potential of the proposed

algorithms. Optimization of tension and compression spring design, welded beam

optimization and multi-level Thresholding for image segmentation are chosen as case

studies for SOO and the design of welded beam and disc brakes are selected for multi-

objective optimization.

16

The research thus focuses on providing efficient SOO and MOO techniques. The

following section provides the organization of the remaining chapters of the thesis.

1.5 ORGANIZATION OF THE THESIS

This section describes in detail about the overall structure of the thesis.

CHAPTER 2

This chapter presents the literature review of the existing meta-heuristic algorithms

proposed for single and multi-objective problems. It also presents the earlier work on

optimization of the various case studies undertaken.

CHAPTER 3

In this chapter, the problem is defined clearly with the motivation and objectives of

this research. The objective of this research is to develop a bio-inspired meta-heuristic

optimization algorithm for SOO and MOO problems. Further, the scope of the work

and research methodology is described.

CHAPTER 4

In this chapter, the details of the design and development of Cricket Chirping

Algorithm (CCA) for SOO is projected. Further, the experimental results and analyses

on benchmark problems are given along with statistical analysis using ANOVA.

CHAPTER 5

The performance of the meta-heuristic algorithms is primarily based on the apt

selection of parameter values. In this chapter, the fine-tuning of various parameters of

the proposed algorithm is discussed. The fine-tuned algorithm is compared with the

existing state of the art algorithm and statistical analysis using ANOVA is carried out.

CHAPTER 6

The CCA is extended to suit the MOO problems. The design and implementation of

this algorithm, Multi-Objective Cricket Chirping Algorithm (MOCCA) are detailed in

this chapter. The two strategies adopted for handling the multi-objectives is presented

in detail and the comparison with benchmark problems are highlighted. A statistical

analysis using ANOVA is also carried out.

17

CHAPTER 7

Various case studies are undertaken to prove the effectiveness of the proposed

algorithms. Appropriate case studies in terms of SOO and MOO are taken into

consideration. The proposed algorithms are used to solve the problems and the

experimental results are analyzed.

CHAPTER 8

This chapter provides the conclusions derived from this work and discusses the

possible future enhancements.

18

Chapter 2

LITERATURE SURVEY

This chapter describes the existing work related to meta-heuristic optimization

algorithms. The chapter initially presents a detailed overview of the various

extensively used meta-heuristic algorithms in the view of the SOO. Then, the

commonly used fitness strategies for extending the SOO to MOO techniques are

reviewed. Then, the popular variants of meta-heuristic algorithms for MOO are

presented. Subsequently, the earlier works on the optimization of the case studies

undertaken are presented. The following section presents the various meta-heuristic

algorithms for SOO.

2.1 META-HEURISTIC OPTIMIZATION TECHNIQUES FOR

SINGLE OBJECTIVE OPTIMIZATION

This section presents some classes of popularly used meta-heuristic algorithms that

have been used for SOO problems. They include Genetic Algorithm (GA), Particle

Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony

Optimization (ABCO), Cuckoo Search Optimization (CS), Bat Algorithm (BA),

Firefly Algorithm (FA), Gravitational Search Algorithm (GSA) and Electro-

Magnetism Optimization (EMO). The following sub-sections present these techniques

and its variants in detail with the main emphasis on SOO.

2.1.1 GENETIC ALGORITHMS

Genetic Algorithms (GA) is one of the extensively adopted Evolutionary algorithms,

developed by John Holland in the year 1970, being inspired by the theory of evolution

[27]. The algorithm starts with an initial population. The initial population comprises

of a set of individuals, representing feasible solutions and fitness of each individual is

evaluated. Then a selection process is performed in order to decide which individuals

should go to the mating pool for crossover and mutation. The selected individuals are

operated through genetic operators namely crossover and mutation to produce new

offspring. The crossover and mutation are carried out based on the pre-defined

probabilities. Crossover is done in the view of identifying stronger individuals while

mutation is done to bring out diversity in the solution. Then, the fitness of the new

19

offspring is identified. The process is repeated for several iterations as set by the user

or till convergence. This imitates the survival of the fittest.

Variations in Genetic Algorithms pertain to variations and proposals of new genetic

operators, selection methods, representations etc. Variations can also pertain to hybrid

methodologies that combine GA with other techniques to improve its potential. The

concept of elitism has been introduced into the standard GA. This strategy retains the

best individual of the current generation and carries it to the next generation. The

individual is not altered by means of the genetic operators. Similar to crossover

probability, and mutation probability, the number of elitists can also be set as a

parameter to the algorithm.

Applications that use GA and its variants include various problems [28]. It has also

been providing efficient results for engineering optimization problems. GA is an

appropriate choice when fitness evaluation is very complex

2.1.2 PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is one of the oldest algorithms in the context of

population-based swarm intelligence meta-heuristic optimization approach. It has

been put forth by Eberhart and Kennedy in the year 1995 [29]. The algorithm is

primarily motivated by the flocking behavior of birds and schooling of fishes. In PSO,

the swarm is the population of the algorithm and particles (individual) are the member

in swarms that represent the potential solution. Some basic terminologies in PSO are

as follows:

With respect to position, there are three parameters, namely; (i) pbest, that represent

the personal best position of a given particle till then, (ii) lbest, the local best, that

depicts the position of the best particle member of the neighborhood of a given

particle and (iii) gbest, the global best that signifies the location of the best particle in

the entire swarm. The particles are initialized at random positions and they keep

moving with a certain velocity till the global best improves no longer. The parameter

Velocity (vector) is utilized to determine the direction and speed in which a particle

should travel in order to enhance its present position. The inertia weight (w) is

incorporated to govern the influence of the earlier velocities on the present velocity of

a provided particle. There exist two Learning factors C1 and C2. C1 is the cognitive

20

learning factor signifying the attraction of a particle towards its own success while C2

is the social learning factor representing the attraction of a particle towards the

success of its neighbors. These learning factors are usually constant that is defined

during the inception of the procedure. Neighbourhood topology signifies the set of

particles that contribute to the computation of the local best value (lbest) of a given

particle.

The particles denote the individual feasible solutions. Each particle changes its

position based on its own experience and also the experience of its neighbors. This is

incorporated by storing the best position visited by it and its neighbors and based on

this the local and global positions are determined. [13] PSO involves two main

operations namely updation of velocity and updation of position. Every particle in the

swarm is geared to march towards its best-known position and the global best

position. After that, the velocity of each particle is recomputed based on its present

velocity, the distance from its previous best position and the distance from the global

best position. This recomputed velocity is then employed to estimate the next position

of the particle in the solution search space. This process is iteratively performed for a

predefined number of times or until a minimum error is accomplished. PSO or

hybridization of PSO has been widely utilized in solving the single optimization

problems because of its high convergence speed and relative simplicity [30].

However, the effectiveness of the algorithm greatly depends on the proper selection of

parameter values as inappropriate parameter values easily pave the way to divergent

results.

2.1.3 ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) has been introduced by Dorigo in the year 1992

[31]. It has been developed by emulating the activities of real ant colonies and has

been put to use in solving optimization problems. The meta-heuristics involved in

ACO is primarily based on the strategies adopted by ants while in search of food.

During its search for food, the main motive of ants is to identify the shortest path

between its nest and the food source. Every path established by the ants portrays a

potential solution to the problem under consideration. During its forage, ants lay down

a chemical substance known as pheromone. Through these deposits of pheromone, the

ants tend to communicate with each other locally. This indirect communication

21

mechanism is known as stigmergy. On identifying a path between its nest and food

source, the ants deposit a certain quantity of pheromone in the path in order to

influence other ants to take the same path. This is called positive feedback. As a result

of successive deposits of pheromone on the same path, more ants tend to take this

path which in turn results in still more pheromone getting deposited and subsequently

still more ants will get attracted to it. Various variants of ACO are proposed for

solving different types of SOO problems.

Ant systems [32], a variant of ant colony optimization, has been advocated with

exclusive characteristics such as positive feedback, distributed computation and the

utilization of a constructive greedy heuristic. It has been evaluated on the traveling

salesman problem and the results report superior performance when compared with

the performance of tabu search and simulated annealing. ACO has been employed to

optimize the job shop scheduling problem [33]. The ACO approach adopts a local

search technique namely food stepping in order to explore the solution space. In

contrast to many other local search techniques, the food stepping technique is not

problem specific and is flexible owing to the fact that it does not modify the ant

system algorithm. On the other hand, it alters the information collected by the ants to

enhance the current solution. The ACO methodology is used in the field of data

mining for the purpose of classification. An ant-based classification technique called

AntMiner [34], [35] is put forth with specific characteristics namely better performing

max-min ant system, a clearly defined and augmented environment for the ant to

move, the inclusion of class variables to tackle the multi-class problems and the

capability to include interval rules in the rule list. The parameters have been tunes

through an automated process. The performance reveals that it achieves better

classification performance than traditional classification procedures. Subsequently,

an ACO system named continuous orthogonal ant colony has been put forward for

solving the continuous optimization problems more effectively [36], [37]. In this

technique, the pheromone deposit mechanisms facilitate the artificial ant agents to

search for solutions collaboratively and selectively. Through the incorporation of the

orthogonal design strategy, ant agents in the feasible solution domain have the

capacity to explore their chosen regions rapidly and efficiently. In addition to this, the

inclusion of the adaptive regional radius reduces the risk of being caught into the local

22

optima and therefore enhances the global search capability and accuracy [38]. An

elitist strategy is also incorporated in the motive of retaining the most valuable points.

2.1.4 ARTIFICIAL BEE COLONY OPTIMIZATION

The Artificial bee colony (ABC) algorithm is one of the most popular swarm based

evolutionary methods developed by D. Karaboga and B. Basturk [39] based on the

foraging behavior of honey bees. The most essential and motivating characteristics of

the bee are their foraging behavior, how they search the food source and collect the

nectar and bring success to their hive. In real bee colony, the bees can be categorized

into three types like scout bee, employed bee, and onlooker bee. The scout bees

(unemployed bee) explore the food source and share the food source information with

other bees by a special dance called waggle dance. The onlooker bees make the

decision to choose food source by observing the dance regarding food source; the

amount of nectar and direction of the source. In a powerful search process, both the

process of exploration and exploitation should be performed simultaneously. In order

to execute both the exploration and exploitation processes together, the exploration

process is managed by the scout bees while the exploitation process is taken care of

the employed bees and onlookers. The total cardinality of employed bees and the

onlookers constitute the cardinality of the total population. The employed bee is

transformed into a scout bee when its food source is exhausted. The position of a food

source constituting a considerable amount of nectar depicts a possible solution to the

optimization problem.

The ABC algorithm has been adopted for many applications. ABC algorithm has been

utilized to deal with discrete optimization problem namely the leaf constrained

minimum spanning tree problem [40]. In this problem, a spanning tree of minimum

weight but having at least l leaves is sought for in an undirected, connected and

weighted graph. ABC algorithm has been employed in order to reconstruct the gene

regulatory network from the gene expression data [15]. In this technique, the notion of

crossover and mutation has been incorporated to enhance the performance of ABC.

The technique has also been put to use in noise-free and noisy time series datasets.

The ABC root inference method has shown its potential in discovering considerable

gene regulations and it has also shown comparable results when compared against its

counterparts.

23

A memetic ABC algorithm has been put forth in [41]. In this, the technique only the

best particle of the current swarm updates itself in its proximity. The memetic ABC

algorithm involves four phases namely employed bee phase, onlooker bee phase,

scout bee phase and the memetic search phase. Subsequently, a randomized memetic

ABC has been suggested to improve the local search potential of the algorithm. It also

involves four phases, out of which the first three are similar to memetic ABC while

the fourth step is incorporated with two new parameters, whose values are arbitrarily

chosen every time. During the fourth phase, global section search is utilized for

producing solutions in proximity to the best solution. Experimental results show the

improved performance in the context of reliability, efficiency, and accuracy.

2.1.5 CUCKOO SEARCH OPTIMIZATION

The Cuckoo Search (CS) Algorithm is introduced by Yang and Dev. It is rooted in the

parasitic behavior and flight behavior of birds. It mimics the obligate brood parasitic

behavior of few cuckoo species and the flight characteristics of some birds. The

cuckoos lay its eggs in other bird’s nest. In case the host bird identifies the alien egg,

then either it gets rid of the egg or leaves the nest and build a completely new nest.

This behavior is emulated in the CS algorithm [42]. Then, a Binary Cuckoo Search

algorithm (BCS) has also been put forth to solve binary optimization problem based

on a sigmoid function by [43]. They have potential applications in the domain of

routing, job shop scheduling and flow shop scheduling. The standard cuckoo search

algorithm represents the solutions in the form of a set of real numbers. In order to

extend it to binary cuckoo search, these must be converted into binary. The binary

cuckoo search is characterized by levy flights that are used to obtain a new cuckoo

and binary representation to estimate the flipping chance of each cuckoo through

sigmoid function. Other than that, the selection and objective function estimation is

similar to standard algorithms.

Another variant of cuckoo search is the discrete cuckoo search algorithm (DCSA)

[44]. It has been primarily adopted to solve Travelling salesman problem (TSP) in

various ways. It has been operated on specific domain specific parameters to gear up

the convergence. Then, Ouaarab et. al. have proposed a new category of cuckoos,

thereby rebuilding the population to solve TSP, combinatorial and continuous

problems effectively. Another variant of DCSA with two phases has been put forward

24

[45]. During the initial phase, discrete step size denoting the distance between the

cuckoo and best cuckoo in the generation is computed. During the second phase, the

cuckoos are updated using the step size and a random step length derived from levy

distribution called levy flight.

Yet another variation of the cuckoo search algorithm is the modified cuckoo search

algorithm (MCSA) [46]. With regard to unconstrained optimization problems, an

MCSA has been advocated. The variation is proposed in the context of determining

the step size. A random walk in a biased way with some random step sizes through

the application of a different function set has been introduced to determine the step

size. Subsequently, MCSA with rough sets has been introduced in [16]. In this

method, the fitness function is formulated through two factors namely the number of

features and the classification quality. The number of features is reduced which

signify that the number of learning parameters is decreased, thereby yielding a faster

convergence. Another variant called One-Rank CSA has been suggested. In this

technique, the exploration and exploitation phases are integrated to produce new

solutions. In basic CSA, exploiting new solutions is achieved based on Levy flights to

achieve large moves. In some cases, the solutions can also skip the solution space as

the step size is based on the scale of the problem. In this method, optimal utilization

of Levy flight and elimination of invalid randomly selected solutions is efficiently

handled. Then, Dinh et. al [47] has recommended an MCSA for Short-term

hydrothermal scheduling by considering the existence of reservoir volume, fuel cost

function thermal unit and power losses in the transmission line. The method tries to

provide a new CSA solution based on alien egg discovery. Based on the value of their

fitness function, all eggs are partitioned into high or low quality. The best egg selected

will be used to obtain the increased value.

2.1.6 BAT ALGORITHM

Bat algorithm, inspired by echolocation behavior of microbats, is put forth by Yang

[48]. Bat algorithm (BA) incorporates frequency tuning to increase the diversity of

solutions while at the same time adopts automatic zooming in the view of trying to

maintain a balance between exploration and exploitation during the process of

searching thus mimicking the variations of pulse emission rates and loudness of bats

when hunting for its prey. The characteristics of BA are as follows: All bats in the

25

search space employ echolocation in order to sense distance. The bats are also capable

of distinguishing the food/prey as against the background obstacles barriers. Bats

make their flight randomly characterized with a velocity vi at position xi with a

frequency fmin, varying wavelength λ and loudness A0 in the view of recognizing its

target prey. They have the potential to regulate the wavelength (or frequency) of their

emitted pulses and also modify their rate of pulse emission r ∈ [0,1] automatically in

accordance with the proximity of their target. Though there are many possible

variations in their loudness, for simplicity it is defined tat the loudness varies between

a large (positive) A0 to a minimum constant value Amin.

Though BA has many advantages, the primary advantage is attaining a quick

convergence during its inception stage itself by switching from exploration to

exploitation. Hence it becomes very appropriate for applications such as classification

when faster results are expected. Though it converges very quickly, in some cases, it

might get stuck in the local optimum. Hence many strategies have been adopted to

increase the diversity of the solutions.

A variant which integrated the K-Means clustering procedure and the BA has also

been advocated in the view of superior performance in clustering. The chaotic search

has been incorporated into Bat Algorithms to result in Chaotic Bat Algorithms [49]. It

adopts Levy flights and chaotic maps to perform parameter estimation in dynamic

systems. Then, a binary version of the BA has also been put forward [17]. It is a

discrete variant of the original BA and has been highly appropriate in dealing with

classification and feature selection problems. Subsequently, Differential operators and

Levy flight operators have been incorporated into the BA. The Differential operators

and Levy flight Bat Algorithm has demonstrated its effectiveness in function

optimization problems. After that, Jamil et al [17] have proposed a variation of BA by

including a combination of Levy flights and minor variations in loudness and pulse

emission rates.

Some other variants have also been proposed by grabbing a few concepts of other

optimization algorithms. Mutation operator has been included in Bat algorithm with

the view of improving the diversity of the solutions and tested in image matching

applications. A hybrid version of Bat Algorithm and Harmony search algorithm has

also been proposed and tested on numerical optimization of functions.

26

2.1.7 FIREFLY ALGORITHM

Firefly Algorithms (FA) is another class of optimization algorithms put forth by Yang

during the year 2008, being inspired by the flashing light behavior of fireflies [50].

The flashing of lights acts as a courtship signal for mating. The males emit their light

and to its response, the female emits back the flashlight. They tune among themselves

emitting a particular pattern of light and then initiate mating. This behavior is

emulated in the swarm intelligence based firefly algorithms.

The FA algorithm is primarily rooted in the physical characteristics of light intensity

that decreases proportionally to the increase in the square of the distance. As the

distance increase, the light may be absorbed and hence weakened. This concept is

mainly utilized to design the objective function or fitness function. Some

characteristics of fireflies that have been emulated in the optimization algorithm

include the following: All fireflies are unisex and their attractiveness is proportional

to their light intensity. The light intensity of the Firefly is based on the landscape of

the fitness function. The original firefly algorithm has been very efficient in solving

multi-modal optimization applications [51] and non-linear pressure vessel

optimization [52].

Several variants have been proposed to the original firefly algorithms. The random

motion of the brightest firefly has been modified. The modification attempts to

improve the current position of the brightest firefly through the generation of m

uniform random vectors and taking it towards the best performance. A large variety of

binary firefly algorithms have been put forth for solving different optimization

problems. In order to convert the traditional FA into Binary FA, almost all

components need to be modified to suit the representation. A binary FA [53] has been

proposed for cryptanalysis of Merkle-Hellman Knapsack cipher thereby deciphering

the plaintext from the ciphered text. Another binary FA [54] that adopts binary

encoding of the solution, an adaptive light absorption coefficient for gearing the

search and domain knowledge to handle infeasible solutions.

A modified FA has been advocated to control the motion of fireflies. A Gaussian

distribution has been utilized to control the speed and lead to convergence [55].

Though the randomization has been fixed, the parameters can be updated adaptively.

27

Another variant that incorporates the Levy flight into the motion of fireflies has been

put forth [56]. Yet another variant that involves integrating the chaotic maps and the

traditional FA has been introduced in the view of improving the convergence [57].

Then, a parallel version of FA has been put into operation [58] to improve the speed

and quality of convergence.

To add more, many hybrid versions of FA have been formulated. An eagle strategy

has been combined with FA to produce better results [59]. Eagle strategy emulates the

foraging behaviors of eagles. The Eagles move in a random manner in search of their

prey and once they find the prey, they try to capture it as efficiently as possible. It

involves a random search by Levy flight and an intensive local search, which is

replaced by FA in the proposed methodology. A hybrid version of GA and FA has

also been put forth in which the FA algorithm utilizes the crossover and mutation

operators to produce strong and diverse solutions [60]. After that, Evolutionary

Firefly algorithm has been introduced which combines the classical firefly algorithm

and the evolutionary Differential evolution algorithm [69]. This hybrid algorithm

aims to improve the search accuracy and the information sharing among the fireflies.

Then, another hybrid variant that combines the FA with the local search heuristics has

been suggested and applied to graph coloring problem and has proved its efficiency

[61]. The FA algorithms have also been used along with the back propagation method

in order to train a feed-forward neural network [79]. In this methodology, the FA

algorithm has been incorporated into the back propagation model in order to

accomplish faster and improved convergence. Yet another hybrid FA that integrates

the cellular learning automata into FA for increasing the diversity of the solutions has

been advocated [62] . Also, a flexible neural tree for dealing with microarray data has

been put forth [63].

FA and its variants can be used to solve optimization problems in any field. They

have been extensively utilized in the fields of image processing, sensor networks and

several other areas where optimization is very essential.

Having provided a detailed account of many bio-inspired meta-heuristic algorithms,

the following section presents an optimization technique named Gravitational Search

Algorithm that has been inspired by the law of gravity.

28

2.1.8 GRAVITATIONAL SEARCH ALGORITHM

Gravitational search algorithm (GSA) is developed by Rashedi et. al. in the year 2009

[64]. The optimization algorithm is formulated from the concepts of the universal law

of gravity. In GSA, a collection of objects interact with each other based on the law of

gravity and low of motion. Each object characterizes a mass that represents the

performance of the object and is computed through an appropriate fitness function.

The position of the mass of the object depicts the solution to the problem. These

positions are updated during every iteration and the best fitness of the object is kept

track of. The algorithm proceeds by tuning the gravitational and inertia masses.

Intuitively, the objects with heavier mass attract other objects. After executing a pre-

defined number of iterations, the best fitness of the corresponding object turns out to

be the global solution to the problem. In general, there exist around nine parameters

that have to be initialized and tuned for the operation of GSA. Some of them include

the number of objects N, the number of objects with top fitness to be selected, number

of iterations and a few parameters that control convergence, exploration, and

exploitation.

GSA has been effective in providing optimal solutions in various optimization

algorithms. The two highlighting issues in the search process include parameter

convergence at local optimum due to rapid reduction of diversity and rapid

convergence at the initial stage and slow convergence near the optimum of the local

search resulting in ineffective iterations thereby failing inaccurate estimation of the

optimum. Thus, a number of variants of GSA have been proposed in the literature to

improve its performance.

Rashedi et. al., the founder of GSA, has proposed a variant of it namely the Binary

Gravitational Search Algorithm (BGSA). It is based on the notion that if an object is

very close to the global optimum, then its velocity should be near to zero. To

incorporate this idea, a probability function is formulated for the absolute value of

velocity such that the probability of changing the position is low for small values of

velocity and probability of changing the position is high for large values of velocity.

The main difference between continuous GSA and Binary GSA is that the position

updates switches between 0 and 1 in BGSA whereas the updating of the force

acceleration and velocity are all continuous as in the case of conventional GSA.The

29

BGSA has been evaluated on a range of uni-modal and multi-modal benchmark test

functions and has demonstrated improved results.

The traditional GSA is memoryless. Attempts have been made to incorporate the

concepts of memory and social behavior from PSO into GSA in the view of

improvement [65]. As PSO uses a memory to store the best previous position of a

particle and incorporates a velocity update mechanism, a similar technique is included

in GSA also. Then, Li and Zhou [19] have put forth an improved GSA through the

incorporation of moving strategy in the search space obeying the law of gravity,

memory and social information of PSO. Two constants namely c1 and c2 are defined.

The parameters are tuned such that a balance is maintained between the effectiveness

of law of gravity and memory and social information. When these constants are set to

0, then it becomes the traditional GSA. The algorithm has been tested on parameter

identification of hydraulic turbine growing systems. Khajezadeh et al [66] have

proposed a controlled trajectory into the traditional GSA. This is done by defining a

minimum and maximum velocity that an object can move. Also, a time-varying

profile for velocity is defined.

2.1.9 ELECTRO-MAGNETISM OPTIMIZATION

The Electro-Magnetism Optimization (EMO) has been developed by getting inspired

by the principles of electromagnetism [67] It searches a solution based on the

attraction and repulsion among prototype candidates. It emulates the behavior of

charged particles in an electromagnetic field in the view of evolving the members of

the population thereby attaining an optimal solution. The primary benefit of this

procedure is that even though it characterizes interesting search capabilities, it incurs

only a very low computational complexity. On comparing the methodology with that

GA, It does not involve the genetic operator namely crossover and mutation to

explore feasible regions but incorporates collective attraction and repulsion to carry

out the exploration process. It incurs a low computational cost in the context of

memory allocation and execution time. It does not necessitate gradient information.

The methodology of EM-like algorithm initially involves generating a group of

random solutions from the domain of feasible solutions. Each of the generated

solutions is considered as a charged particle. The fitness function is utilized to

30

estimate the charge of every particle. Owing to the charge designated to a particle, it

moves with attraction or repulsion force among the population. The attraction-

repulsion mechanism of this algorithm can be regarded analogous to the genetic

operators of GA namely the reproduction, crossover, and mutation. The algorithm

then computes the resultant force in the population for determining the direction of

the considered particle’s movement. This is done based on the Coulomb’s law and

superposition principle. The resultant force is estimated in accordance with the

charges and distance associated with each particle. According to this technique,

higher, the charge of the particle more will be the force of attraction or repulsion. The

resultant force is negatively related to the distance between the particles. The EMO

algorithm can enhance the current optimal solution through local search and move

ahead of the feasibility of enhancing through global search. The EMO has been used

for circle detection presented in an image by C.Erik Oliva et. al. [68]. Again this

algorithm has been used in image segmentation for multilevel Thresholding. In this

context, the search capabilities of EMO are integrated with the multi-threshold

methods suggested by Kapur and Otsu. The methodology initiates by selecting a few

samples randomly within the histogram of the image. These samples form the

particles of the EMO algorithm. Its fitness is assessed based on the objective function

that has been devised based on the methods advocated by Otsu or Kapur. On the basis

of these objective values, a collection of solutions represented by the charged particles

are evolved until an optimal solution is identified. The methodology evolves a multi-

level algorithm for segmentation of images in the view of determining the threshold

values within a fewer iteration and lesser computational complexity when compared

to that of the originally proposed methods.

2.2 FITNESS COMPUTATION STRATEGIES

The fitness assignment for MOO techniques can be categorized broadly as (i)

Aggregative (ii) Lexicographic (iii) Sub-population (iv) Indicator based (v) Pareto-

based, and (vi) Hybrid methods. Out of these methods, most of the research works

have placed its focus on Pareto-based approaches. All the extensions of SOO

algorithms to MOO algorithms fall under any of the above-said categories. In this

section, a brief explanation of each method is dealt and the classification of various

fitness assignment methods is shown in figure 2.1.

31

Figure 2.1 Fitness assignment method of MOOT

2.2.1 AGGREGATIVE APPROACHES

In aggregating approach, the multi-objectives are integrated to a single objective. The

primary benefit owing to the aggregating method is that it results in one single

solution. However, the challenge in defining such a goal function necessitates intense

domain knowledge, which is unavailable many times. The widest aggregation

approaches include the weighted-sum, goal attainment, target vector optimization, and

Epsilon constraint method [69]. These popular aggregating approaches are briefed

subsequently.

 WEIGHTED SUM APPROACH

This approach has been the first attempt to obtain non-inferior solutions in the context

of MOO. In this approach, the multi-objective context is transformed into a single

objective function through the summation of the functions via different weight

coefficients allocated for each one of them. This approach is also known as

scalarization method [70]. It can be formulated mathematically as shown in equation

2.1.

Min/Max ∑ 𝑤𝑖𝑓𝑖
𝑘
𝑖=1 (𝑥̅) (2.1)

In Equation 2.1, 𝑤𝑖 ≥ 0 refers to the weight coefficients that signify the relative

significance of the objectives. Generally, the weight coeffients are assigned values

such that ∑ 𝑤𝑖 = 1
𝑘
𝑖=1 . Computational efficiency is one of the primary benefits of this

approach. This technique is appropriate for generating a powerful non-dominated

MOOT

Aggregative

Weighted sum
approach

Goal
attaintment

Target vector
optimization

Epsilon-
Constraint

Lexicograpic Sub-population Pareto-based Indicator-based

Epsilon Hypervolume

Hybrid Method

32

solution at the initial stage, which can be further, evolved using other methods.

Nevertheless, determining the suitable weights during lack of enough information

about the problem poses difficulty in using this approach. Besides this, it is also hard

to identify all the non-dominated solutions through the weighted sum approach as

long as every objective function and its feasible solution space possess the

characteristic of convexity. As mentioned, the key challenge lies in associating

suitable weight coefficients to each of the objectives. The weight coefficients are not

actually proportional to the respective significance of the objectives or do not allow

trade-offs between the objectives to be expressed. Moreover, the boundary of the non-

inferior solution tend to be non-concurrent making a few solutions in accessible.

 GOAL ATTAINMENT

In goal attainment method, a collection of design goals is related to a collection of

objectives [71]. The problem formulation permits the goals to be under-achieved or

over-achieved. This makes the initial design goals relatively imprecise. The relative

degree of under or over achievement of the objectives is governed by a vector of

weight coefficients. This incorporates a component of flexibility into the problem.

Otherwise, the condition would have been such that the objectives should be rigidly

met. The weight vector, w, facilitates in exhibiting a measure of respective tradeoffs

between the goals. For illustration, assigning the weight vector w to the inceptive

goals signifies the attainment of the same degree of under or over achievement. The

hard constraints are taken into account in the design by assigning a specific weight

factor to zero. The goal attainment approach furnishes a handy understandable

explanation for the design problem in hand. A set of coefficients of weights w = [w1,

w2, . . . , wk] interpreting the respective under or over-achievement of the desired

motives has to be provided. For identification of the best optimal solution 𝑥∗, the

equation 2.2 must be followed.

Minimize α

Subject to, 𝑧𝑖
𝑟𝑒𝑓
 + 𝛼. 𝑤𝑖 ≥ 𝑓𝑖(𝑥); 𝑖 = 1, . . . , 𝑘, (2.2)

 𝑥 ∈ 𝑋

In equation 2.2, α represents a scalar variable that can take any sign. The values

assigned to the weight coefficients w1, w2, ., . ., wk are normalized so that ∑ |𝑤𝑖|
𝑘
𝑖=1 =

1 holds true. In case, any weight coefficient, wi = 0 (i = 1,2.,.,., k), it signifies that the

33

maximum value achived by the objectives fi(x) will be zi
ref

. Through this method, by

incorporating variations in weights, all Pareto optimal solutions can be obtained with

wi ≥ 0 (i = 1,2.,.,., k) even for problems that do not satisfy the convexity constraint.

The vector z
ref

 is depicted by the decision motive of the decision maker. He is the one

who is responsible for deciding on the direction of w also. On being provided with w

and z
ref

, the direction of the vector z
ref

 +𝛼.w can be estimated. Hence, the problem

defined in equation 2.2 can be regarded as equivalent to identifying a feasible point

that is the closest to the origin on this vector. From equation 2.2, it is evident that the

optimal solution is the first point at which z
ref

 + w cuts the feasible region in the

objective space. If such a intersecting point exists, then it can be confirmed to have a

Pareto optimal solution. The optimal value indicates the attainability of the goals. A

negative value of z
ref

indicates the attainability of the goal and hence an enhanced

solution is sought after that.

 TARGET VECTOR OPTIMIZATION

In these approaches, targets or goals that are intended to be achieved in each objective

have to be assigned. Goal Programming, Goal Attainment,and the min-max approach

are some of the most popular techniques. The approach results in a dominated

solution in case the objectives are selected in the feasible domain. This constraint can

be considered as a bottleneck in applying this technique to many problems.

 EPSILON-CONSTRAINT METHOD:

An approach that solves a few of the convexity issues faced by the weight sum

method is the ∊-constraint method. In this method, the most preferred or primary

objective is to minimize Fp and expressing or considering the other objectives in the

form of inequality constraints bound by some allowable levels ϵi as stated in equation

2.3.

 Minimize, 𝐹𝑝(𝑥), 𝑥𝜖𝜴 (2.3)

 Subject to, 𝐹𝑖(𝑥) ≤ 𝜖𝑖, 𝑖 = 1,2, … . 𝑛

In equation 2.3, ϵi are the assumed values of the objective functions. The search is

stopped when a satisfactory solution is identified. Though the ∊-constraint method

34

does not demand convexity, it yields only one non-dominated solution when certain

particular conditions are satisfied.

2.2.2 LEXICOGRAPHIC METHOD

In this method, the goals are ranked on the basis of their order of significance. The

objective functions are minimized one by one, initiating from the most significant

objective and then continuing based on the rank of the objectives, in order to attain the

optimal solution. The method is suitable only for a very less number of objectives, say

two to three. Also, the performance of the approach is highly influenced by the

ranking of the goals.

The subscripts of the objectives are intended to denote the objective function as well

as the priority of the objectives. According to this assumption, f1(x) and fk(x) are the

respective highest and the lowest significant objective functions. Initially, the first

problem is framed according to equation 2.4 and its solution xi and f1 = (x1
*
) is

obtained.

 Minimize, 𝑓1(𝑥) (2.4)

 Subject to 𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … .𝑚

After that, the second problem is formulated as in equation 2.5 and the solution of this

problem is got as x2 and 𝑓2 = 𝑓2(𝑥2
∗)

 Minimize 𝑓2(𝑥) (2.5)

 Subject to 𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … .𝑚

 𝑓1(𝑥) = 𝑓1
∗

This process is iterated until all k objectives have been taken into account. In general

terms, the i
th

 problem is defined as in equation 2.6.

Minimize 𝑓𝑖(𝑥) (2.6)

Subject to 𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … .𝑚

 𝑓𝑙(𝑥) = 𝑓𝑙
∗

The solution obtained at the end, i.e. xk, is considered to be the desired solution x* of

the problem.

35

2.2.3 SUB-POPULATION

In this technique, the whole population is partitioned into m smaller subpopulations

and every subpopulation has the same size subject to the same constraints but

different optimization objectives. The separation of the individuals into smaller

groups allows a greater convergence speed in each sub-population. Also, if there

exists certain independence between the sub-populations, each of them can result in

converging at a different region in the solution search space thereby aiding to

maintain some degree of diversity. These population-based methods make an effort to

identify many Pareto-optimal solutions in one run of simulation.

2.2.4 PARETO-BASED METHOD

Pareto-based fitness assignment has been initially put forward in [72]. All methods

based on this technique mandatorily and evidently utilize the concept of Pareto

dominance the view of estimating the reproduction probability of each individual. The

basis of a majority of MOO is the consideration that there are two contradicting

motives namely (i) distance minimization towards the Pareto-optimal set and (ii)

diversity maximization within the Pareto-optimal set. In general, there are mainly

three goals in handling the multi-objective problems [71], [73], [74]. These are stated

as (i) maximization of the cardinality of elements in the Pareto optimal set identified

(ii) minimization of the Pareto front’s distance generated by the optimization

procedure with regard to the original (global) Pareto front and (iii) maximization of

the spread of solutions identified, in order to gain a vector distribution that is as

smooth and uniform as possible.

2.2.5 INDICATOR-BASED METHOD

The primary notion behind this technique is a formalization of preferences in terms of

continuous generalizations of the dominance relation leading to a simple algorithmic

concept. There are two types of indicator-based approaches namely Epsilon based and

Hyper-volume Based. The Indicator based evolutionary algorithm permits adaptation

towards arbitrary preference information and optimization cases. Also, it does not

require any diversity maintenance methods [74]. It is more general owing to the

flexibility that an arbitrary size of the population can be used. It is also faster as it

considers only pairs of individuals for comparison and does involve the entire

approximation sets.

36

2.2.6 HYBRID METHOD

In hybrid method, the above-mentioned approaches in Section 2.2.1 through 2.2.5 are

used collaboratively on the bases of two factors namely the domain and the

considered problem for optimization.

Having briefed on the various common strategies adopted during fitness computation

in the context of multi-objective optimization, the subsequent section deals with the

multi-objective variants of the popular meta-heuristic algorithms.

2.3 META-HEURISTIC OPTIMIZATION TECHNIQUES FOR

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

This section presents the variants of the popular meta-heuristic algorithms that have

been proposed and applied for solving MOO problems.

2.3.1 EVOLUTIONARYAPPROACHESFOR MULTI-OBJECTIVE

OPTIMIZATION PROBLEMS

Evolutionary Algorithms are not very sensitive to the Pareto front’s shape and

continuity characteristics and deal with a set of Pareto optimal solutions. Genetic

Algorithms is one of the widely used meta-heuristic algorithms. It has been utilized

for MOO problems as well. By evolving a population of solutions, multi-objective

evolutionary algorithms (MOEAs) are capable of approximating the Pareto optimal

set in a single run [75]. A few popular methods are presented subsequently.

 VECTOR EVALUATED GENETIC ALGORITHM (VEGA)

By extending the Grefenstette’s GENESIS program in order to solve the multiple

objective functions, a variant namely Vector Evaluated Genetic Algorithm (VEGA)

[76] has been put forth. In VEGA, the population is partitioned into N equal sub-

populations. Each sub-population is designated a fitness based on the various

objective functions. In the view of finding a trade-off solution, the crossover is

permitted between two solutions in the entire population. The process of selection is

carried out for each objective separately. Fitness proportionate selection technique is

adopted during selection.

37

 NON-DOMINATED SORTING GENETIC ALGORITHM (NSGA)

Non-dominated Sorting Genetic Algorithm (NSGA) [77] is another variation of GA

that has been developed on the basis of various layers of classifications of the

individuals. The ranking of the population is performed with respect to the non-

dominated nature of the individuals. The entire sets of non-dominated individuals are

categorized into a group wherein they share a dummy fitness value in order to

maintain diversity within the population. The primary benefit while adopting this

algorithm is that as many objectives can be reduced to a dummy fitness through the

non-dominated sorting, there lies no restriction in the number of objectives that can be

solved. Moreover, both maximization and minimization problems can be handled.

 NON-DOMINATED SORTING GENETIC ALGORITHM 2 (NSGA2)

This is the improved version of NSGA proposed by Deb et al. called NSGA 2 [78] .

It is more efficient and uses elitism and a crowded comparison operator. It does not

use an external memory and no additional parameter for diversity.Pareto rankings are

used but keep tournament selection. It does not use an external memory and no

additional parameters for diversity.

 NICHED PARETO GENETIC ALGORITHM (NPGA):

The Niched Pareto Genetic Algorithm (NPGA) [79] is a variant of GA that involves

tournament selection grounded on Pareto dominance. A tie situation occurs in the

scenario when both the individuals involved in the tournament are either dominated or

non-dominated. In this case, the outcome that is the winner, of the tournament is

decided on the basis of fitness sharing. In order to handle the noise during the

selection method, a large population size is utilized in this approach. Yet another

variation of NPGA has been proposed and named as NPGA2. In this technique,

Pareto rankings are adopted along with tournament selection. No external memory is

used and elitism mechanism is same as NSGA2.

 MULTI-OBJECTIVE GENETIC ALGORITHM (MOGA)

Multi-objective Genetic Algorithm (MOGA) is yet another variant of Genetic

Algorithm in the view of solving multi-objective problems [80]. In this approach, an

individual is ranked on the basis of the cardinality of chromosomes in the present

38

population by which it is dominated. In this technique, fitness computation is done via

three steps. Initially, the population is sorted based on the rank. Secondly, the fitness

of the individuals is formulated through interpolation from the best to the worst rank.

Finally, the fitnesses of individuals with the same rank are averaged so that all of

them will be grouped at the same rate.

 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM BASED ON

DECOMPOSITION(MOEA/D)

Another variation is proposed based on decomposition and is called as Multi-

Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [81]. It is

based on conventional aggregation approaches in which an MOO problem is

decomposed into a number of scalar objective optimization problems, which can also

be called as sub-problems. One main advantage of this approach is that a scalar

objective local search can be used in each sub-problem in a natural way since its task

is to optimize a scalar objective sub-problem.

 PARETO ARCHIVES EVOLUTION STRATEGY (PAES)

One more variant termed as Pareto Archived Evolution Strategy (PAES) [82]

comprising of (1+1) evolution strategy has been introduced. In this approach, one

parent can produce only one offspring. Then, it is included in the external archive in

case it is a non-dominated solution. In this technique, the potential of the parent and

the child is evaluated against each other. During evaluation of the potential, in case, if

the child dominates the parent, then the child becomes the next parent and the

iteration of the procedure continues. On a contrary situation, if the parent dominates

the child, the child is discarded and mutation is executed subsequently in order to

bring about diversity among the population. Suppose if both the child and the parent

do not dominate each other, the individual to be retained is chosen between the child

and the parent in the view of maintaining diversity among the solutions. In order to

execute this strategy, an archive of non-dominated solutions is kept track of. In case

of the mentioned scenario, the child is evaluated against all the candidates in the

archive in order to examine if it dominates any one of the solutions. If it does, then the

child becomes the new parent. Then, the dominated solution in the archive will be

discarded. On the other hand, if the child does not dominate any candidates of the

39

archive, then the nearness of both the parent and child to the candidates of the archive

is investigated. During this computation, if the child lies in the least crowded region

among the candidates of the archive, then it becomes the parent and is also included

as a candidate of the archive. Subsequently, another variation of PAES called the

multi-parent PAES has been put forward with similar principles and concepts as

mentioned above.

 STRENGTH PARETO EVOLUTIONARY ALGORITHM (SPEA)

Another extension of GA to support MOO problems is the Strength Pareto

Evolutionary Algorithm (SPEA) [83]. It employs an external archive to store all the

non-dominated solutions obtained till then. During every generation, all the obtained

non-dominated candidates are pushed to the archive. In case if any duplicates or

dominated solutions exist among the candidates of the archive, they are discarded

during the update operation. On encountering the maximum size of the archive, a few

candidates are excluded from the archive through a clustering procedure that

preserves the non-dominated nature of the archive. Moreover, the candidates in the

archive are also permitted to take part in the genetic operations of the procedure.

During every generation, a combined population is evolved through the integration of

candidates from the archive and the current population. The fitness value that is

designated to each individual of the combined population is estimated on the basis of

the number of solutions dominated by the considered candidate individual. Also, the

fitness values are allocated such that the dominated solutions get a value lower than

the least fitness of any non-dominated solution. This strategy of fitness assignment

assures that the search is geared towards the non-dominated solutions.

Subsequently, another version of SPEA namely SPEA2 has been put forth [84]. It

differs in terms of three aspects namely (i) fitness assignment that takes into account

the number of solutions dominated by it and the number of solutions it is dominated

by with respect to each individual (ii) nearest neighbor density estimation that

facilitates a more precise guidance for the search process and (iii) a different archive

truncation method that assures the preservation of boundary solutions. The main

difference from SPEA to SPEA2 is with regard to archive updating operation.

40

2.3.2 PSO FOR MULTI-OBJECTIVE OPTIMIZATION

The basic PSO is not applicable directly to Multi-objective problems. The solution of

a multi-objective problem comprises of a set of equally adequate solutions. Initially,

PSO has been extended to multi-objective optimization by Moore and Chapman [85].

A p-list has been utilized in order to maintain a track of all the non-dominated

solutions explored by the particle in the search space. During every updation of the x-

vector of a particle, it is compared to the solutions in the p-list to examine if it is a

non-dominated solution. If true, it is included in the p-list. Moreover, the p-list is also

constantly updated to ensure that it comprises of only non-dominated solutions.

Majority of the proposed multi-objective Particle Swarm Optimization (MOPSO)

approaches to define the notion of leaders. Each particle may possess several leaders,

out of which only one is chosen to update its position [86]. These leaders are stored in

an external archive, which is a separate location from that of the swarm. It holds the

responsibility of holding track of all the non-dominated solutions identified till

then.The solutions stored in the external archive are considered as leaders when the

positions of the particles in the swarm need to be updated. Further, the solutions

stored in the external archive are also revealed as the final outcome of the procedure.

The most straightforward and elementary means to determine a leader selection is to

deem all the non-dominated solutions as leaders and then select one of them.

However, in this approach, a chief consideration is associated with the estimation of

quality indicating how potential a leader is. Functions of density measure have also

been employed for electing the leader. In the context of multi-objective optimization,

the most widely used density estimators include those that are based on Nearest

neighbor and Kernel [87]. Nearest neighbor density estimator provides an insight into

the crowd density of the nearest neighbors of the considered particle. On the account

of sharing its resources with others, the fitness of such particles is degenerated by a

parameter in proportion to the cardinality and the nearness to the particles that bound

it. The neighborhood of a particle, called a niche, which signifies the radius of the

neighborhood, is defined in terms of a parameter known as σ
share

.

The retaining of solutions throughout the entire search process is another important

challenge in multi-objective optimization. Usage of an external archive is the most

common means to retain solutions that are non-dominated with regard to all the

41

earlier swarms. Such an archive permits the inclusion of a solution only if: (a) it is

non-dominated with regard to the already existing solutions in the archive or (b) it

dominates any of the solutions within the archive. The main disadvantage of the

external archive is that the archive size increases very quickly as in every generation

the archive has to be updated. This update may become very expensive if the size of

the archive grows too high. In MOPSO, a set of leaders is also initialized with the

non-dominated particles from the swarm and stored in an external archive. When it is

mapped for MOO generally three archives are used. The first one is utilized to store

the global best solutions, the second one is used for saving the personal best values

and a third one is employed for keeping track of the local best. However, in reality,

utilization of more than three repositories for implementation of MOPOSOs have

been reported. Most of the existing MOPSOs apply some sort of mutation operator or

turbulence operators after performing the flight [88].

X. Hu and R. Eberhart [88] have modified the PSO to deal with the MOO problem by

considering a Dynamic Neighborhood strategy, a new particle updating strategy. In

dynamic neighbor, each particle has a different neighbor in each generation based on

the fitness value. The updating strategy updates only if they encounter those solutions

that dominate the current pbest. Later, this Dynamic Neighborhood PSO has been

modified by using extended memory to store the global optimal solution [89]. An

extension of PSO has been advocated through the adoption of Pareto Dominance for

estimation of the flight direction of a particle [90]. A global repository is incorporated

to keep track of the non-dominated solutions earlier obtained. This can be exploited

by other particles to regulate their own flight in future. A variant of this approach,

incorporating secondary repository with the intention of regulating the flight and

mutation operation, thereby enriching the exploratory capabilities of the algorithm,

has been put forth [91]. The disadvantage of the original method is the multi-frontal

problem, which has been overcome in the extended version. The main aim of

mutation operator is to explore remote regions of the search space and to ensure that

the full range of each decision variable is explored. The main objective of the external

repository (or archive) is to maintain historical information of the non-dominated

solutions found along the search process. The two primary constituents of the external

repository are the archive controller that holds the responsibility of deciding whether a

solution should be included in the archive or not and the adaptive grid that holds the

42

responsibility of generating well-distributed Pareto fronts. The primary benefit of

using the grid as against niching is that the computational cost incurred during grid

implementation is lower.

Then, yet another variation in PSO has been put forward by integrating PSO with

clustering for the purpose of partitioning all particles into various sub-swarms and

then utilizing it for automated docking. Then, a Time-Variant MOPOSO (TV-

MOPSO) that is adaptive with regard to its inertia weight and acceleration coefficients

has been suggested [92]. Owing to its capability of adaptability, exploration of search

space is still more effective thereby achieving a good balance between the exploration

and the exploitation of the search space. A diversity parameter is also employed for

assuring considerable diversity amongst the solutions of the non-dominated fronts.

The parameter also takes care that the convergence to the Pareto-optimal front is

maintained. An investigation on Pareto-ranking based quantum-behaved PSO (QPSO)

has been presented [93], In this method, an external repository is employed for

maintaining and keeping tracking of the non-dominated solutions. The global best

position is selected from this archive. For selecting the elitists, three different schemes

namely preference order, sigma value, and random selection methods have been

adopted. Then, an optimality criterion grounded on preference order strategy has been

propounded for obtaining the best compromise solution [94]. This preference order

has been put forth to rank all the particles and thus to identify the global best particle.

V.L. Huang et.al. [95] have presented a multi-objective comprehensive learning

particle swarm optimizer (MOCLPSO). Here a learning strategy is used which utilizes

the history regarding the best position of all other particles to update the velocity of a

particle. This strategy enhances the diversity and prevents premature convergence. A

two-local-best (lbest)-based multi-objective PSO (2LB-MOPSO) technique that is

different from canonical MOPSO has been suggested by S.Z. Zhao and P.N.

Suganthan [96]. It employs two local bests rather than a single personal best and

global best in order to direct each particle. In the view of improving the local search

ability of the process, the selection of two local bests is made in such a way that they

are in proximity to each other. This method demonstrates high benefits with regard to

convergence speed and fine-searching ability. X. Yu and X. Zhang [97] have

developed multi-swarm CLPSO (MSCLPSO) for multi-objective optimization. It

43

incorporates multiple swarms wherein every swarm is attached to an exclusive

original objective. It employs conventional archives in order to save the elitists.

MSCLPSO varies from existing MOPSO in three aspects. Firstly, every swarm

attempts to optimize the attached objective without gaining knowledge about the

elitists or the other swarms. Secondly, elitists are subjected to mutation as the concept

of mutation exploits the personal best positions and elitists suitably. Finally, a

modified differential evolution (DE) concept is put to operate on a few extreme and

least crowded elitists. The difference among the elitists is used as a basis by the DE

for updating of elitists. The personal best positions characterize important information

regarding the Pareto set while the mutation and DE strategies aid the MSCLPSO in

discovering the true Pareto front.

There are endless applications for various MOPSO in different fields and domains.

Molecular docking problem has been handled by a variant of MOPSO [98]. In this

context, the particles are partitioned into groups. Then, the global best of a particle is

identified from its own group. Then, a weighted-sum of the objectives is utilized to

keep track of its local best. D.S. Liu et. al. [98] has devised a Multi-objective

Evolutionary PSO (MOEPSO) algorithm that incorporates concepts of Evolutionary

algorithms such as the use of mutation operator as a source of diversity. It has been

used for solving multi-objective bin packing problem. It is characterized by the fact

that particle movement is directed by means of either personal best or global best

only. This is in contrast to the concept followed in earlier works, wherein the

movement of a particle is influenced by both personal and global best at the same

time.

2.3.3 ACO FOR MULTI-OBJECTIVE OPTIMIZATION

Variants of ACO are proposed for solving different types of SOO problem as well as

MOO problems. The multi-objective algorithms manifest different design choices for

dealing with the traits of multi-objective contexts. One of the significant

characteristics of the Multi-objective ACO (MOACO) algorithms is the incorporation

of heuristics in the context of enhancing the potential of the identified solutions. On

the account that heuristics provides further insights into the problem at hand, it can be

expected to yield much better solutions than that of those algorithms that do not

incorporate it [99]. In MOACO, the management of the pheromone information is an

44

intricate task. It involves defining the pheromone information such as (i) the approach

utilized to aggregate the weights of various pheromones (ii) the strategy for selection

of solutions that can update the pheromone information and (iii) the methodology

adopted by these solutions to change the pheromone information. The incorporation

of multiple colonies has also been put forward so that each of the colonies works

independently weighing the relative importance of the multiple objectives variedly.

When multiple colonies are taken into consideration, handling of pheromone

information becomes even more complex [100]. Therefore, in some methods, the

usage of local search methods is also considered. All these features can be viewed as

various components of a specific configuration of a generic MOACO algorithm.

Broadly, there are two different search strategies used to handle the MOACO

problems. They are the dominance relations and several scalarizations of the objective

vector. Some of the ACO algorithms that perform highly effective in the case of SOO

are the Ant Colony System (ACS) and Min-Max Ant Systems (MMAS). These

algorithms can be extended to MOACO with equivalent strategies to handle multi-

objective problems. [101].

Since last twenty years, more interest has been shown on exploiting the potential of

MOACO in various fields with various modification and improvement. For instance,

MOACO has been widely used to solve problems such as traveling salesman, vehicle

routing, flow-shop scheduling and portfolio selection [102],[103],[99],[100],[104] etc.

An optimization strategy for MOACO has been put forth through optimization of the

initialization of the pheromone matrix using the prior information obtained through

Physarum-inspired Mathematical Model (PMM) [105]. This has been applied to solve

binary-TSP.

 An extension to the Population-based ACO algorithm is proposed by incorporating a

crowding population replacement scheme to enhance the effectiveness of the search

process and has been applied to solve multi-objective traveling salesman problem.

The Crowding Population ACO (CPACO) algorithm has the capability of identifying

and maintaining a diverse set of solutions across the Pareto front. This, in turn,

facilitates in identifying better solutions from all regions of this front. As the CPACO

builds solutions on the basis of pheromone matrix, which indicates the performance of

the entire population irrespective of the position of the solution on the approximate

45

Pareto front, there can be some futile efforts during the implementation of this

procedure.

T.B. Kurniawan et. al. [106] has proposed a Population-based Ant Colony

Optimization (P-ACO) to solve the DNA sequence optimization. Sabino Jodelson A.

et. al. [107] has developed two variants of the Ants algorithm to tackle the specific

problem of switch engine scheduling in a railroad yard (SESR). This SESR problem is

solved by using multiple ant colonies. For solving a multi-objective supply chain

design problem, a Pareto ACO has been advocated by Moncayo-Martínez et. al.

[108]. In this regard, a number of colonies ants are used in a sequence to explore the

solution space and search for a successively better non-dominated set of supply chain

designs. A multi-objective Ant Colony Optimization has been proposed by López-

Ibánez et.al [109] for solving an automatic design problem. This MOACO algorithm

provides various design choices for handling the characteristics of the multi-objective

problems.

2.3.4 ABC FOR MULTI-OBJECTIVE OPTIMIZATION

As the ABC algorithm has proved its effectiveness in solving the SOO, it has been

extended for solving multi-objective as well as many objective optimization

problems. The conventional ABC algorithm has been extended to support multi-

objective problems through the incorporation of a grid-based technique in order to

maintain and adaptively evaluate the Pareto front. The Pareto set is utilized for the

purpose of controlling the behavior of flight of individuals and structure of the bee

colony. A fixed-sized archive is employed for keeping track of the good solutions.

This archive is managed through the ∊-dominance method. While using ∊-dominance,

the size of the external archive is based on the user-defined ∊ value. The employed

bees incorporate the social information got from the external archive to adjust their

flying trajectories. The grid manages in maintaining the diversity within the external

archive. The solutions generated by the employed bees are assessed by the onlooker

bees so they can update their next position based on the solution attained. Finally, the

solutions that have attained trial limit are replaced by the scout bees with a new

random solution in the search space.

46

Vector Evaluated ABC (VEABC) is a parallel vector evaluated variant of the ABC for

solving MO problems. An extended version of this algorithm [110] primarily for

discrete variables has been put forth in the context of optimization of composites. An

Adaptive Multi-Objective Artificial Bee Colony (A-MOABC) Optimizer has been

proposed [111] through the incorporation of Pareto dominance concept. It also

involves the concepts of crowding distance and windowing mechanism. An adaptive

windowing mechanism is employed by the employer bees in order to choose their

own leaders and in order to change their current positions. In addition to this, the

positions of the onlooker bees are modified based on the food sources advocated by

the employer bees. Crowding distance technique employed in this procedure aids in

managing the diversity in the archive.

Three variations of MOABC algorithms have been suggested with its roots in

synchronous and asynchronous models employing Pareto dominance and non-

dominated sorting [112]. The algorithms include (i) Asynchronous MOABC

optimization with Pareto Dominance (A-MOABC/PD) (ii) Asynchronous MOABC

Optimization with Non-dominated Sorting (A-MOABC/NS) and (iii) Synchronous

MOABC Colony Optimization with Non-Dominated Sorting (S-MOABC/NS). S-

MOABC/NS is demonstrated to be highly scalable and efficient when compared to

the other two variations. The conventional Non-dominated Sorting ABC algorithm

has been extended in order to obtain Pareto-optimal solutions effectively and

efficiently even in the presence of noise on the fitness landscapes [113] For this

purpose, three strategies have been devised. The first strategy involves the adaptive

selection of sample-size in order to maintain the trade-off between accurate estimation

of fitness and the computational complexity. The second strategy deals with

estimating the statistical expectation as a metric of fitness for trial solutions rather

than the usual averaging. The third strategy is associated with extending the

Goldberg’s approach to checking if a slightly inferior solution can be placed in the

optimal Pareto front. Y. Xiang et. al. [114] has recommended an elitist MOABC

(eMOABC) using an elitism strategy and a crowding-distance archive to keep a good

spread of the obtained solutions. During every iteration, the algorithm chooses two

elites which have a maximum crowding distance and are defined as the archived

intermediate solution. These elites are them utilized in adjusting the trajectories of

flight of both the employed and onlooker bees. The algorithm incorporates the elites

47

as well as the neighbors to direct the bees’ trajectories of flight. During the employed

bees phase, an intermediate solution that has the maximum crowding-distance is

chosen as the elite, which is then utilized to generate new food sources. After

updating the entire bee colony, the crowding-distances are estimated once again.

Then, another elite is chosen with the maximum distance. Now, this elite will be

subjected to exploitation in the subsequent onlooker bees’ phase. The elitism strategy

is targeted at enhancing the exploitation potential of the eMOABC algorithm. The

merit of this algorithm can be stated as the ability to exploit more potential non-

dominated solutions and preserve the diversity of solutions.

A dynamic multi-colony MOABC algorithm (DMCMOABC) has been advocated by

employing the multi-deme model and a dynamic information exchange concept.

[115]. This algorithm is designed such that k different colonies search independently

for the majority of the time and shares the essential information intermittently. Each

colony comprises a fixed number of bees such that the number of the onlooker and

employed bees are equal. For every source of food, either of the bees will explore

temporary position generated through neighboring information. The richness of the

food source is estimated through a greedy selection approach and the better one is

retained for the subsequent iterations. An external archive is employed to save the

non-dominated solution while the diversity within the archive is maintained through

the crowding distance method. If a randomly generated number is smaller than the

migration rate R, then an elite is selected and the food source with the worst fitness is

replaced by this elite. During each migration, an elite is chosen from the external

archive. The migration direction is dynamic as the elite may be selected by any

colony. It is also to be noticed that the colony that receives the elite is also estimated

stochastically.

By applying the fast non-dominated sorting and population selection strategy to

measure the quality of the solution and select the better ones, Y. Huo et. al [116] has

proposed an elite-guided MOABC. The elite-guided generation of the solution is

devised in order to exploit the neighborhood of the existing solutions on the basis of

the guidance attained from the position of the elite. In addition to this, a fitness

calculation method has been discussed to compute the probability of choosing the

onlookers. Selection model and searching scheme of artificial bee colony algorithm

48

and diversity maintaining scheme have been improved by W. Y. Wu Chunming and

Li Tingting in [117]. W. Zou et. al. [118] presented an MOO method based on the

artificial bee colony using the concept of Pareto dominance to determine the flight

direction and it maintains the non-dominated solution vectors in an external archive.

They sort bees based on non-domination in the initialization phase and store them in

the external archive. In their method, all the bees are regarded as onlookers and there

does not exist employed and scout bees.

The different variants of MOABC are applied in various field like static routing and

wavelength assignment problem [119], motif discovery problem and discovering

novel transcription factor binding sites in DNA sequences [120], power and heating

system [121], frequency assignment problems [122]., wireless sensor network [123],

image segmentation [124], robot path planning [125], FIR filter design [126] etc.

2.3.5 CUCKOO SEARCH ALGORITHM FOR MULTI-OBJECTIVE

OPTIMIZATION

The cuckoo search has been extended for MOO by Yang and Deb [127] For MOO

problems with K different objectives, the CS algorithm is modified as follows: each

cuckoo lays K eggs at a time and dumps them in a nest that is randomly chosen. The

best nests depicting high quality will sustain and be carried over to the subsequent

generations. The cardinality of available host nests is constant. The egg laid by a

cuckoo is recognized by the host bird with a probability pa. Once the host identifies

the cuckoo egg, it can either get rid of the egg or abandon its nest and build a new

nest. Also, the probability can be used by n host nests to replace the new nests, if

better. Some random mixing can be used to generate diversity.

A. Layeb has proposed a cuckoo search for binary multi-objective optimization.

Pareto dominance is used to find optimal Pareto solution. It has been evaluated on the

knapsack problem. H. V. H et al. [128] has applied the multi-objective cuckoo search

algorithm to Radial Basis Function Neural Networks Training for System

Identification. I. Kahvazadeh and M. S. Abadeh have proposed a Pareto based multi-

objective cuckoo search algorithm that evolves efficient association rules from

numeric datasets. The parameters related to the generation of association rules namely

the support, confidence, interestingness, and comprehensibility are regarded as the

49

objectives to be optimized. The algorithm evolves rules incrementally such that

during every run, a few efficient rules are generated. In order to perform task

scheduling effectively on heterogeneous systems, M. Akbari and H. Rashidi [129]

have put forward an algorithm based on multi-objective scheduling cuckoo

optimization algorithm (MOSCOA) in the view of reducing execution time while

allowing for maximum parallelization.

2.3.6 MULTI-OBJECTIVE BAT ALGORITHM

The Bat algorithm has been extended for the multi-objective problems by using the

weighted sum approach, where all the objectives are combined into a single objective

[130] In this case, the weights are assigned randomly based on uniform distribution.

This provides the possibility to vary the weights with considerable diversity so that

the Pareto front can be approximated suitably. In order to incorporate Bat algorithm

effectively in binary space, a multi-objective binary bat algorithm (MBBA) [131] that

employs a modified bat position updating strategy to suit binary problems has been

put forward. It also characterizes a mutation operator for enhancing the local search

potential and maintaining diversity. Then, an approach based on Pareto dominance

along with the external elitist archive has been put forth to identify optimal Pareto

solutions. It also involves a procedure to choose the leader of flight in order to aid in

the flight of the bats. Then, Yang Nien-Che and Minh-DuyLe have developed a

method to optimize the design of passive power filters (PPFs). The most useful inertia

weight with the best effect has been selected to optimize performance [132]. The

external archive has been utilized in order to retain the multi-objective solutions.

Subsequently, Tharakeshwar T. K et. al. [133] has adopted Multi-objective BA for

solving shell and tube heat exchange problem. Again, Yang Nien-Che and Minh-Duy

Le [134] have proposed a MOOby using modified BA and Pareto front for solving

passive power filters (PPFs) design problem in order to suppress critical harmonics

and improve power factor.

Hybrid versions of BA have been introduced in the view of improved performance.

Bat algorithm has been hybridized with Artificial Bee Colony Algorithm and has been

used to solve the Multi-objective Radio Frequency Identification network planning

problem [128]. In this technique, the search procedure of the original BA is enhanced

by incorporating onlooker mechanism from ABC algorithm.

50

The concept of fuzzy logic has been introduced in the bat algorithm in [135] The

fuzzy logic bat algorithm offers fuzzy good judgments in the set of rules, thereby

providing an efficient solution. Again in the same year, Yang [136] extended BA to

solve MOO problems. The technique has proved its effectiveness in many engineering

design optimization problems.

2.3.7 FIREFLY ALGORITHM for MULTI-OBJECTIVE OPTIMIZATION

The original firefly algorithm is extended for tackling MOO problem. FA can be

directly used for MOO by using weighted sum approach [137]. Another way to solve

MOO problem is producing Pareto optimal front by modifying or improving the

original methods. The FA has been extended to solve MOO problem and applied in

engineering design optimization [138]. Fran SérgioLobato and Jr. Valder Steffen have

extended FA for multi-objective by associating the classical FA with the fast non-

dominated sorting and the crowding distance [139]. All the dominated solutions are

removed from the population by using the fast non-dominated sorting and sorted into

the non-dominated front. The FA has been used to generate new firefly population

and when the number of individuals has increased, it is truncated by using a crowding

distance operator. An anti-stagnation operator has been adopted in order to avoid the

stagnation process. This MOFA has been utilized to solve classical (bio) chemical

engineering system design. Subsequently, a multi-objective non-dominated sorting

firefly algorithm (MONSFA) has been advocated [140]. In the view of updating the

population with high-quality solutions, characteristics such as the global search

ability, the non-dominated sorting, and population crowding distance selection are

incorporated during every iteration. This updated strategy is analogous to that of the

strategy adopted in NSGA-II only with an exception of a different formula to compute

the crowding distance as the formula used in NSGA- II is not appropriate when the

number of objectives is more. The method also facilitates in choosing better solutions

in the non-dominated set that are more evenly distributed.

Two modified versions of the firefly algorithm, one using the weighted sum method

and the other employing the Pareto-dominance method have been suggested to solve

the multi-objective task scheduling problem. A decomposition-based firefly algorithm

has been designed to solve FRID network planning problem [141]. Radio frequency

51

identification (RFID) is widely used for item identification and tracking. Thus multi-

objective firefly algorithm finds its application in many multi-objective problems.

2.4 OPTIMIZATION TECHNIQUES IN ENGINEERING

OPTIMIZATION PROBLEMS

There are various optimization problems in real world. Out of these, five problems

have been taken as a case study in this research. This section provides the earlier

works performed in the context of optimization in these case studies [142]. The

studies include (i) Tension and Compression Spring Design Optimization and Welded

Beam Design Optimization in the context of SOO (ii) Welded Beam Design and Disc

Brake Design Optimization with regard to MOO and (iii) Multi-level threshold

optimization for image segmentation. The following sub-section deals with the

existing works in these problems.

2.4.1 EARLIER WORK IN SINGLE OBJECTIVE OPTIMIZATION OF

TENSION AND COMPRESSION SPRING DESIGN AND WELDED

BEAM DESIGN

The existing algorithms to handle spring design optimization and beam design

optimization are concisely presented here. Based on the socio-behavioral concept of

society and civilization Akhtar et al. [143] has developed a method for solving single

objective constrained optimization problems. The primary idea is to interact with

leaders of all societies for the improvement of the society. They have tested their

algorithm using Welded Beam Design problem. It requires 19,154 evaluations to get

the objective value 2.4426. After that, Mahdavi et. al. (2007) have proposed an

improved harmony search algorithm that generates new solutions to enhance the

accuracy and the convergence rate of the harmony search. They have solved the

spring design problem and welded beam design problem using 50,000 and 300,000

evaluations respectively. The best values identified have been good but it has taken a

higher number of iterations compared to other algorithms. Then, Hernandez et al.

[144] have introduced constraint optimization using PSO including two new

perturbation operators to prevent premature convergence and applied to solve

engineering design problem by [145] .

52

An extended version of ABC algorithm has been advocated through the inclusion of a

constraint handling technique during the selection process so that the feasible regions

are chosen rather than the entire search space. This extended algorithm has been

employed for solving engineering design problems. Their method requires 30,000

evaluations to obtain the best value for both problems of spring design optimization

and welded beam design optimization. Cagnina et al [146] have proposed a simple

method using PSO to handle constraints and a different mechanism to update the

velocity and position of each particle. Yang and Deb [147] has introduced cuckoo

search method which is based on the breeding behavior of cuckoos to solve

Engineering optimization problem.

The following sub-section provides an account of the earlier works with respect to

Multi-Level Threshold Optimization and multi-objective welded beam design and

disc brake design.

2.4.2 EARLIER WORK IN MULTI-LEVEL THRESHOLD OPTIMIZATION

FOR IMAGE SEGMENTATION

The existing works pertaining to multi-level threshold optimization is briefly

presented in this sub-section. The approaches usually select thresholds by optimizing

(maximization or minimization) some criterion functions defined for images There

exist several classical thresholding methods like Otsu’s class variance method that

maximizes the variance between classes, Kapur’s Entropy Criterion Method that uses

the maximization of the entropy to measure the homogeneity among classes, Non-

extensive or Tsallis entropy method etc. Since the classical methods search for the

best values exhaustively to optimize the objective function for multi-level

thresholding, it is computationally expensive and the use of evolutionary approaches

for optimization has proved to be efficient. Various meta-heuristic algorithms such as

Genetic Algorithm, Particle Swarm Optimization (PSO), Bacterial Foraging

Optimization (BFO), Differential Evaluation (DE), Artificial Bee Colony (ABC),

Cuckoo Search (CS), Galaxy-based Search Algorithm, Harmony Search

Optimization, Bat Algorithm, Electro-magnetism Optimization. Firefly Algorithm,

hybrid method etc. are widely used for solving the optimal multi-level image

segmentation problem. The classical and optimization algorithm based thresholding

53

methods are employed to find the best possible threshold in the segmented histogram

by satisfying some guiding parameters.

A general scheme to segment images through GA using an evaluation criterion is

developed by S. Chabrier which quantifies the quality of the image segmentation

result. This method utilizes the knowledge of the ground truth when available in the

view of setting the desired level of precision of the final outcome. GA is then utilized

to identify the best combination of information that has been elicited from by the

selected criterion. A framework formulated on the basis of Multi-Agent System

theory and hybrid GA has been proposed for the purpose of image segmentation. In

this method, initially, every segmentation agent considers a sub-optimal image and

implements the Iterated Conditional Modes algorithm and yields the segmented image

to the coordinator agent. The coordinator then diversifies these initial sub-optimal

images by subjecting it to hybrid genetic operators in order to produce new promising

starting solutions which are refined once again by the segmentation agents. Then,

Kamal H., et. al. has proposed a method for image segmentation by combining GA

and wavelet transform [148]. Firstly, the length of the original histogram is

diminished through the application of wavelet transform. With the histogram of this

lower resolution image, the number of thresholds and values of the threshold are

estimated through GA. Similarly using PSO, Akhilesh Chander, et. al. has presented a

self-iterative method (Otsu’s method) to find the appropriate number of thresholds in

order to delineate an image. The thresholds that are attained as an outcome of this

iterative procedure are considered as initial thresholds. Then, for the current PSO

variant, the particles are generated randomly around these thresholds. This algorithm

adapts social and momentum characteristics of the velocity equation in order to

update the movement of the particles. A hybrid cooperative-comprehensive learning

based PSO algorithm for image segmentation using multilevel thresholding is

developed by M. Maitra and A. Chatterjee where an improved variant of PSO

employs cloning of fitter particles, at the expense of worst particles, in an attempt to

further enhance the capability of the optimization strategy. PSO is also modified and

hybridized with another algorithm for multilevel thresholding image segmentation

[149]. Then, P. D. Sathya and R. Kayalvizhi [150], [151], [152],[153] have adopted

bacterial foraging algorithm to find the optimal threshold values for maximizing the

Tsallis, Kapur’s and Otsu’s objective functions. Using ABC algorithm, Ming-Huwi

54

Horng [154] has put forth the maximum entropy based ABC thresholding (MEABCT)

method for image segmentation. After that, Miao Ma et. al.[155] and Kazim Hanbaya

and M. Fatih Talu [156] have also incorporated ABC and improved ABC algorithm

for SAR Image segmentation. Then, Diego Oliva et. al. has used the Harmony Search

algorithm for multilevel thresholding in image segmentation that encoded random

samples from a feasible search space inside the image histogram as candidate

solutions[157], whereas their quality has been evaluated considering the objective

functions that are employed by the Otsu’s or Kapur’s methods [158]. Some other

meta-heuristics algorithm like cuckoo search [159], Galaxy-based Search Algorithm

[20], [160]–[162], Bat Algorithm [163], Electro-magnetism Optimization [164],

Firefly Algorithm [165] etc. are also used widely in image segmentation. Diego Oliva

et. al. have put forth a method that integrates the characteristic search potential of the

EMO algorithm with the objective functions of the widely used MT methods

proposed by Otsu and Kapur.

2.4.3 EARLIER WORK IN MULTI-OBJECTIVE OPTIMIZATION OF

WELDED BEAM DESIGN AND DISC BRAKE DESIGN

This sub-section elaborates on the existing works that have been carried out in the

optimization of two multi-objective Engineering Design problems namely the welded

beam design and the disc brake design.

The disc brake optimization problem has been formulated by Osyczka and Kundu

[166]. The authors have utilized the modified distance method in GA to solve the disc

brake problem and have compared their results with that of a plain stochastic method.

Then, Ray and Liew [125] have adopted a swarm metaphor approach in which a new

optimization algorithm based on behavioral concepts similar to real swarm have been

proposed to solve the disc brake problem. After that, Yıldız et al. [135] have

employed a hybrid GA combining Taguchi’s method and GA. The incorporation of

robust design of parameters with GA via a small population of individuals has

resulted in optimal parameter settings for design optimization problems. In order to

evaluate this method, L16 orthogonal arrays have been tested. On the basis of the

impact of design parameters on constraints, objectives, and inequalities, ANOVA

statistical tests have been used to identify the optimal levels of these parameters.

Subsequently, a hybrid approach integrating immune algorithm and the hill climbing

55

local search procedure has been advocated for attaining efficient solutions towards

complex real-world optimization problems. The outcomes of this approach are

reported with respect to the design of disc brake and have been compared against the

solutions provided in the literature. In 2012, a multi-objective Bat Algorithm has been

adopted to optimize the welded beam design [167]. Then, a multi-objective cuckoo

search has been incorporated to solve the problems of welded beam design and the

disc brake design [168]. In this method, the single objective Cuckoo search algorithm

has been extended to suit the multi-objective design problem. The proposed algorithm

yields comparable performance with regard to optimization of disc brake design and

welded beam design at around 1000 iterations. Then, the same author [169] has used

multi-objective firefly algorithm (MOFA) for solving this disc brake problem. By

extending the basic ideas of FA, Yang et al. have developed multi-objective firefly

algorithm. Then, a multi-objective flower algorithm using weight sum approach with

random weights has been utilized to solve the two-objective disc brake problem [170].

The algorithm emulates the flower pollination aspects and shows good performance.

Reynoso-Meza et al. [171] have used the evaluation of design concepts and the

analysis of multiple Pareto fronts in multi-criteria decision-making using level

diagrams. They have addressed the multi-objective design optimization problem of

disc brake by considering the friction surfaces as 4 and 6 to obtain Pareto fronts. Then

parameter adaptive harmony search algorithm has been customized to suit the multi-

objective disc brake problem [172], the weight sum approach has been adopted for

fitness computation. In 2017, the multi-objective welded beam design is solved

through t-norms, t-co-norms and fuzzy optimization [172]. An Intuitionistic fuzzy

optimization technique has been formulated by incorporating the concepts of t-norm

and t-co-norm and has proved to be efficient in handling real-world complex

optimization problems. Subsequently, a multi-objective ant lion optimization

algorithm has been recommended for solving both the welded beam design and disc

brake problems [173]. In this technique, the solutions are initially stored in a

repository. Then, solutions are chosen based on roulette wheel mechanism according

to the coverage of solutions.

Thus a detailed review of the existing attempts to optimize single objective, multi-

objective and multi-level thresholding has been investigated.

56

2.5 SUMMARY

The chapter discussed the related work pertaining to meta-heuristic algorithms and

engineering design optimization. Eight extensively used meta-heuristic algorithms

namely Particle Swarm Optimization, Ant Colony Optimization, Artificial Bee

Colony Optimization, Cuckoo Search, Bat Algorithm, Firefly Algorithm, Genetic

Algorithm and Gravitational Search Algorithm have been extensively investigated

projecting its variants and applications. Initially, the algorithms were presented in the

context of SOO. Then, the various strategies involved in the computation of fitness in

MOO were presented. Subsequently, the multi-objective variants of the considered

meta-heuristic algorithms were spotlighted. Then, the earlier works pertaining to the

optimization of the case studies undertaken in this research were presented. Initially,

with respect to SOO, a literature survey on optimization techniques adopted for

tension and compression spring design and welded beam design was presented. Then

review on optimization of multi-level segmentation techniques was discussed. After

that, related works associated with the MOO of the welded beam, design, and disc

brake design were detailed.

57

Chapter 3

PROBLEM STATEMENT AND RESEARCH

METHODOLOGY

A detailed literature review related to meta-heuristic techniques for optimization

problems has been presented in Chapter 2. After performing the review, the

foundations for this research have been arrived at and presented in this chapter.

3.1 RESEARCH MOTIVATION

Even though the literature reports a variety of optimization techniques, it is observed

that each type of techniques characterizes some certain merits and demerits. Usually,

the choice of parameter values greatly impacts the performance of the algorithms.

Only when optimal values are chosen for its parameters, which are not known in prior

and are application specific, the optimization techniques perform effectively. The

complexity is enhanced when dealing with MOO algorithms.

Many optimization algorithms have their inspiration from biology and nature. Bio-

inspired meta-heuristic algorithms are of specific research interest as a result of their

vital strength and efficiency. Over the billions of years, biological processes have

their own develop capability such that they are endlessly becoming more effective.

For the processes that are working in optimal ways, nature is a copious source.

Sometimes the algorithms based on these processes are often very effective in the

optimization of the objective functions. One of the merits of these algorithms is that

they can easily overcome the local optima meritoriously due to the decision exercised

in nature.

In order to devise a new optimization technique, the motivation is derived from the

‘No Free Lunch Theorem’ [20]. It offers both an initiative and an essential design

guideline for developing algorithms. According to this theorem, the potential of all

search algorithms will be identical if averaged over the entire set of possible objective

functions [162]. This implies that if a search algorithm exhibits high efficiency with

specific objective functions, then it will be incompetent with the other objective

functions. Hence it can conjecture that there can be no algorithm that can demonstrate

high efficiency in optimizing all possible objective functions. Therefore, owing to the

58

surge in cardinality of the engineering applications that employ optimization, the

necessity for the formulation of new algorithms also increase. This acts as a driving

force towards perpetual innovation of novel optimization algorithms. The No Free

Lunch Theorem also emphasizes the necessity for developing an optimization

algorithm with respect to a particular application domain. According to this theorem,

attempting to formulate a procedure that can exhibit superiority in performance in all

domains will result in futility. Even though meta-heuristics can be applied to all

problems related to optimization, high performance cannot be assured. Therefore,

understanding the characteristics of search space for which the algorithm is designed

will be greatly useful and supportive while formulating it. On the scenario of having

to make a decision on which optimization algorithm to adopt, the algorithm that

exhibits the highest potential for the specific application in hand is preferred rather

than the ones that demonstrate acceptable performance with a wide range of

applications. Thus, the theorem conjectures that designing algorithm based on the

application will make it more reachable and successful.

After thoroughly investigating the earlier works, a set of goals are identified as

desirable to be achieved by the new algorithm to be proposed. The first goal is that the

algorithm should not make any assumption about the search domain. Therefore,

algorithms should be designed to make it as general as possible. This means that the

fitness values should not be incorporated directly into the algorithm. The second goal

is related to efficiency in performance. This means producing results comparable to

existing algorithms with a fewer number of iterations. In the case of a few

optimization problems, the function evaluation may take a considerable amount of

time. Therefore, the algorithm has to be efficient as well as converge faster without

getting stuck in local optima. The third aim is to preserve simplicity. From the

literature review, it has been found that some algorithms involve complex

mathematical computations making them hard to comprehend. Hence, a new

algorithm that can be easily adapted by anyone with good, general scientific or

mathematical knowledge, rather than just by experts in the meta-heuristic field is

sought for. This motivates to formulate a simple algorithm that performs efficiently

for varied applications. This also signifies that the number of user-controlled

parameters should be kept as minimum as possible. Thirdly for MOO also simpler

59

algorithms that exploit the complete potential of biological aspects need to be

developed.

3.2 PROBLEM STATEMENT

Issues such as premature convergence by unsuitable bias, need for careful fine-tuning

of parameters, non-generalization, high computational cost and difficult

implementations are among the main limitations of early optimization techniques.

Moreover, several natural and bio-inspired phenomenon are still unexplored and if

they are tapped properly, they may help in solving complex optimization problems.

The stated issues, the unexplored biological phenomena and the ideologies of no free

lunch theorem problems have motivated this research to develop new methods

towards optimization. The problem definition that is to be explored in this research is

as follows:

“Develop bio-inspired algorithms for single and multi-objective optimization

problems that overcome all the above-said problems in the existing techniques and

test them for diverse applications”.

3.3 RESEARCH OBJECTIVES

The performance of the bio-inspired algorithm is determined by its capability to

converge to the optimal solution in a limited extent of time. Bearing in mind the

above-mentioned issues, the objectives of this research work is to design and develop

a simple and efficient optimization technique for SOO problems as well as MOO

problems. With the intention to overcome the problem stated in the aforementioned

section, the following research objectives are framed and achieved in this thesis.

 OBJECTIVE 1

Design a simple, robust and efficient truly bio-inspired method to handle

single objective optimization problems.

 OBJECTIVE 2

Fine-tune the various parameters practice in the proposed algorithm by

carrying out a complete analysis of the algorithm.

60

 OBJECTIVE 3

Extend the algorithm for solving multi-objective optimization problems by

considering both weighted sum approach and Pareto-based approach.

 OBJECTIVE 4

Once the algorithms are designed, apply the algorithms to diverse problems

for measuring the performance, efficiency, and simplicity. Ensure that the

algorithm performs competitively well against existing bio-inspired algorithms

on problems related to optimization.

3.4 RESEARCH CONTRIBUTIONS

The main contributions of the research work to fulfill the stated objectives are

illustrated below:

 CONTRIBUTIONS 1

The first contribution to fulfill the first objective of this research work is

developing a novel bio-inspired algorithm harnessing the chirping behavior of

cricket for the SOO problem. This proposed Cricket Chirping Algorithm

(CCA) is tested on various test problems and analyzed by using different

performance metrics to measure the performance, efficiency, and simplicity.

 CONTRIBUTIONS 2

The second contribution of this work is fine-tuning the various parameters of

the proposed single objective optimization algorithm by carrying out a

complete analysis for enhancing the performance. A statistical analysis using

ANOVA is also done.

 CONTRIBUTIONS 3

The proposed algorithm is extended to solve MOO problem by designing

and developing MOO Algorithm using two approaches.

A. Multi-objective Cricket Chirping Algorithm with Weighted Sum

Approach (MOCCA-W)

61

B. Multi-objective Cricket Chirping Algorithm with Pareto Ranking

Approach (MOCCA-P).

 CONTRIBUTIONS 4

The proposed algorithm is applied to some real-life problems for validating its

performance and efficiency. To test the Cricket Chirping Algorithm for SOO,

two problems i.e. Mechanical engineering design optimization problems and

the Multi-level Thresholding for Image Segmentation are considered. The

developed Multi-objective Cricket Chirping Algorithm (MOCCA) is applied

to solve benchmark test problems and the Engineering Design optimization

problems.

3.5 SCOPE OF THE RESEARCH

The proposed algorithms are suitable for solving discrete and continuous optimization

functions for both SOO problems as well as MOO problems. The CCA for the SOO

problem is tested for 2 to 40 dimensions. In the case of MOO problems, the algorithm

is limited to two objective functions. It is applied to various applications like

mechanical engineering optimization problem for single and multiple objectives and

in multi-level Thresholds for image segmentation. The algorithms are designed and

implemented in MATLAB 2013b. Several experiments to list the efficiency of the

algorithm in terms of correctness of results and the convergence speed are carried out.

Also, the error rate is checked. To further substantiate the experimental results,

statistical analysis is also done through ANOVA with SPSS package.

3.6 SUMMARY

The research motivations have been thoroughly analyzed and the research objectives

have been framed in this chapter. A brief list of the research contributions is also

provided along with the scope of the research.

62

Chapter 4

CRICKET CHIRPING ALGORITHM FOR SINGLE-

OBJECTIVE OPTIMIZATION (CCA)

Optimization problems in Science and Engineering are viewed as problems that are

difficult to solve in polynomial time. In the literature, several heuristics and meta-

heuristic bio-inspired algorithms have evolved as powerful methods for solving these

types of problems. Though there are a number of optimization techniques, it is

observed that each type of technique retains certain advantages and disadvantages.

Though these methods are easy to implement, they usually require some kind of

parameter tuning. This makes them difficult to apply directly because there is no prior

knowledge of the optimal values of these parameters and sometimes they are often

problem-dependent.

This chapter introduces the proposed meta-heuristic algorithm motivated by the

chirping behavior of the cricket insect. The chirping characteristics of crickets and

their movement for mating and aggression serve the motivation for mapping it to

solve optimization problems. In this chapter, a detailed study of cricket’s behaviors as

noticed in nature and the intuition behind their chirping behavior for function

optimization is presented. The proposed algorithm is tested and validated by using

standard benchmark mathematical functions and compared with recent meta-

heuristics techniques to show the performance of the proposed algorithm.

4.1 CRICKET’S NATURAL CHIRPING BEHAVIOUR

Crickets are insects that somewhat resembles grasshoppers having trampled bodies

and long antennae. There are more than 900 species of crickets. Crickets emit a

peculiar sound, which is known as chirping. Scientifically, it is referred to as

‘stridulation’ since the stridulatory organ emits the sound. This is a large vein look

like a comb running along the bottom of each wing covered with ‘teeth’. Usually,

only the male crickets chirp, however some female crickets chirp as well. As the male

cricket chirps, he also holds the wings up and opens, so that the wing membranes also

act as acoustical sails. The cricket chirp or song is divided into four types based on

their chirping behavior [174], [174], [171].

63

Calling Chirp / Song: The calling chirp is produced for attracting female crickets to

mate. This song is fairly loud and this is the song that is most commonly heard during

summer nights.

Courting Chirp/Song: The courting chirp sounds more like a scraping noise of low

intensity. This chirp is produced when a female cricket is near and a male attempts to

mate with a female.

Copulatory Chirp/Song: A copulatory chirp is produced for a brief period after a

successful mating.

Aggressive Chirp/Song: An aggressive chirp is triggered by chemoreceptor on the

antennae that perceive the near presence of another male cricket. It is a very loud trill

and is produced during or after combat with another cricket.

Though the cricket chirping is of different types, generally crickets chirp for two

reasons: (1) for mating (2) for aggression. They produce the calling chirp for mating

with female crickets and aggressive chirp to fight with other male crickets. It is

rumored that crickets can tell the outside temperature. In addition, it was scientifically

proved by Dolbear in 1987 and is known as Dolbear’s law [16]. According to this

law, there is a relation between the cricket’s chirping rate and the temperature of the

atmosphere. Depending on the species and the temperature of the environment

Cricket’s chirping rate may be different. Most species chirp at higher rates at a higher

temperature.

4.2 MAPPING CRICKET BEHAVIOUR TO PROBLEM-

SOLVING

 The chirping characteristics of crickets and their mating and aggressive behavior to

survive serve the motivation for mapping it to solve optimization problems. This

forms the basis of the CCA that is presented in this section. Each cricket is assumed to

be a solution in the search space and is characterized by its position in the search

space. Out of the total cricket population, few of them as determined by the user is

randomly designated as female populations. The male cricket can only chirp and its

chirping rate is based on the outside temperature. The male cricket may chirp for

mating or aggression. The male crickets move to new positions by emitting a mating

song and mate with females producing offspring. Based on their chirping rate at a

64

certain temperature, the velocity of the sound is calculated. The offspring represents a

new position of the cricket. By emitting an aggressive song, crickets fight with other

male crickets, the best-fit cricket is the winner of cricket and it reaches a new position

in the search space. The cricket that has the highest fitness will be selected as the

winner of cricket. For simplicity, crickets are assumed to be in two phases: a mating

phase when they produce calling chirp and aggression phase when they produce

aggressive chirp.

1. Mating phase: In this phase, the male cricket chirps for mating. It emits a

peculiar sound that attracts the female crickets and other male crickets move

away. The male cricket that has the highest chirping rate will attract more

female crickets. It is assumed that after mating they produce offspring and

move to a new place that means they are taken to new positions in the search

space. The attraction is based on the loudness of the chirping sound. Based on

the chirping rate the cricket moves to the new position.

2. Aggression phase: When the crickets chirp for aggression, they emit an

aggressive chirp that other male crickets are warned or called and female

crickets will move away. All crickets may not chirp for aggression. For

simplicity, a simple representation is used i.e., the probability of chirping for

aggression is chosen to be between [0, 1]. When crickets chirp for aggression,

it is assumed that they randomly walk to other male crickets and fight. The

winner of cricket takes the place of the new solution and removes the loser

cricket. The fitness of the male cricket is calculated based on their

attractiveness and replace the position of low fit cricket with high fit cricket.

The main intention is to use the new and potentially better solutions (cricket)

to replace a not so good solution.

The cricket’s calling chirp and aggressive chirp in nature are shown in figure 4.1. The

relationship between the environmental temperature and the chirping rate of crickets

was first calculated by an American physicist and naturalist named Amos Dolbear. He

expressed the relationship using a mathematical equation given in 4.1. It provides a

way to estimate the temperature Tc in degree Celsius from the number of chirps per

minute.

65

Figure 4.1: Cricket’s behavior: (a) Calling Chirp and (b) Aggressive Chirp

 (4.1)

Or, (4.2)

The chirping rate is derived by using Dolbear’s law in a certain temperature Tc or Tf

 (4.3)

Chirping rate (Nc) is the number of chirps per minutes. The chirping rate represents

the frequency of the cricket’s chirp. From the frequency, the velocity of each cricket

is calculated by using equation 4.4 as follows:

 (4.4)

Here, λ is the wavelength which represents the gap between one chirp to another chirp

which is uniformly drawn. From the velocity, the step size (sti) is calculated by using

equation 4.5.

 (4.5)

Where α=0.01 is a constant value which is used to control the movements of the

cricket within a bounded space and xi is the current position and x* is the best position

ever encountered by the cricket. Then the cricket will move to the new position by

using the following formula:

 (4.6)

Equations (4.1) to (4.6) are used when the crickets chirp for mating and they change

their position according to the chirping rate at a certain temperature.

7

40
10




Nc
Tc

4

40
50




Nc
T f

407)10( TcNc

 Ncvi

 )(xxvst iii

iii stxx 1

66

When crickets chirp for aggression, they have to fight with other crickets. For

simplicity, in this design, a probability value named Aggression Rate Ar is considered.

Crickets that exceed this probability value are allowed to produce an aggression chirp

and move to a new position using the random walk. In the new position, two best

positions (crickets) are chosen and a tournament is allowed between them to simulate

a fight. The winner is chosen to be the best cricket (position or solution). The

flowchart of the algorithm is shown in figure 4.2 and the proposed algorithm is given

in table 4.1.

4.3 EXPERIMENTAL RESULTS AND ANALYSIS

The proposed CCA is implemented for various benchmark mathematical functions. In

order to analyze the performance of CCA, a full experiment is performed for the

proposed algorithm for ten benchmark test functions. The benchmark functions

provide a balance between multimodal functions with many local minima and

functions with only a few local minima as well as easy and difficult functions.

4.3.1 BENCHMARK TEST FUNCTIONS

There are many benchmark functions to test the performance of the optimization

techniques. There is a need for validating and testing any new optimization technique

against the benchmark functions. The benchmark test functions that are considered for

this experiment are summarized in table 4.2 with the function name, formula, range,

variables and their global optimal value.

4.3.2 EXPERIMENTAL RESULTS

In table 4.3, the mean of iterations and time (in seconds) for execution of different

benchmark test functions are calculated for varying dimensions like 2, 10, 20, 30 and

population size 20 and 40. The algorithm for each function was executed 50 times and

the mean of iterations and time is calculated. The aggression rate (probability for

aggression Ar) varies from 0 to 1. The implementation is done in Windows 7

operating system computer with Intel(R) Core (TM) i5 processor and 4GB RAM.

67

In

it
ia

li
za

ti
o
n

C
h
ir

p
in

g
 f

o
r

m
at

in
g

C
h
ir

p
in

g
 f

o
r

A
g
g
re

ss
io

n

Figure 4.2: Flowchart of CCA

Yes

Update the global best cricket

Stop

Start

No

Fight with other male cricket

Select the winner cricket

Set the parameter Ar=Aggression rate, Tc=Temperature

Set the cricket population n and randomly choose 1<k<n/2 female

crickets

Randomly walk to new place

If rand>Ar

Yes

No
While stopping

criteria not met

Move the male crickets to new place

Mate with female cricket

Select the initial global best cricket

Calculate the frequency of Chirp, Velocity and Stepsize

68

Table 4.1: Pseudocode for Cricket Chirping Algorithm (CCA)

Algorithm_CCA()

Begin

Input: fc(x): Objective function; n : Number of crickets; Tc: Temperature; Ar: Aggression

rate; k: No of female crickets, 1<k<n/2

1. Randomly Initialize the cricket’s position

2. Randomly choose k crickets as female crickets

3. Calculate the fitness of each cricket

4. Assign best cricket fbest_cricket ←value of the best fit cricket, Pbest_cricket← position of

the best cricket

5. Set gbest_ cricket as the current fbest _cricket //in the initial generation gbest_ cricket =

fbest_cricket //.

6. While (stopping criteria not met)

a. Allow male crickets to chirp for mating //Call procedure calling_chirp()//.

b. Allow male crickets to mate with female crickets //Call procedure mating()//.

c. With probability Ar, allow the male crickets to chirp for aggression //Call

procedure aggression_chirp() //.

d. Compute the fitness of the crickets produced by mating and aggression in the

new positions.

e. Select fbest_cricket, from the new positions of the cricket.

f. If fbest_cricket >gbest_ cricket, then update gbest_cricket with the current fbest_cricket.

7. End while

8. Return the global best cricket at termination.

End

Procedure calling_chirp()

Begin

for every male cricket,

1. Calculate the frequency of Chirping and velocity using

equation (4.3) and (4.4)

2. Calculate the step size using equation (4.5)

3. Move each cricket to the new position using equation (4.6)

4. Return crickets in new position

End

69

Procedure mating()

// This procedure simulates the mating behavior of the cricket. //

Begin

1. For every male cricket Mi in their new position, randomly choose a female cricket

Fi

2. Randomly choose a cut point in both Mi and Fi

3. Exchange the genetic materials of both Mi and Fi with reference to their cut points

to produce two new offspring // Similar to crossover in GA//.

4. Return the two offspring and the parents as the new cricket positions.

5. the end for

6. return

End

Procedure aggr_chirp()

Begin

1. if rand>Ar

 randomly walk to the new position.

2. Fight with other male crickets.

3. Return the winner cricket (position).

End

4.3.3 COMPARISON WITH OTHER BIO-INSPIRED ALGORITHMS

The CCA is compared with other popular optimization algorithms like GA, PSO,

ABC, BA, and CS for various standard test functions such as Ackley, Easom,

Griewank, Matyas, Michalewicz, Ratrigin, Rosenbrock, Schwefel, Shubert, and

Sphere. In GA, the standard version with no elitism and population size 1000 and

mutation probability of pm = 0.05 and crossover probability of 0.8 is used. For PSO,

the standard version is used with learning parameters α = 2 and the inertia function I =

1. The number of employed and onlooker bees is fixed to 50% of population and

scout bee to be one in ABC algorithm. In BA algorithm the loudness and pulse are set

to 0.5 and the minimum and maximum frequency is taken as 0 and 2. In CS

algorithm, the discovery rate of the alien egg is taken as 0.25.

70

Table 4.2: The benchmark test functions with their global optimal value

71

Table 4.3: The mean of iterations and time taken for different benchmark functions to find global optimal values using CCA

Function Optimal

Value

Mean of Population=20 Population =40

d=2 d=10 d=20 d=30 d=2 d=10 d=20 d=30

Ackley 0 Iteration 6429.2 36018 71908.4 121598.4 13802.4 75523.2 149140 241703.2

Time 0.00662 0.9026418 1.877198 3.36913 0.303257 1.77108 3.760026 6.374346

Easom -1 Iteration 4617.6 4638 7215.2 7143.6 15725.6 15899.2 160669.6 160920.8

Time 0.0808 0.0896 0.149831 0.162417 0.253321 0.28542 0.311915 0.334619

Griewank 0 Iteration 4158.84 29597.82 54473.58 73849.44 8839.6 64642.24 118506.4 157578.6

Time 0.092566 0.690974 1.39348 2.044292 0.18909 1.472306 2.964198 4.286906

Matyas 0 Iteration 64686 64698 64846 64788 139174 137662 139105.6 137728

Time 1.10283 1.2239 1.39003 1.50665 2.27423 2.5390 2.7186 2.9097

Rastrigin 0 Iteration 3574.4 21406.56 42750.54 59855.51 7268.48 41734.4 81720 134395.54

Time 0.2467 1.3050 2.83864 4.28271 0.40299 3.8618 5.4316 10.942278

Rosenbrock 0 Iteration 7025 10208.94 8573.69 8707.2 15350.4 15424.2 15568.52 15204.44

Time 0.312906 0.5451 0.52933 0.531578 0.6304452 0.712776 0.7785224 0.815933

Shubert -186.7309 Iteration 7638.54 7974.96 8029.14 8429.82 12800.2 11944.12 12200.78 12468.1

Time 0.140948 0.151487 0.164864 0.176701 0.210975 0.215981 0.243043 0.25916

Sphere 0 Iteration 70531 354550 666230 955790 148900 710400 1329300 1990400

Time 3.6360 19.5958 37.3821 56.4690 2.6309 13.93222 26.7191 42.0729

72

Each algorithm is executed 100 times to carry out meaningful statistical analysis. The

algorithm stops when the variations of function values are less than a given tolerance τ ≤

10
−5

. The results are summarized in table 4.4. It shows the number of function evaluation in

the form of an average number (mean) of function evaluations± Standard Deviation (SD)

from the success rate of finding the global optima, i.e. mean ± SD (success rate). For

example, 670±152 (100%) indicates that the mean of iterations required to coverage is 670

with a standard deviation of 152 and the success rate of finding the global optima for this

algorithm is 100%.

Again, the quality of the solution is measured by the Average Error (AE) and Standard

Deviation (SD) of 50 independent runs. The AE is computed using equation (4.7) which is

obtained from [15]

 𝐴𝐸 =
∑ | 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑗
)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −𝑓𝑚𝑖𝑛

 |50
𝑗=1

50
 (4.7)

Where, 𝑥𝑏𝑒𝑠𝑡
𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the final solution vector corresponding to the j

th
 run and f(𝑥𝑏𝑒𝑠𝑡

𝑗
)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the

value of the benchmark problem corresponding to the final solution vector. The true optimum

of a particular benchmark problem is given by 𝑓𝑚𝑖𝑛.

In table 4.5 the AE and SD of GA, PSO, ABC, BA, CS, and CCA for ten benchmark test

functions are shown. From the results, it is shown that compared to the other methods CCA

has a less average error.

Figures 4.3(a)-4.3(j) show the iterative results for each benchmark problem that is considered

for comparison. In every generation, CCA is converging to the optimal value. The graph

shows the fitness values obtained from the iteration number for the different optimization

algorithm. CCA is converging faster compared to its counterparts. So the convergence of the

CCA is higher compared to other algorithms.

73

Table 4.4: Comparison of Mean , SD and success rate to find optimal value amon GA, PSO, ABC, BA, CS and CCA

Functions GA PSO ABC BA CS CCA

Ackley 12720 ±3127(93%) 10417±2325(95%) 9765±1285(100%) 6711 ±2693 (100%) 4062±413(100%) 2475±194(100%)

Easom 14249 ±2397(92%) 15278 ±989(90%) 10204±2011(99%) 8673 ±952(99%) 6633±606(100%) 4890±461(100%)

Griewangk 67945 ±8752(90%) 65770±3293(92%) 29655±23407(100%) 10675 ±6459(100%) 6858±2132(100%) 4227±259(100%)

Matyas 3701±765(100%) 5628±5210(100%) 3855 ±1974(100%) 630±248(100%) 790±198(100%) 670±152(100%)

Michalewicz 7325 ±3614(95%) 7026 ±897(98%) 5181±1120(100%) 3952 ±893(100%) 1701±335(100%) 1364±182(100%)

Rastrigin 93573 ±2699(80%) 8058 ±2557(90%) 7777±2593(100%) 11563 ±3782(100%) 3137±593(100%) 1286±168(100%)

Rosenbrock 26723 ±6901(90%) 30796 ±6825(95%) 23597±18221(95%) 8923 ±6493(100%) 4846±1589(100%) 1882±455(100%)

Schwefel 17629 ±6172(95%) 16550 ±1275(98%) 10722±833(100%) 8929±729(99%) 4596±945(100%) 1705±195(100%)

Shubert 65077 ±3987(90%) 20521±1250(95%) 1980±471(100%) 9995 ±5642(100%) 5629±1483(100%) 2855±957(100%)

Sphere 20572 ±1307(100%) 9840 ±2423(100%) 4783±955(100%) 1973 ±270(100%) 1599±236(100%) 804±117(100%)

74

Table 4.5: Comparison of Mean and Standard Deviation of Error rate of the benchmark test functions among GA, PSO, ABC, BA, CS and CCA

Algor-

ithm

Mean

& std

Functions

Ackley Easom Griewank Matyas Michalewics Restrigin Rosenbrock Schwefel Shubert Sphere

GA AE 1.37E+00 3.77E+00 7.678E-03 2.35E-05 5.24E-01 1.396E+00 7.468E-03 1.722E-01 5.11E+04 1.35E-04

SD 6.420E-01 2.987E-01 4.1207E-03 3.637E-05 1.33E-02 3.2124E-01 4.162E+00 5.381E-02 1.567E+03 3.20E-05

PSO AE 1.675E-01 9.72E-01 7.10E-04 1.23E-04 2.26E-01 7.96E-06 2.68E-02 9.58E+01 1.01E+01 2.06E-03

SD 1.22E-01 5.45E-04 8.78E-04 1.41E-04 2.30E-01 3.83E-05 3.60E-02 1.18E+02 1.37E+01 2.68E-03

ABC AE 3.2276E-004 9.93E-01 1.6132E-04 9.28E-07 0 4.4139E-13 5.5050E-04 9.39E+01 2.99E-01 6.27E-18

SD 1.40E-03 2.84E-03 1.00E-03 1.93774E-06 0 3.1180E-12 9.45E-02 7.51E+01 1.16E-01 6.2305E-18

BA AE 1.6250E-005 0.4000 0.0118 3.8588E-012 -0.1678 6.1702E-09 5.0191E-10 7.51E+03 -6.0309E-6 5.7198E-11

SD 8.32455E-06 0.4949 0.011653 3.58031E-12 0.0258 5.5071E-09 5.5556E-10 1.351E+03 0 2.4495E-10

CS AE 8.8818E-016 0 1.5169E-04 3.7828E-127 0 0 0 1.43E-02 6.2885E-5 0

SD 0 0 8.9350E-04 1.8820E-126 0 0 0 7.77E-02 0 0

CCA AE 1.8212E-016 0 0 0 0 0 0 0 0 0

SD 0 0 0 0 0 0 0 0 0 0

75

Figure 4.3 (a): Comparison of the convergence in 100 iterations of Ackley function

Figure 4.3 (b): Comparison of the convergence in 100 iterations of Easom function

76

Figure 4.3 (c): Comparison of the convergence in 100 iterations of Griewank function

Figure 4.3 (d): Comparison of the convergence in 100 iterations of Michaelwicz function

77

Figure 4.3 (e): Comparison of the convergence in 100 iterations of Matyas function

Figure 4.3 (f): Comparison of the convergence in 100 iterations of Rastrigin function

78

Figure 4.3 (g): Comparison of the convergence in 100 iterations of Rosenbrock function

Figure 4.3 (h): Comparison of the convergence in 100 iterations of Sphere function

79

Figure 4.3 (i): Comparison of the convergence in 100 iterations of Schwefel function

Figure 4.3 (j): Comparison of the convergence in 100 iterations of Shubert function

80

4.3.4 STATISTICAL ANALYSIS

To test the significance of the results produced by CCA, a statistical analysis using

ANOVA has been carried out on the number of iterations taken by various algorithm to

converge that is shown in table 4.4. The analysis is performed by considering a 5%

significance level over the number of iterations to find the optimal value corresponding to

the test functions for six different methods such as GA, PSO, ABC, BA, CS, and CCA. In

this analysis the hypothesis is set as follows:

Null hypothesis H0: There is no significant difference in the number of iterations

among the methods GA, PSO, ABC, BA, CS, and CCA.

Alternative hypothesis H1: There is a significant difference in the number of

iterations among the methods GA, PSO, ABC, BA, CS, and CCA.

The ANOVA Test is conducted using SPSS tool and the results found in the experiment

are shown in table 4.6. If the p-value is less than 0.05, the null hypothesis is rejected.

From the ANOVA test shown in table 4.6, the p values (Sig.=0.000) is less than 0.05 (5%

significance level). So the null hypothesis is rejected. It is concluded that there is a

significant difference in the number of iteration among the methods GA, PSO, ABC, BA,

CS, and CCA.

ANOVA

Iteration

 Sum of Squares Df Mean Square F Sig.

Between Groups 6695479700.400 5 1339095940.080 5.790 .000

Within Groups 12488919554.600 54 231276288.048

Total 19184399255.000 59

81

4.4 SUMMARY

In this chapter, the meta-heuristic algorithm, namely Cricket Chirping Algorithm (CCA)

has been proposed and implemented. The CCA is inspired by the chirping behavior of

crickets, i.e. when they chirp for mating and aggression. The proposed algorithm has

been validated and compared with some of the popular algorithms. It generates better

solutions as compared to its counterparts and it is also concluded that the CCA performs

well both in low and high dimensional problems. A set of benchmark functions have been

used to test the CCA in comparison with GA, PSO, ABC, BA, and CS for both lower

dimension and higher dimension problems. Experimental results prove the robustness and

accuracy of CCA over other search-based approaches, and in every generation, CCA

improves its fitness value. The performance of CCA is analyzed by using one way

ANOVA test.

82

Chapter 5

IMPACT OF PARAMETER TUNING ON THE CRICKET

CHIRPING ALGORITHM

Most of the man-made technologies are nature-inspired including the popular meta-

heuristics techniques that solve complex computational optimization problems. Though

these methods are easy to implement, they usually require some kind of parameter tuning.

This makes them difficult to apply directly because the optimal values of these

parameters cannot be recognized earlier and they are often problem-dependent. In most

of the metaheuristics algorithms, adjusting the parameters has important significance in

obtaining the best performance of the algorithm. While solving the problem, the

parameter controlling the algorithm has a potential to improve the efficiency of the

algorithm. Cricket Chirping Algorithm (CCA) employs a set of parameters for its smooth

functioning. In this chapter the different parameters used in CCA are tuned for better

performance of the algorithm and the impact of tuning is experimented and analyzed on a

set of sample benchmark test functions, then fine-tuned CCA is compared with other

popular meta-heuristic algorithms.

5.1 PARAMETER TUNING IN CCA

When meta-heuristics search algorithms are used to solve a particular problem, we need

some techniques to map the original problem context with the problem-solving

framework like the specification of the representation and evaluation of the fitness

function. Since there is not much knowledge about the effects of parameters on the

algorithm performance, determining the best parameter value is a tough and challenging

task. In most of the metaheuristics algorithms, manual parameter tuning is a common

practice. Generally, one parameter is tuned at a time and repeated for simultaneous tuning

of more parameters. However, it leads to a huge amount of experiments and may cause

some sub-optimal choices. Obtaining a near optimal or an optimal solution of an

algorithm depends on the parameter values. Therefore, zeroing suitable parameter values

is important, even if the process requires a lot of added resources. Parameter setting can

83

be done in two methods: parameter tuning (before the run) and parameter control (during

the run). In parameter tuning, parameter values are defined first and do not change during

the execution of the algorithm. In parameter control, parameter values are changed along

with the algorithm run and can be deterministic, adaptive or self-adaptive.

Adjustment of different parameters of the meta-heuristics algorithm is usually a time-

consuming task which is mostly done by trial and error method. Here, the performance of

CCA is tested with different values of the CCA parameters like temperature, aggression

rate, crossover rate and female selection.

Generally, meta-heuristic algorithms with several parameters have to be fine-tuned. The

parameters of CCA are Temperature (Tc), Aggression rate (Ar), Crossover rate (Cr) and

Female selection (Fs). This section analyses the impact of these parameters on the

performance of CCA. The values of each parameter are varied by keeping other

parameter fixed. To fix the parameters for CCA the performance of different parameter

values are studied on the benchmark mathematical function, namely Alpine, Beale,

Goldstein and Price, Rastrigin, Sphere, and Tripod function. A brief description of these

functions is given in the next sections and the 3D view for representation of each of these

functions is shown in figure 5.1.

(a) Sphere Function

(b) Beale Function

84

(c) Goldstein & price Function

(d) Rastrigin Function

(e) Alpine 1 Function

(f) Tripod Function

Figure 5.1(a)-(f): Two-dimensional graph representation of the test functions

5.1.1 TEST FUNCTIONS

 ALPINE1 FUNCTIONS

This is a multimodal minimization problem defined as follows:

 (5.1)

Here, d represents the number of dimensions and xi ϵ[−10, 10] for i = 1, ., d. The global

optimum is fmin= 0 where xi = 0 and i = 1, ., n.





d

i

iii xxxxf
1

1.0)sin()(

85

 BEALE FUNCTION (HEDAR, N.D.)

 It is a continuous, non-separable, non-scalable, differentiable, multimodal function. The

function is defined as follows:

 (5.2)

The global minimum is fmin =0, at (3, 0.5) for xi ∈ [-4.5, 4.5], for all i = 1, 2.

 GOLDSTEIN & PRICE FUNCTION

The function Goldstein & Price returns the value:

 (5.3)

With domain -2 |xi| ≤ 2 and the global minimum fmin = 3 at the point (0,−1).

 RASTRIGIN FUNCTION

The Rastrigin function is a highly multimodal but the locations of the minima are

distributed regularly. It has several local minima. It is shown in the figure in its two-

dimensional form. The function is given below:

 (5.4)

The range is −5.12 ≤ xi ≤ 5.12 and global minimum fmin=0 at the point (0,.......,0).

 SPHERE FUNCTION

It is a continuous, convex and unimodal function. This function has d local minima

except for the global one. The Sphere function can be formulated as shown below:

 (5.5)

Where, xi∈ [-5.12, 5.12] for all i = 1, . , d. The Global Minimum f (x∗ =0, at x∗ =(0,..,0).

23

211

22

211

2

211)625.2()25.2()5.1()(xxxxxxxxxxf 

    
    2

1101

2

00

2

10

2

1101

2

00

2

10

2736481232183230

36143141911)(

xxxxxxxx

xxxxxxxxxf









d

i

ii xxnxf
1

2)2cos(1010)(





d

i

ixxf
1

2)(

86

 TRIPOD FUNCTION

It is a semi-continuous problem. The global minimum is fmin =0 on (0, -50). This function

too is theoretically easy. But it is difficult for a lot of algorithms that get trapped in the

two local minima. Here, d represents the number of dimensions and xi∈[-100,100] for

i=1,..,.d.

 (5.6)

5.1.2 IMPACT OF TEMPERATURE (Tc)

In CCA the cricket’s chirp depends on the outside temperature. Generally, the higher the

temperature of the environment, the higher the chirping rate. Here the cricket is allowed

to chirp at different temperatures. The temperature is taken as 10, 20, 30, 40, 50, 60, 70,

80, 90 and 100. The program is run for 100 times for every temperature value to find the

global optimal value and an average number of iterations is calculated. In figure 5.2(a)-(f)

the effect of the different temperatures for the chosen benchmark function is shown.

Figure 5.2(a): Alpine 1 function - Number of iterations vs Temperature

   

   

   

2 1

1 2 1

2 2

1 ()

() 50 () 1 2

50 1 2

p x p x

f x abs x p x p x

abs x p x

  
 
      
 
     
 

87

Figure 5.2(b): Beale function - Number of iterations vs Temperature

Figure 5.2(c): Goldstein & Price function - Number of iterations vs Temperature

Figure 5.2(d): Rastrigin function - Number of iterations vs Temperature

88

Figure 5.2(e): Sphere function - Number of iterations vs Temperature

Figure 5.2 (f): Tripod function - Number of iterations vs Temperature

From the graphs shown in figure 5.2 (a)-(f), it is visible that when the temperature is

increased the number of iterations essential to find the optimal value is reduced for all

functions. So the temperature between 90 and 100 is fixed as the optimal temperature for

CCA to perform well.

5.1.3 IMPACT OF AGGRESSION RATE (Ar)

When a cricket wants to fight, it makes an aggressive chirp. Since not all the crickets

chirp for aggression, it is needed to choose the aggression rate (Ar). Having analyzed, the

performance of CCA to be better at higher temperatures, this experiment analyzes the

impact of different aggression rate Ar at the temperature of (Tc=100). The probability of

aggression rate is varied like 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

89

0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 0.99. The program is run 100

times for all test functions with every Ar value and the average iterations to find the

global minima are calculated. Figure 5.3(a)-(f) shows how the aggression rate effects the

results in different functions.

Figure 5.3(a). Alpine 1 function - Number of iterations vs Aggression Rate

Figure 5.3(b). Beale function - Number of iterations vs Aggression Rate

90

Figure 5.3(c). Goldstein & Price function - Number of iterations vs Aggression Rate

Figure 5.3(d). Rastrigin function - Number of iterations vs Aggression Rate

Figure 5.3(e). Sphere function - Number of iterations vs Aggression Rate

91

Figure 5.3(f). Tripod function - Number of iterations vs Aggression Rate

From the graphs, it is clear that with a lower value of aggression rate, the number of

iterations needed for optimization is less. CCA shows better results at aggression rate

0.05, 0.10, and 0.15. Based on the results, [0.05 to 0.25] is considered as the optimal

aggression rate for low dimensional problems.

5.1.4 IMPACT OF CROSSOVER RATE (Cr)

After the calling song, the female and male crickets undergo the mating process. The

process is similar to crossover in genetic algorithm and hence it is carried out using

different crossover rates (Cr). Generally, crossover rate is high in GA. So the program is

tested for crossover rates 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 0.99

at a temperature value of 100 and aggression rate of 0.15. The performances of different

crossover rates in each test functions are shown in figure 5.4 (a)-(f).

From the figure, it is shown that higher crossover rates from 0.75 to 0.85 shows good

performance. So the crossover rate (Cr) is fixed to 0.80.

92

Figure 5.4(a): Alpine 1 function - Number of iterations vs Crossover Rate

Figure 5.4(b): Beale function - Number of iterations vs Crossover Rate

93

Figure 5.4(c): Goldstein & Price function - Number of iterations vs Crossover Rate

Figure 5.4(a): Sphere function - Number of iterations vs Crossover Rate

94

Figure 5.4(f): Tripod function - Number of iterations vs Crossover Rate

5.1.5 IMPACT OF FEMALE SELECTION (FS)

In CCA, only the male crickets chirp for mating. To perform the mating operation the

male crickets have to choose the female crickets. The selection of female (Fs) crickets

may be done in different ways. The CCA is tested for the following female cricket

selection methods.

 RANDOM FEMALE SELECTION

 In this method, 50% of the total crickets are randomly chosen as female crickets and

allowed to mate with male crickets randomly.

 BEST FIT FEMALE SELECTION

In the best fit selection process, the highest fit cricket is selected as female cricket and

makes the crossover process in two ways. First, the female cricket is allowed to mate

with all the male crickets and second, allow mating only with one male cricket which is

randomly chosen.

95

 WORST FIT FEMALE SELECTION

In the worst fit process, the worst cricket is selected as female cricket and allowed to

mate. Since this selection does not converge to the optimal fitness value, it is not

considered for female selection.

The program is run for 100 iterations for the Random Selection method and Best Fit

Selection method (both mating with one cricket and all cricket). The fitness value

obtained for the said selection methods for all the test functions are run for 100 iterations

and the graph of convergence to the optimal solution is shown in figure 5.5(a)-(f). It is

clearly observed from the graph that the Best Fit Selection scheme mating with all male

crickets, offers better results in terms of convergence and speed.

Figure. 5.5(a): Alpine 1 function - Fitness values for three female selection mechanisms

96

 Figure. 5.5(b): Beale function - Fitness values for three female selection mechanisms

Figure. 5.5(c): Goldstein & Price function - Fitness values for three female selection mechanisms

97

Figure. 5.5(d): Rastrigin function - Fitness values for three female selection mechanisms

Figure. 5.5(e): Sphere function - Fitness values for three female selection mechanisms

98

Figure. 5.5(f): Tripod Function - Fitness values for three female selection mechanisms

From the experiments conducted, the best CCA parameters found are listed in table 5.1.

Using these CCA parameter values, the CCA Algorithm is compared with another meta-

heuristic algorithm in the next section.

Table 5.1: Parameter values of CCA

Parameter Name Value

Temperature 100

Aggression rate 0.15

Crossover rate 0.80

Female Selection Best cricket as female and mate with all cricket

5.2 COMPARISON OF CCA WITH OTHER META-HEURISTIC

ALGORITHMS

After fine-tuning the optimal parameter values for CCA, the algorithm is compared with

the popular meta-heuristic algorithms to show the betterment of CCA. Bat Algorithm

(BA) and Cuckoo Search (CS) Algorithm are considered in comparison with CCA as

99

they are the recent and popular algorithms. GA and PSO have not been compared here

since the BA and CS have shown better results compared to them. The BA was simulated

based on the echolocation behavior of bats[20]. The bat flies in search of its prey with a

velocity vi at position (solution) xi with varying frequency. It has loudness Ai and pulses

emission rate ri. For BA the loudness and pulse are set to 0.5 and the minimum and

maximum frequency is taken as 0 and 2.

The CS algorithm was developed based on the breeding behavior of cuckoo together with

Levy flight behavior of some birds [20]. In the CS algorithm, the discovery rate of the

alien egg is the only parameter that needs to be set and hence it is set to 0.25.

The CCA, BA, and CS are run for every test function using the above-mentioned

parameter values. The convergence towards the optimal value of each test function for

each algorithm in 100 generations is shown in figure 5.6(a)-(f). The fitness value of each

algorithm for the benchmark test functions in 100 generations is shown in table 5.2. The

CCA shows better fitness value compared to the BA and CS with a fixed number of 100

iterations.

Table 5.2: Comparison of fitness values of CCA with BA and CS in 100 generations

Function Name(f(x)) Fitness Value (fmin)

BA CS CCA

Alpine 1 1.17E-08 2.02E-08 2.52E-21

Beale 1.63E-08 5.66E-07 8.93E-17

Goldstein & Price 3 3 3

Rastrigin 2.37E-06 0.000322 7.11E-15

Sphere 7.17E-06 4.67E-09 7.03E-23

Tripod 0.000146 0.008835 3.87E-11

100

Figure 5.7(a): Fitness value of BA, CS, and CCA for Alpine Function

Figure 5.7(b): Fitness value of BA, CS, and CCA for Beale Function

Figure 5.7(c): Fitness value of BA, CS, and CCA for Goldstein & price Function

101

Figure 5.7(d): Fitness value of BA, CS, and CCA for Rastrigin Function

Figure 5.7(e): Fitness value of BA, CS, and CCA for Sphere Function

Figure 5.7(f): Fitness value of BA, CS, and CCA for Tripod Function

102

 Table 5.3 shows the algorithm convergence for the benchmark test functions. In

comparison with the so far best algorithms namely Bat and Cuckoo search, CCA requires

a lesser number of iterations in lesser time to converge for each of the benchmark

functions taken for experimental analysis. Each algorithm is executed 100 times and the

mean of number of iterations and time taken to find the global optimal value is shown in

table 5.3

Table 5.4 Comparison of CCA before parameter tuning and after parameter tuning and improvement

Test Functions CCA(Before

Tuning)

CCA(After

Tuning)

Improvement

(%)

Ackley 2475±194(100%) 1116±113(100%) 54.91

Easom 4890±461(100%) 2488±194(100%) 49.12

Griewangk 4227±259(100%) 1213±216(100%) 71.30

Matyas 670±152(100%) 428±90(100%) 36.12

Michalewicz 1364±182(100%) 546±90(100%) 59.97

Rastrigin 1286±168(100%) 702±98(100%) 45.41

Rosenbrock 1882±455(100%) 1485±444(100%) 21.09

Schwefel 1705±195(100%) 809±86(100%) 52.55

Shubert 2855±957(100%) 1630±766(100%) 42.91

Sphere 804±117(100%) 352±78(100%) 56.22

In table 5.4 the comparison of the mean and standard deviation of the number of

iterations before and after tuning of parameters of CCA and its improvement is shown in

percentage. The values of CCA before tuning are taken from table 4.4 of Chapter 4. From

the experimental results, it is shown that after tuning the parameters the performance of

CCA is improved.

Table 5.3: Comparison of the mean of number of iterations and time for BA, CS, and CCA

Test

Function

BA CS CCA

Iterations Time(sec) Iteration Time(sec) Iteration Time(sec)

Alpine 1 742077.06 19.85605 146212.5 5.41595 3911.727 0.164807

Beale 391078.12 1.25630 17994.06 0.637054 5124.63 0.234939

Goldstein 7243.33 0.26624 6295.38 0.233315 1771.35 0.051165

Rastrigin 529285.08 17.50211 9573.69 0.472673 1851.15 0.075483

Sphere 241260.54 11.023255 195168.5 9.349882 34098.54 0.963831

Tripod 263111.22 11.53656 483756 25.9116 47124.84 2.464338

103

5.3 STATISTICAL ANALYSIS

 ANALYSIS I

To test the significance of the results of CCA after tuning, a statistical analysis using one

way ANOVA has been carried out on the number of iterations, taken by CCA before

tuning and after tuning to converge to the optimal value, shown in table 4.4. The analysis

is carried out by considering a 5% significance level over the number of iterations to find

the optimal value with tolerance value τ ≤ 10
−5

corresponding to the test functions. Here

the hypothesis is set as follows:

Null hypothesis H0: There is no significant difference in the number of iterations

between the CCA before tuning and after tuning.

Alternative hypothesis H1: There is a significant difference in the number of

between the CCA before tuning and after tuning.

The test is conducted using SPSS tool and the results found in the experiment are shown

in table 5.5. From the ANOVA test shown in table 5.5, the p values (Sig.=0.033) is less

than 0.05 (5% significance level) that provides an evidence against the null hypothesis.

So it is concluded that there is a significant difference between the iteration numbers to

obtain the optimal value before parameter tuning and after parameter tuning.

Table 5.5: ANOVA test over the methods CCA before and after tuning

ANOVA

iteration

 Sum of Squares df Mean Square F Sig.

Between Groups 6485466.050 1 6485466.050 5.320 .033

Within Groups 21941586.500 18 1218977.028

Total 28427052.550 19

 ANALYSIS II

After parameter tuning, the results found by CCA is compared with the other meta-

heuristics BA and CS. The differences in performance of all algorithms are statistically

analyzed using one way ANOVA test. The hypothesis is set as follows:

104

Null hypothesis H0: There is no significant difference in the number of iterations

among the methods BA, CS, and CCA.

Alternative hypothesis H1: There is a significant difference in the number of among

the methods BA, CS, and CCA.

The results found in the experiment in the ANOVA Test are shown in table 5.6. Since

the p-value 0.015 is less than 0.05, the null hypothesis is rejected. So it is concluded that

there is a significant difference between the iteration numbers to obtain the global

optimal value among the techniques.

Table 5.6: ANOVA test over the methods CCA , BA and CS before and after tuning

ANOVA

Iterations

 Sum of Squares df Mean Square F Sig.

Between Groups 368994211215.896 2 184497105607.948 5.575 .015

Within Groups 496423190956.499 15 33094879397.100

Total 865417402172.394 17

5.4 SUMMARY

In this chapter, the impact of the different parameters used in CCA is analyzed. The

parameters environmental Temperature Tc, Aggression Rate Ar, Crossover Rate Cr and

Female Selection Fs have an effective contribution to the performance of CCA. When

comparing the initial and final set of parameters, it is found that the final set provides

better results compared to the case of initial parameter configuration for the problem

under study. As per the analysis of the experiment the higher the temperature, the higher

the fitness value of the crickets. The cricket produces high-frequency sound at high

temperatures. But, in low aggression rate, it shows better performance for low dimension

problems. In female selection, the best fit female selection converges faster compared to

other female selection schemes. The values obtained through various experimental

settings could be fixed as the standard parameters for the CCA algorithm in future. The

comparison with its counterparts also shows that CCA performs better than others and

hence it could be used as a good optimization technique.

105

Chapter 6

CRICKET CHIRPING ALGORITHM FOR MULTI-

OBJECTIVE OPTIMIZATION (MOCCA)

In MOO, there are two or more objective functions to be optimized resulting in a set of

optimal solutions which is also known as Pareto-optimal (PO) set whereas in SOO only

one global optimum value is to be found. The fitness functions are evaluated either using a

weighted-sum approach or the Pareto-ranking approach. In this chapter, CCA has been

extended to solve MOO problems using two approaches which are discussed here. These

two approaches are as follows:

1. Multi-objective CCA using Weighted Sum Approach (MOCCA-W)

2. Multi-objective CCA using Pareto Based Approach (MOCCA-P)

The several MOO algorithms, that falls into either of the two classes. They basically differ

in the fitness function evaluation procedure. This research has concentrated on both the

types and hence CCA was extended in both directions. The first one, i.e. MOCCA-W is an

extension of CCA to solve MOO problems using the weighted sum approach. The second

one, i.e. MOCCA-P uses the concept of Pareto dominance for solving MOO problems.

Here we get a set of solution that balances the objectives. For MOO, different metrics are

used to analyze the performance of Generational Distance, Spacing, and Maximum

Spread. These are used to validate the performance of MOCCA in this chapter. The next

section discusses MOCCA using weighted sum approach followed by experiment results

and analysis.

6.1 MULTI-OBJECTIVE CCA USING WEIGHTED SUM

APPROACH (MOCCA-W)

In the weighted sum method, the user needs to assign the weights before the fitness

evaluation takes place. Each objective function is given a weight value and the weights are

added to give a composite fitness value for the individuals of the MOO problem. In

106

Pareto-ranking approach, the dominance rule is used to rank the whole population and

then each solution based upon its rank is assigned a fitness value, instead of its actual

objective function value. Each solution is assumed to be equally important and all of them

comprise the global optimum solutions. The problem in MOO is to optimize the set of

objective functions simultaneously where the objectives in the problems often may

conflict with each other and an improvement of one objective may lead to plummeting of

another making it more difficult to solve.

The MOP deals with the minimization or maximization of objectives F(x) and can be

subjected to a number of bounds or constraints. The normal optimization problem can be e

formulated mathematically using equation 6.1 as follows:

Minimize/maximize,

 𝐹(𝑥) = 𝑓1(𝑥), 𝑓2(𝑥), … . , 𝑓𝑚(𝑥) (6.1)

Subject to, 𝐺𝑖(𝑥) ≤ 0 𝑖 = 1,… . , 𝑝

𝐻𝑗(𝑥) ≤ 0 𝑖 = 1,… . , 𝑞

Here, m is the number of objective functions, p is the number of inequality constraints, q

is the number of equality constraint and 𝑥 = [𝑥1,𝑥2, …… , 𝑥𝑘]
𝑇
 are the decision variables,

and Gi, Hj are the constraints function of the problem.

In this section, the weighted sum approach is used along with CCA to solve the multi-

objective design problem. It combines all the objectives fj into a single objective and the

sum of assigned weight is always equal to 1 as shown in equation 6.2.

 (6.2)

 Here, wj is the weight generated randomly from a uniform distribution. The algorithm for

multi-objective Cricket Chirping Algorithm is shown in table 6.1.

,
1

j

k

j

j fw


1
1




k

j

jw

107

Table 6.1: Algorithm for multi-objective CCA with Weighted Sum

 Algorithm_MOCCA-W()

Begin

1. Initialize the cricket population xi (i = 1, 2, ...,n)

2. Choose m crickets randomly as female crickets, such that m<=n/2

3. for i = 1 to N (Number of Pareto fronts), generate k weights wj ≥ 0;

 such that

4. Form a single objective using equation (6.2)

5. Evaluate the crickets using the objective functions and the weights.

6. While (stopping criteria not met)

 Allow the cricket for mating chirp // Call procedure calling_chirp()//

 Mate with female // Call procedure mating()//

 Allow the cricket for aggression // Call procedure aggression_chirp()//

 Return the winner

 Return the best cricket x*

7. End while

End

6.1.1 MULTI-OBJECTIVE TEST FUNCTIONS

Two benchmark test functions with convex and non-convex Pareto fronts that are widely

used are considered to validate the proposed MOCCA. The functions are listed below:

 ZDT1: This is a function of convex front and mathematically stated as equation 6.3 as

below: 𝑓1(𝑥) = 𝑥1 ,

𝑓2(𝑥) = 𝑔(𝑥) ⌊1 − √𝑥1 𝑔(𝑥)⁄ ⌋ (6.3)

 Where,





k

j

jw
1

1

   191
2









 



nxxg
n

i

i

108

Here, n is the dimension number. When g=1, it reached to the Pareto-optimality and the

true Pareto front for ZDT1 is 𝑓2 = 1 − √𝑓1

 ZDT2: This is a function with a non-convex front. It is mathematically formulated by

using equation 6.4:

  11 xxf 

      212 1 xgxxgxf  (6.4)

 Where,    191
2









 



nxxg
n

i

i
 (2)

The true Pareto front for ZDT2 is 𝑓2 = 1 − (𝑓1)
2

To quantify the performance of the algorithm, the error rate (Er) is calculated. This error

rate is the distance from the estimated Pareto front (𝑃𝐹)𝑒 to its corresponding true Pareto

front(𝑃𝐹)𝑡. It is defined by using equation 6.5 as follows:

𝐸𝑟 = ‖(𝑃𝐹)
𝑒 − 𝑃𝐹𝑡‖ = ∑ ((𝑃𝐹𝑖)

𝑒 − (𝑃𝐹)
𝑡)2𝑁

𝑖=1 (6.5)

Where N defines the number of Pareto points.

6.1.2 EXPERIMENTAL RESULTS AND ANALYSIS

First, the algorithm is validated for some benchmark test functions. The parameters used

in MOCCA-W are population size (n), Temperature (Tc), Crossover rate (Cr) and the

Aggression rate (Ar) with the values of Pa=0.05 to 0.5, n=20 to 50 and Cr=0.80 to 0.95.

The algorithm is run for 1000 iterations and generated 100 Pareto points by MOCCA. In

figure 6.1 and figure 6.2, the true Pareto front and the estimated Pareto front by MOCCA

for function ZDT1 and ZDT2 are shown respectively.

6.1.3 COMPARISON WITH OTHER METHODS

In order to measure the performance of the proposed MOCCA, it is compared with other

MOO algorithms. The basic Particle Swarm Optimization (PSO) and Bat Algorithm (BA)

with weighted sum approach are considered for comparison with the MOCCA-W.

109

Figure 6.1: Pareto front of MOCCA-W and true Pareto front of ZDT1

Figure 6.2: Pareto front of MOCCA-W and true Pareto front of ZDT2

The standard PSO is used to solve the problems with weighted sum approach. The

parameter swarm size n=50 and inertia weight w=0.9 are used for all test problems. The

parameters for BA is set as population size n=50, pulse reduction rate r= 0.7 and loudness

A=0.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st Objective

2nd
 O

bj
ec

tiv
e

True Pareto Front

CCAMO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st Objective

2nd
 O

bj
ec

tiv
e

True Pareto Front

CCAMO

110

All the three algorithms are run for 1000 iterations and the distance between the true

Pareto front and the estimated Pareto front of the algorithm (error rate) is calculated. The

error rate is calculated by using equation 6.5.

 Table 6.2 shows the error rate of each algorithm for both the test function ZDT1 and

ZDT2. The experimental result shows that MOCCA has less error rate compared to its

counterparts.

Table 6.2: Comparison of the error rate of the test problems

Functions Error (t=1000)

PSO BA MOCCA-W

ZDT1 3.4e-3 2.2e-3 2.7e-5

ZDT2 1.9e-2 5.8e-3 6.4e-4

6.2 MULTI-OBJECTIVE CCA USING PARETO BASED

APPROACH (MOCCA-P)

Having presented the MOCCA-W which uses the weighted sum strategy for MOO, this

section describes the design and implementation of MOCCA-P which uses the Pareto

approach for extending the CCA to solve MOO problems.

The main differences noticed in CCA for MOP are as follows:

 Instead of choosing female cricket from the population, allow the male cricket to

find/search female cricket. Their chirping rate will increase as the temperature

increases and based on their chirping rate female cricket gets attracted.

 When the cricket chirps for aggression, it fights with other male crickets and the

winner is chosen based on six aggression levels:

i. Mutual Avoidance [20]: In this level no aggressive interaction takes place.

The winner is decided mutually.

111

ii. Pre-Established Dominance [20]: In this level one cricket attacks and the

other retreats.

Table 6.3: Algorithm for Multi-objective Cricket Chirping algorithm with Pareto based

Algorithm for Multi-objective Cricket Chirping algorithm (MOCCA-P)

1. Inputs: N: Number of cricket population, M_gen: Maximum number of

generation, T: environment temperature, Pagg: the probability of aggression, nrep:

size of the repository, ngrid: number of grids.

2. Problem definition: d: dimension of the cricket in search space, x: the position of

the cricket, M: number of objectives, ub: upper bound, lb: lower bound.

3. Initialization: initialize cricket population in the search space randomly;

 x (i,d) = lb (1 ,d) + (ub (1 ,d) − lb (1 ,d)) · rand

 Initialize the repository : rep=[]

4. Evaluate the objective function: f(i, m)

5. Calculate the fitness:

 fitness(i) ←calculate_ fitness(x(i,d), f(i,m))

6. While stopping criteria is not met:

a. Allow the cricket for mating chirp:

i. female ←Search_female(x(i,d))

ii. offsprings ←mating(female, x(i,d))

iii. rep←best(offsprings, parents) //Choose the best one among parents

and offspring

b. Allow for aggression chirp on aggression rate Ar

winner←fight() //Warn the other male cricket for fighting

7. End while

8. Return the optimal solution

iii. Antenna fencing [20]: In antenna fencing crickets lashes with their antenna.

It is an enthusiastically inexpensive signal that carries mostly motivational

information about resource value.

iv. Mandible spreading (Unilateral) [20], [161]: One cricket shows broadly

spread mandibles, which indicate that it is superior to the other.

112

v. Mandible Spreading (bilateral) [125]: In this level, both crickets display

their spread jawbones. Mandible spreading indicates the strength of the

cricket.

vi. Wrestling [145]: In this level a thoroughgoing fight where the crickets may

repeatedly disengage, combat and bite other body parts and re-engage

mandibles to show their strength.

The fight can be settled at any of the levels (i)-(vi) by an opponent. The looser retreating,

upon which the established winner typically produces the rivalry song together with

characteristic body tremulous (jerking).

Based on these behaviors of cricket the fitness calculation of two crickets is implemented.

In Multi-objective Cricket Chirping Algorithm (MOCCA) an external repository is used

to store the non-dominated solutions (Pareto front). The pseudocode is shown in table 6.3

and the detailed stepwise procedure is given in the next section.

6.2.1 GENERAL FRAMEWORK OF MOCCA

 INPUT

N: Size of the cricket population, M_gen: Maximum number of generations, T:

Environment’s Temperature, Pagg: the probability of aggression, nrep: size of the

repository, ngrid: number of grids.

 OUTPUT

rep: An external repository ‘rep’ is used to store Pareto front.

 INITIALIZATION

Initialize the cricket population in the search space randomly;

 x (i,d) = lb (1 ,d) + (ub (1 ,d) − lb (1 ,d)) · rand (6.6)

Where d is the dimension of the decision variables and i=1,2,…N , lb is the lower bound

and ub is the upper bound of the variable in the search space.

113

 Initialize the repository ‘rep’ which stores the non-dominated crickets in the initial x.

 EVALUATE THE OBJECTIVE FUNCTION

Calculate the objective function value of each objective for all the crickets. For cricket i,

the value of each objective f(i, m), where m = 1 , 2, . . . , M, is calculated.

 FITNESS CALCULATION

This procedure involves calculating the strength of each cricket. The fitness calculation

of the crickets is shown in table 6.4.

Table 6.4: Algorithm for fitness calculation of cricket

Calculate_fitness()

For each cricket (i=1 to N)

 For each cricket (j=i+1 to N)

 For each objective (k=1 to M)

 If (x(i,k)<x(j,k)) and (x(i,k)!=x(j,k)) // in case of minimization problems

 greater(i)=greater(i)+1; less(j)= less(j)+1;

 else if (x(i,k)==x(j,k))

 equal(i)= equal(i)+1; equal(j)= equal(j)+1;

 else

 greater(j)=greater(j)+1; less(i)= less(i)+1;

 end

 fit(i)=[greater(i)+ equal(i)+ less(i)];

 fit(j)=[greater(j)+ equal(j)+ less(j)];

 if (fit(i)>= fit(j))

 strength(i)= strength(i)+1;

 End

 End

 End

114

 MATING PHASE

In this phase, the cricket will search for female crickets and mate with them. After

successful completion of mating, they produce the offspring.

SEARCH FEMALE CRICKET

In this phase, the cricket makes calling chirps to search for female crickets and based on

their chirping rate the female crickets get attracted. The movement of the cricket is

calculated by equations 4.1 to 4.6 given in Chapter 4.

MATING

The mating process is done similar to the crossover process of the genetic algorithm. The

mating process produces offspring and selects the best one among the offspring and

parents. Then the non-dominated cricket is stored in the repository ‘rep'.

 AGGRESSION PHASE

The male cricket gets into the aggression phase with probability rate Ar. The two crickets

fight with each other and the winner is selected based on the six aggression levels. The

levels are described as follows:

LEVEL 1: MUTUAL AVOIDANCE

When the values of each objective of a solution p are equal to the corresponding values of

each objective of the solution q, then anyone solution (cricket individual) will be selected

as the winner. For example, p and q have two objectives and the fitness (f) of both

solutions is equal. In this case, any solution p or q is selected randomly.

115

LEVEL 2: ANTENNAL FENCING

When the values of each objective of a solution p are greater than the corresponding

values of each objective of the solution q then p wins. For example, in the following

figure all the objectives of p are greater than q, so p will win.

LEVEL 3: PRE-ESTABLISHED DOMINANCE

For this phase fix a priority (Pr) for each objective and based on priority and objective

value choose the winner. For example, the priority is assigned high in objective 2. Here

higher value is having high priority. In this case, the solution q will win since q is having

the highest value of objective 2, that is having higher priority.

LEVEL 4: MANDIBLE SPREADING (UNILATERAL)

In this phase, One solution p that satisfies the constraints, whereas another one q is not,

then p will win.

116

 Satisfying Constraints Not satisfying Constraints

LEVEL 5: MANDIBLE SPREADING (BILATERAL)

In this case, both the solutions are satisfying constraints, but a number of constraints

satisfying solution will win. Check the number of constraints satisfied by each solution.

For example, from the figure number of constraints satisfied by q is more than p. So q

will win.

 No. of Satisfying Constraints=2 No. of Satisfying Constraints=3

LEVEL 6: WRESTLING

At this level, the cricket will fight with each other but not exploited in this research.

 RETAINING OF NON-DOMINATED SOLUTION

An external repository or archive is used to store the records of non-dominated solutions.

It consists of an archive controller and an adaptive grid. The function of addition or

deletion of a solution to the archive is controlled by the archive controller. The main

purpose of the adaptive grid is to produce well-distributed Pareto fronts. The reason for

choosing an adaptive grid is its computational cost that is easy and lower than niching.

117

6.2.2 EXPERIMENTAL RESULTS AND ANALYSIS

This section first describes the standard benchmark test functions that are considered for

experiments. The different performance metrics used for performance measurement and

the implementation results of MOCCA-P are described in the following sections.

6.2.2.1 MULTI-OBJECTIVE TEST FUNCTIONS

There are a large number of standard test functions that are available for MOO problems.

To validate the proposed MOCCA-P, a subset of a few widely used functions is selected

that is convex, non-convex and discontinuous. The test functions without constraints are

given in table 6.5 and the test problems with constraints are given in table 6.6.

6.2.2.2 PERFORMANCE METRICS

Any algorithm is validated by using a set of performance metrics. The metrics used for

validating SOO problems may not correctly evaluate the performance of MOO problem.

Hence there exists a separate set of performance metrics exclusively designed for

validating MOO problems. The important ones that are used to evaluate the performance

of the proposed MOCCA are given below.

 GENERATIONAL DISTANCE (GD)

The most commonly used performance metric is Generational distance. It is measured as

the extent to which the actual Pareto Front and the obtained Pareto Front are distant from

each other. It is mathematically computed as shown in Equation (6.7)

𝐺𝐷 =
1

𝑛
√∑ 𝑑𝑖𝑠𝑡𝑖

2𝑛
𝑖=1 (6.7)

In equation 6.7, 𝑛 indicates the cardinality of solutions in the generated Pareto-Front. disti

signifies the Euclidean distance between solution i in the actual Pareto front and its

closest neighbor in the generated Pareto front. The lesser is the value of GD, the better

will be the convergence.

118

Table 6.5: Test problem without Constraint

119

Table 6.6: Test problem with Constraints

120

 SPACING (SP)

The primary intention of spacing metrics is to determine the extent to which the solutions

are equally spread along the generated Pareto front. It can be mathematically defined as

in equation 6.8 [175]:

 𝑆𝑃 = √
1

𝑛
∑ (𝑑𝑖𝑠𝑡𝑖 − 𝑑̅)

2𝑛
𝑖=1 (6.8)

 Where, 𝑑̅ = √
1

𝑛
∑ (𝑑𝑖𝑠𝑡𝑖)
𝑛
𝑖=1

In equation 6.8, n and 𝑑𝑖𝑠𝑡𝑖 holds similar meaning as that of equation 6.7. When this

metric holds a small value, it signifies a more uniform spread of the solutions.

 MAXIMUM SPREAD (MS)

The maximum spread (MS) metric exhibits the extent to which the actual Pareto Front

encloses the generated Pareto-optimal front. This is identified in accordance with the

hyper boxes constructed by the optimal function values from the actual Pareto-optimal

front and the generated Pareto-optimal front. It is mathematically expressed as in

Equation 6.9.

𝑀𝑆 = [
1

𝑚
∑ [

𝑚𝑖𝑛(𝑓𝑖
𝑚𝑎𝑥,𝐹𝑖

𝑚𝑎𝑥)−𝑚𝑖𝑛(𝑓𝑖
𝑚𝑖𝑛,𝐹𝑖

𝑚𝑖𝑛)

𝐹𝑖
𝑚𝑎𝑥−𝐹𝑖

𝑚𝑖𝑛]
2

𝑚
𝑖=1]

1
2⁄

 (6.9)

In Equation 6.9, m indicates the number of objectives. 𝑓𝑖
𝑚𝑎𝑥and 𝑓𝑖

𝑚𝑖𝑛 signify the

respective maximum and minimum of associated i
th

 objective in the generated Pareto-

front, respectively, and 𝐹𝑖
𝑚𝑎𝑥and 𝐹𝑖

𝑚𝑖𝑛are the maximum and minimum of the i
th

 objective

in the true Pareto-front. When maximum spread metric characterizes a larger value, it

depicts that the spread of the solutions is better.

6.2.2.3 PARAMETER SETTINGS

Generally, meta-heuristics approaches need parameter settings for better performance.

The different parameters used in MOCCA, MOPSO, SPEA2, and NSGA2 are given in

table 6.7

121

Table 6.7: Parameters used in MOCCA and the other algorithms

Parameters MOPSO SPEA2 NSGA2 MOCCA

Population Size 100 100 100 100

External Archive Size 100 100

No. of adaptive grid 7 7

Inertia weight 0.4

c1 and c2 [0,1] - - -

Aggression rate - - - 0.50

6.2.2.4 EXPERIMENTAL RESULTS

To illustrate the validity of the proposed MOCCA, a number of experiments are

conducted over test functions for both multi-objectives optimizations with constraint and

without constraints. Figure 6.3 (a)-(g) shows the non-dominated Pareto front produce by

MOCCA-P for MOO without constraints and figure 6.4 (a)-(d) shows the Pareto front

produce by MOCCA for MOO with constraints.

Figure 6.3(a): Pareto front produced by MOCCA-P for ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1st Objective

2nd
 O

bj
ec

tiv
e

122

Figure 6.3(b): Pareto front produced by MOCCA-P for ZDT2

Figure 6.3(c): Pareto front produced by MOCCA-P for ZDT3

Figure 6.3(d): Pareto front produced by MOCCA-P for ZDT4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st objective

2nd
 o

bj
ec

tiv
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1st Objective

2nd
 O

bj
ec

tiv
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.5

4

4.5

5

5.5

6

1st Objective

2nd
 O

bj
ec

tiv
e

123

Figure 6.3(e): Pareto front produced by MOCCA-P for ZDT6

Figure 6.3(f): Pareto front produced by MOCCA-P for SCH

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1st objective

2nd
 o

bj
ec

tiv
e

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1st objective

2nd
 o

bj
ec

tiv
e

124

Figure 6.4(a): Pareto front produced by MOCCA-P for TNK

Figure 6.4(b): Pareto front produced by MOCCA-P for BNH

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1st objective

2nd
 o

bj
ec

tiv
e

TNK

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

1st objective

2nd
 o

bj
ec

tiv
e

BNH

125

Figure 6.4(c): Pareto front produced by MOCCA-P for OSY

Figure 6.4(d): Pareto front produced by MOCCA-P for CONSTR

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

90

100

1st objective

2nd
 o

bj
ec

tiv
e

OSY

0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

1st objective

2nd
 o

bj
ec

tiv
e

CONSTR

126

6.2.3 COMPARISON WITH OTHER ALGORITHMS

Having obtained the Pareto solutions for the various benchmark functions using

MOCCA-P, it has to be compared with another such algorithm for its performance

efficiency. Hence MOCCA-P is compared with a set of standard MOO algorithms such

as SPEA2, NSGA-II, and MOPSO. The parameter values used in all MOO methods are

given in table 6.7 and three performance metrics are considered for evaluating the

experimental results and these are briefly explained in Section 6.2.2.2. Each algorithm is

executed 50 times for every method and the statistical results of the performance metrics

SP, MS and GD are reported in table 6.8, table 6.9 and table 6.10 respectively. From the

statistical analysis, it is shown that the MOCCA performs better compared to its

counterpart considering the performance metrics GD, SP, and MS.

Table 6.8 Comparison of MOCCA with other algorithms regarding the mean of SP

Problem MOPSO SPEA2 NSGA-II MOCCA

ZDT1 0.312 0.02671 0.03128 0.0011

ZDT2 0.3167 0.1067 0.0187 0.00406

ZDT3 0.03299 0.0129 0.00856 0.00299

ZDT4 0.5776 0.03109 0.0189 0.0058

ZDT6 0.29 0.04899 0.01589 0.00369

Table 6.9 Comparison of MOCCA with other algorithms regarding the mean of MS

Problem MOPSO SPEA2 NSGA-II MOCCA

ZDT1 0.9982 0.89986 0.9992 1

ZDT2 0.9862 0.8906 1 1

ZDT3 0.88927 0.98902 0.99018 1

ZDT4 0.9852 0.93058 0.9988 0.99998

ZDT6 0.8485 0.98905 1 1

127

Table 6.10 Comparison of MOCCA with other algorithms regarding the mean of GD

Problem MOPSO SPEA2 NSGA-II MOCCA

ZDT1 0.0645 0.01809 0.01925 0.001

ZDT2 0.0523 0.1523 0.0053 0.0013

ZDT3 0.07853 0.03553 0.00607 0.00238

ZDT4 0.2609 0.23284 0.20244 0.03001

ZDT6 0.0513 0.0765 0.04394 0.0017

6.2.4 STATISTICAL ANALYSIS

To test the significance of the results produced by MOCCA-P, a statistical analysis using

ANOVA has been carried out on the basis of SP, MS, and GD produced by various

algorithms that are shown in table 6.8, 6.9 and 6.10 respectively. The analysis is done by

considering a 5% significance level over the performance metrics produced by the

algorithms corresponding to the test problems for the three different methods i.e.

MOPSO, SPEA2 NSGA2 and MOCCA-P.

 ANALYSIS I

In this analysis the hypothesis is set as follows:

Null hypothesis H0: There is no significant difference in the SP among the

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.

Alternative hypothesis H1: There is a significant difference in the SP among the

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.

The one way ANOVA Test is done and the results found in the experiment are shown in

table 6.11. Here, p values (Sig.= 0.000) is less than 0.05 that strongly oppose the null

hypothesis. So it is concluded that there is a significant difference of the SP among the

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.

128

Table 6.11 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2, NSGA2 based on SP

ANOVA

SP

 Sum of

Squares

df Mean

Square

F Sig.

Between

Groups
.306 3 .102 10.558 .000

Within Groups .154 16 .010

Total .460 19

 ANALYSIS II

In this analysis the hypothesis is set as follows:

Null hypothesis H0: There is no significant difference in the MS among the

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.

Alternative hypothesis H1: There is a significant difference in the MS among the

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.

Table 6.12 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2, NSGA2 based on MS

ANOVA

MS

 Sum of

Squares

df Mean

Square

F Sig.

Between

Groups
.017 3 .006 3.283 .048

Within Groups .028 16 .002

Total .044 19

129

The one way ANOVA test is performed and the results found in the experiment are

shown in the table 6.12. From the ANOVA test shown in table 6.12, it is found that the p

values (Sig.=0.048) are less than the significance value 0.05. So it is concluded that there

is a significant difference in the MS among the methods MOPSO, SPEA2, NSGA2, and

MOCCA-P.

 ANALYSIS III

In this analysis the hypothesis is set as follows:

Null hypothesis H0: There is no significant difference in the GD among the

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.

Alternative hypothesis H1: There is a significant difference in the GD among the

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.

Table 6.13 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2, NSGA2 based on GD

ANOVA

GD

 Sum of

Squares

df Mean

Square

F Sig.

Between

Groups
.031 3 .010 1.782 .191

Within Groups .093 16 .006

Total .124 19

The one way ANOVA test is done and the results found in the experiment are shown in

the table 6.13. From the results, it is shown that p values (Sig.=0.191) are greater than

0.05 (5% significance level). Therefore, the null hypothesis H0 is accepted. So it is

concluded that there is no significant difference of the GD among the methods MOPSO,

SPEA2, NSGA2, and MOCCA-P.

130

6.3 SUMMARY

In this chapter, the CCA is extended for solving MOO problems in two ways i.e.

MOCCA-W and MOCCA-P. The MOCCA is differing from the basic CCA in two terms.

First, the male cricket is allowed to search the female cricket in the search space and

secondly, when the male cricket chirps for aggression the winner is selected depends on

the seven aggression levels. A different fitness calculation method is also developed and

an external archive is used to retain the non-dominated solutions. The MOCCA is

implemented and experimented with some of the standard benchmark test problems with

constraint and without constraints and compared with three popular techniques i.e.

MOPSO, SPEA2, and NSGA2. The experiment result shows better results compared to

its counterparts in term of generational distance, spacing and maximum spread. The

performance of the methods is statistically analyzed by using one way ANOVA test

based on the SP, MS, and GD. Though the MOCCA-P shows better result corresponding

to GD, there is no significant difference among the methods over the performance metrics

GD, but shows significant difference among the methods over the performance metrics

SP and MS.

131

Chapter 7

CASE STUDY

In this chapter, several case studies have been taken up to test the performance of CCA

and MOCCA for real-world problems that involve single and multi-objective

optimization. The Cricket Chirping Algorithm is applied in varied fields to test its

performance and efficiency. The following case studies have been taken up in each

category and tested.

A. For Single Objective Optimization

 Engineering Design Optimization Problem

 Multilevel Thresholding for Image Segmentation

B. For Multi-objective Optimization

 Engineering Design Optimization Problem.

7.1 ENGINEERING DESIGN OPTIMIZATION USING CCA

Among the several real-world engineering problems, two standard optimization problems

namely tension/compression spring design and welded beam design are considered in this

research since it has been extensively used by other meta-heuristics algorithms like a

benchmark problem.

7.1.1 SPRING DESIGN OPTIMIZATION PROBLEM (SDOP)

A mechanical engineering design problem namely spring design optimization is an

important problem in engineering optimization. There are different types of springs based

on their load force, shape etc. Two mostly used springs in Engineering are Tension and

Compression spring where the first one is designed to wield with a tension load and the

second one is designed to operate compression load. For this optimization problem, the

objective is to minimize the tension or compression spring weight. It constitutes with the

constraints of surge frequency, minimum deflection, shear stress, as well as limits on

outside diameter and on design variables. It consists of three design variables namely the

132

wire diameter d1, the mean coil diameter d2, and the number of active coils d3. The

mathematical statement of this problem given below is as described in [176],[143].

Minimize: 𝑓(𝑥) = (𝑑3 + 2)𝑑2𝑑1
2 (7.1)

Subject to,

 𝑔1(𝑥) = 1 −
𝑑2
3𝑑3

7178𝑑1
4 ≤ 0

 𝑔2(𝑥) = 1 −
140.45𝑑1

𝑑2
2𝑑3

≤ 0

 𝑔3(𝑥) =
𝑑2+𝑑1

1.5
− 1 ≤ 0

 𝑔4(𝑥) =
4𝑑2

2−𝑑1𝑑2

12566(𝑑2𝑑1
3)−𝑑1

4 +
1

5108𝑑1
2 − 1 ≤ 0

With the limits 0.05≤d1≤2.0, 0.25≤d2≤ 1.3, 2.0≤d3≤15.0.

7.1.2 WELDED BEAM DESIGN OPTIMIZATION PROBLEM (WBDOP)

Another mechanical engineering design problem that is considered in this research is

welded beam design problem. A rectangular beam is designed as a cantilever beam to

carry a certain load with the minimum overall cost of fabrication [145], [143]. The

objective of this problem is to minimize the cost, subject to a set of constraints on bending

stress in the beam (σ), shear stress (τ), end reflection of the beam (Ω), buckling load on the

bar PC, and side constraints. The problem consists of four design variables: the width d1

and length d2 of the welded area, the depth d3 and thickness d4 of the main beam.

This problem can be mathematically formulated as equation 7.2.

Minimize

 𝑓(𝑥) = 1.10471𝑑1
2𝑑2 + 0.04811𝑑3𝑑4(14 + 𝑑2) (7.2)

Subject to

 𝑔1(𝑥) = 𝑑1 − 𝑑4 ≤ 0,

 𝑔2(𝑥) = 𝛿(𝑥) − 0.25 ≤ 0,

133

 𝑔3(𝑥) = 𝜏(𝑥) − 13600 ≤ 0,

 𝑔4(𝑥) = 𝜎(𝑥) − 30000 ≤ 0,

 𝑔6(𝑥) = 0.125 − 𝑑1 ≤ 0,

 𝑔7(𝑥) = 6000 − 𝑃𝑐(𝑥) ≤ 0,

 𝑔5(𝑥) = 0.10471𝑑1
2 + 0.04811𝑑3𝑑4 (14 + 𝑑2) − 5 ≤ 0

Where,

 𝜏(𝑥) = √𝐴2 + (2𝐴𝐵)
𝑑2

2𝑅
+ 𝐵2

 𝐴 =
6000

√2𝑑1𝑑2
 , 𝐵 =

𝑀𝑅

𝐽
 ,

 𝑀 = 6000 (14 +
𝑑2

2
) ,

 𝑅 = √
𝑑2
2

4
+ (

𝑑1+𝑑2

2
)
2

 ,

 𝐽 = 2 {𝑑1𝑑2√2 [
𝑑2
2

12
+ (

𝑑1+𝑑2

2
)
2

]}

 𝜎(𝑥) =
504000

𝑑4𝑑3
2

 𝛿(𝑥) =
65,856,000

(30×106)𝑑4𝑑3
3

 𝑝𝑐(𝑥) =
4013(30×106)√

𝑑3
2𝑑2
6

36

196

(

1 −

𝑑3√
30×106

4(12×106)

28

)

With the range 0.1≤d1≤2.0, 0.1≤d2≤10, 0.1≤d3≤10, 0.1≤d4≤20.

7.1.3 EXPERIMENTAL RESULTS AND ANALYSIS

The Cricket Chirping Algorithm is applied to solve the above mentioned two Engineering

Design Optimization Problems. Results of CCA are compared with respect to the best

results reported in literature i.e. Simple Constrained PSO (SiC-PSO) from [177] and

134

Cuckoo Search (CS) algorithm from [67]. The parameters used in our algorithm are

cricket population n=20, temperature Tc=100 and aggression rate Ar=0.20. For cuckoo

search algorithm the parameters are used as n=20 and pa=0.25 and the results for SiC-PSO

is taken from [67]

The problem SDOP gives optimal value within 16000 objective function evaluations and

WBDOP required less than or equal to 8000 objective function evaluations. The table 7.1

and table 7.2 shows the best solution found by the proposed algorithm and its counterparts

for both problems including a number of evaluations.

From the test results, it is found that the proposed algorithm is more powerful in terms of

speed and accuracy. The SiC-PSO found the best result after 24,000 objective function

evaluations for both problems and CS found the best solution after 30,000 evaluations for

problem SDOP and 10,000 objective function evaluations for WBDOP. But the CCA

required 16,000 evaluations for SDOP and 8000 evaluations for WBDOP to get the best

solutions.

Table 7.1 Best solution for SDOP

 Best Solution

SiC-PSO CS CCA

d1 0.051583 0.0518764 0.05179146

d2 0.354190 0.361241 0.35918632

d3 11.438675 11.0287 11.145769823

g1(x) -2.000E-16 -0.000005302 0.000006543

g2(x) -1.000E-16 -0.000002880 -0.000004109

g3(x) -4.048765 -4.06389202 -4.06129878

g4(x) -0.729483 -0.72411871 -0.725068250

f(x) 0.012665 0.012665 0.012665

Eval. 24,000 30,000 16,000

135

The algorithm is executed for 30 times and the mean and Standard Deviation (SD) of the

best value is found. This value produced by the proposed algorithm is compared with SiC-

PSO and CS. Table 7.3 shows the mean and SD with their respective evaluation numbers.

The CCA obtained the optimal values for both the test problems in a lesser number of

evaluations.

Table 7.2: Best solution for WBDOP

 Best Solution

SiC-PSO CS CCA

d1 0.205729 0.17814 0.24027

d2 3.470488 3.6573 3.9728

d3 9.036624 8.7405 6.4223

d4 0.205729 0.20385 0.26197

g1(x) -1.819E-12 -0.00000017 -0.0000001155

g2(x) -0.003721 -0.00000018 -0.00000032648

g3(x) 0.000000 -0.00156325 0.00014037122

g4(x) -3.432983 -0.28420437 -2.5009783685

g5(x) -0.080729 -0.00000147 -0.0000343018

g6(x) -0.235540 -0.00000039 -0.0000019851

g7(x) 0.000000 -1.89356441 -1.7266043670

f(x) 1.724852 1.72485 1.724801

Eval. 24,000 10,000 8,000

Table 7.3 Comparison of SiC-PSO, CS and CCA

Problems SiC-PSO CS CCA

SDOP

Mean 0.0131 0.014742 0.0126722

SD 4.1E-04 1.98E-03 1.62E-05

Evaluation 24,000 30,000 16,000

WBDOP

Mean 2.0574 1.80649 1.7482081

SD 0.2154 0.333653 0.2880167

Evaluation 24,000 10,000 8,000

136

7.2 MULTILEVEL THRESHOLDING FOR IMAGE

SEGMENTATION USING CCA

Image processing plays a crucial role in different fields such as medical discipline,

industry, agriculture, navigation, environment modeling, automatic event detection,

surveillance, texture and pattern recognition, damage detection etc. It is motivated by

three major applications like pictorial information improvement for human perception,

image processing in the case of autonomous machine application and efficient storage

and transmission. One of the major and primary tasks in image processing is image

segmentation. Image segmentation is the partitioning of an image into multiple sets of

pixels or segments or regions that share some common characteristics such as color or

intensity or similarity or discontinuity etc.

In this section, Cricket Chirping Algorithm is combined with Kapur’s Entropy Criterion

method and Otsu’s between-class variance method and applied in multi-level

thresholding for image segmentation. In this process, a random solution is taken place

from the feasible search space inside the image histogram. The fitness of the solution is

evaluated by considering the objective functions, Kapur’s and Otsu’s method. Directed

by this objective value, the set of candidate solutions are adapted using the CCA

operators and search for the optimal solution in the search space proceeds.

7.2.1 MULTILEVEL THRESHOLDING (MT)

In thresholding process [147], the pixel of the grayscale image is divided into groups

based on the intensity level 𝑙. To make the grouping it is necessary to choose a threshold

value (𝜃) following some simple rules as follows:

 𝐺0 ← 𝑝, 𝑖𝑓 0 ≤ 𝑝 ≤ 𝜃,

 𝐺1 ← 𝑝, 𝑖𝑓𝜃 ≤ 𝑝 ≤ 𝑙 − 1,

where p is one of the 𝑚 × 𝑛 pixels of the grayscale image 𝐼𝑔 and it can be represented in

‘l’ grayscale levels 𝑙 = {0, 1, 2, . . . , 𝑙 − 1} and 𝐺1 and 𝐺2 are the groups in which the

 (7.3)

137

pixel namely p, can be located. This can be extended for multilevel thresholding as

follows [67]:

𝐺0 ← 𝑝, 𝑖𝑓 0 ≤ 𝑝 ≤ 𝜃1,

𝐺1 ← 𝑝, 𝑖𝑓𝜃1 ≤ 𝑝 ≤ 𝜃2,

 …. …..

𝐺𝑖 ← 𝑝, 𝑖𝑓𝜃𝑖 ≤ 𝑝 ≤ 𝜃𝑖+1,

 …. ….. ….

𝐺𝑛 ← 𝑝, 𝑖𝑓𝜃𝑛 ≤ 𝑝 ≤ 𝑙 − 1,

where {𝜃1, 𝜃2,…… . , 𝜃𝑖+1, . . , 𝜃𝑛} are different thresholds. Here, the main objective is to

select the θ values that identify the classes correctly for both bi-level and multi-level

thresholding. The popular thresholding method, Otsu’s and Kapur’s methods are

generally applied for identifying such values where the objective function is to maximize

to find the optimal threshold values. The details of the objective functions proposed by

them are given in the subsequent sections.

 KAPUR’S METHOD (ENTROPY CRITERION METHOD)

One of the most popular thresholding methods, the Kapur’s method, was developed based

on the entropy and the probability distribution of the image histogram. It is also known as

the Entropy Criterion Method [177], [178]. This method is intended to obtain the optimal

threshold value θ that exploits the overall entropy of an image that processes the density

and separability among classes or groups. Incidentally, when the optimal θ value

appropriately separates the classes the entropy has the maximum value. The objective

function of the Kapur’s problem for bi-level example can be defined by using equation

7.5.

 I(θ) = H1
c+ H2

c ,

c = {
1,2,3 if RGB image
1, if Grayscale image

Where, H1
c and H2

c are entropies and computed using the following model

H1
c = ∑

𝑃𝑖
𝑐

𝑤0
𝑐

𝑡ℎ𝑟
𝑖=1 ln (

𝑃𝑖
𝑐

𝑤0
𝑐) ,

 (7.4)

 (7.5)

 (7.6)

138

 H2
c = ∑

𝑃𝑖
𝑐

𝑤1
𝑐

𝑙

𝑡ℎ𝑟=1

ln (
𝑃𝑖
𝑐

𝑤1
𝑐)

where, 𝑃𝑖
𝑐 is the probability distribution of the intensity levels which is gained using

equation 7.9, 𝑤0
𝑐 and 𝑤1

𝑐 are probability distributions for 𝑐1 and 𝑐2 .

For multiple threshold values, the image is divided into ‘k’ classes using a similar

number of thresholds. Then a new objective function can be defined as follow:

 𝐹𝑘𝑎𝑝𝑢𝑟(TH) = max(∑ Hi
ck

i) ,

c = {
1,2,3 if RGB image
1, if Grayscale image

Where TH = [𝜃1,𝜃2,...,𝜃𝑘−1] is a vector that has multiple thresholds. Each entropy is

computed separately with its corresponding θ value. It is expanded for k entropies as

follows:

H1
c = ∑

𝑃𝑖
𝑐

𝑤0
𝑐

𝜃1
𝑖=1 ln (

𝑃𝑖
𝑐

𝑤0
𝑐) ,

 H2
c = ∑

𝑃𝑖
𝑐

𝑤1
𝑐

𝜃2

𝑖=𝜃1+1

ln (
𝑃𝑖
𝑐

𝑤1
𝑐),

 … …

 … …

Hk
c = ∑

𝑃𝑖
𝑐

𝑤𝑘−1
𝑐

𝜃

𝑖=𝜃𝑘+1+1

ln (
𝑃𝑖
𝑐

𝑤𝑘−1
𝑐)

Where, 𝜔0(𝜃) = ∑ 𝑃𝑖
𝜃1
𝑖=1 , 𝜔1(𝜃) = ∑ 𝑃𝑖

𝜃2
𝑖=𝜃1+1

. . . .𝜔𝑘−1(𝜃) = ∑ 𝑃𝑖
𝑙
𝑖=𝜃𝑘+1

 OTSU’S METHOD (BETWEEN-CLASS VARIANCE)

Another thresholding method, that incorporates between-class variance, has been

propounded by Otsu [178]. It is non-parametric and unsupervised. Maximum variance is

estimated for all the classes. Based on this value, image segmentation is carried out.

 (7.7)

 (7.8)

139

Considering 𝑙 intensity levels from a grayscale image or from each RGB component (red,

green, and blue) image, the probability distribution of the intensity values is computed as

follows:

𝑃𝑖
𝑐 =

ℎ𝑖
𝑐

𝑁𝑃
 , ∑ 𝑃𝑖

𝑐𝑁𝑃
𝑖=1 = 1

𝑐 = {
1, 2, 3 𝑖𝑓𝑅𝐺𝐵𝑖𝑚𝑎𝑔𝑒
1, 𝑖𝑓𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒𝑖𝑚𝑎𝑔𝑒

where,

i is a specific intensity level (0 ≤ 𝑖 ≤ 𝑙 − 1),

c is the component of the image which depends on the image type (grayscale or

 RGB),

NP is the total number of pixels in the image.

ℎ𝑖
𝑐 (Histogram) is the number of pixels that corresponds to the i intensity level in c.

The histogram is normalized within a probability distribution 𝑃𝑖
𝑐

For bi-level segment, that is the simplest segmentation, two classes are defined as:

𝐺1 =
𝑃1
𝑐

𝜔0
𝑐 , …… . . …… ,

𝑃𝜃
𝑐

𝜔0
𝑐

𝐺2 =
𝑃𝜃+1
𝑐

𝜔1
𝑐 , ……… ,

𝑃𝑙
𝑐

𝜔1
𝑐

Where, 𝑤0
𝑐 and 𝑤1

𝑐 are probabilities distributions for 𝐺1 and 𝐺2 , as it is shown below

 𝜔0
𝑐 = ∑ 𝑃𝑖

𝑐𝜃
𝑖=1 , 𝜔1

𝑐 = ∑ 𝑃𝑖
𝑐𝑙

𝑖=𝜃+1

The mean level is calculated as follows:

 𝜇0 = ∑
𝑖𝑃𝑖
𝑐

𝜔0𝑐
𝜃
𝑖=1 𝜇1 = ∑

𝑖𝑃𝑖
𝑐

𝜔1𝑐
𝜃
𝑖=1

Then Otsu variance between classes 𝜎2is calculated as follows:

 𝜎2 = 𝜎1 + 𝜎2

 (7.9)

 (7.10)

 (7.11)

(7.12)

(7.13)

140

Where, 𝜎1 and 𝜎2 are variances of 𝐺1 and 𝐺2 that is calculated as follows:

 𝜎1 = 𝜔0
𝑐(𝜇0 + 𝜇𝑇)

2𝜎2 = 𝜔1
𝑐(𝜇1 + 𝜇𝑇)

2

Where, 𝜇𝑇 = 𝜔0
𝑐𝜇0 + 𝜔1

𝑐𝜇1 and 𝜔0
𝑐 + 𝜔1

𝑐=1

Based on the values 𝜎1 and 𝜎2 the objective function is shown as below:

𝐹𝑂𝑡𝑠𝑢(𝜃) = max (𝜎
2(𝜃)), 0 ≤ 𝜃 ≤ 𝑙 − 1

Where 𝜎2 is the Otsu’s variance for a given θ value. The optimization problem is reduced

to find the intensity levels (θ) that maximizes equation (7.15). This equation can be

rewritten for multiple threshold value as follows:

 𝐹𝑂𝑡𝑠𝑢(𝑋) = max (𝜎
2(𝑋)),

0 ≤ 𝜃𝑖 ≤ 𝑙 − 1, 𝑖 = 1,2, … 𝑘

Where X= [𝜃0, 𝜃1, 𝜃2, … . . , 𝜃𝑘−1] is a vector containing thresholds and the variances are

computed as:

𝜎2 =∑𝜎𝑖

𝑘

𝑖=1

=∑𝜔𝑖(𝜇𝑖 + 𝜇𝑇)
2

𝑘

𝑖

Here i represent a specific class. ωi and μi are the probability of occurrence and the mean

of a class, respectively.

For MT such values are obtained as follows:

 𝜔0(𝜃) = ∑ 𝑃𝑖
𝜃1
𝑖=1

 𝜔1(𝜃) = ∑ 𝑃𝑖
𝜃2
𝑖=𝜃1+1

 ….

.𝜔𝑘−1(𝜃) = ∑ 𝑃𝑖
𝑙
𝑖=𝜃𝑘+1

And for mean values,

𝜇0 =∑
𝑖𝑃𝑖

𝜔0(𝜃1)

𝜃1

𝑖=1

(7.14)

 ….……… (12)

(7.15)

 (7.16)

 (7.17)

141

𝜇1 = ∑
𝑖𝑃𝑖

𝜔0(𝜃2)

𝜃2

𝑖=𝜃1+1

………..

𝜇𝑘−1 = ∑
𝑖𝑃𝑖

𝜔1(𝜃𝑘)

𝑙

𝑖=𝜃𝑘+1

7.2.2 MULTI-LEVEL THRESHOLDING USING CRICKET CHIRPING

ALGORITHM

In this section, the cricket chirping algorithm is utilized to find the optimal threshold

values for multilevel thresholding problem in image segmentation. The problem is

viewed as an optimization problem and the methodology to apply CCA for optimizing

threshold values is presented. Here the algorithm is implemented considering the two

objective functions namely Otsu’s between class variance and Kapur’s entropy criteria.

The segmentation problem is represented as an optimization problem as given below:

Maximize, 𝐹(𝑥),

𝑥 = [∫ (𝑇𝐻)

𝑘𝑎𝑝𝑢𝑟

𝑜𝑟∫ (𝑇𝐻)

𝑂𝑡𝑠𝑢

]

𝑇𝐻 = [𝜃1, 𝜃2, … . . , 𝜃𝑘]

 Subject to, 𝑇𝐻 ∈ 𝑋

Where, 𝑋 = {𝑇𝐻 ∈ 𝜃𝑖
 |0 ≤ 𝜃𝑖 ≤ 255, 𝑖 = 1, . . 𝑘} refers to the bounded feasible region

constrained within the interval [0-255].

In cricket population, k various decision variables are adopted by each individual. Each

represents a different threshold point ɵ, which will be employed for segmenting the

image. The entire population of cricket is expressed as 𝑆 = [𝑇𝐻1, 𝑇𝐻2…… . . , 𝑇𝐻𝑁],

𝑇𝐻𝑖 = [𝜃1,𝜃2,…… , 𝜃𝑘]
𝑇 with boundary search space lb=0 and ub=255. N signifies the

cardinality of the entire cricket population. The implementation of the proposed method

is summarized in table 7.4.

 (7.18)

142

The performance of CCA depends on the parameter settings. In this implementation, we

set the aggression rate to 0.45, the mating rate to 0.80 and population size to 50 as shown

in table 7.5. The temperature of outside environment is fixed to 100-degree Celsius. The

female population k is chosen randomly such that k≤n/2 and the one point crossover for

mating.

Table 7.4: Algorithm for multilevel image segmentation using CCA

Image_seg_cca()

Begin

1. Read the image Ig orIrgb.

2. Get the histograms, for RGB images hr, hg, hb and for grayscale images hgr.

3. Calculate the probability distribution with equation 7.9 and obtain the histograms

4. Initialize the CCA parameters: T, k, Cr, Paggr

5. Initialize the cricket.

6. Evaluate the fitness using Kapur’s or Otsu’s methods.

7. While (i<max iter or stopping criteria not met)

a. Allow the cricket to chirp for mating.

i. Compute Cn, vi and sti using equation (4.3), (4.4) and (4.5).

ii. Mate with female cricket

b. Allow the cricket to chirp for aggression

i. Fight with other male cricket

c. Calculate the fitness using Kapur’s or Otsu’s methods.

d. Select the cricket with the best fit objective value.

8. While end

9. Apply the thresholds values contained in best to the image Ig or Irgb.

End

Table 7.5: Control parameters of CCA

Population Size(n) Female pop. Size(k) Aggression rate Mating rate

50 25 0.45 0.80

143

7.2.3 EXPERIMENTAL RESULTS AND ANALYSIS

The proposed CCA algorithm for multi-level thresholding has been tested for 8

benchmark test images which are in JPEG format and provided by the Berkeley

segmentation dataset [179],

[180]. The experiments are carried out with an Intel®

Core(TM) i5 CPU and 4 GB RAM with Windows 7 Operating system. The algorithms

were implemented using MATLAB. The required parameters are set as in table 7.5 for all

the test images. The program was run 50 times for each image separately and the

performance of the proposed method is evaluated using the well-known parameters such

as peak signal to noise ratio (PSNR) and structural similarity indices (SSIM). PSNR is

used to assess the similarity of the segmented image against a reference image (original

image) based on θ. The PSNR is defined as equation 7.19.

 𝑃𝑆𝑁𝑅 = 20 log10 (
255

√𝑀𝑆𝐸
),

 𝑀𝑆𝐸 =
∑ ∑ [𝐼𝑜

 (𝑖,𝑗)−𝐼𝑠
 (𝑖,𝑗)]2𝑐

𝑗=1
𝑟
𝑖=1

𝑟×𝑐

Where, 𝐼𝑜
 is the original image and 𝐼𝑠

 is the segmented image, r and c are the total

number of rows and columns of the image respectively.

The Structural SIMilarity (SSIM) index is a full reference metric used for measuring the

similarity between two images [67]. It is the measurement or prediction of image quality

based on an initial uncompressed or distortion-free image as reference [145]. SSIM

evaluates the visual similarity between the original image x and the segmented

image and of common size N×N is

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)

Where 𝜇𝑥
is the average of ,

is the average of , the variance of ,

the variance of ,

the covariance of and ,
,

 two

variables to stabilize the division with the weak denominator, the dynamic range of the

pixel-values (typically this is); and by default.

y

x y y
2

x x 2

y

y xy x y  211 lkC   222 lkC 

l

12# elbitsperpix
01.01 k 03.02 k

 (7.19)

 (7.20)

https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Dynamic_range

144

7.2.3.1 IMAGE SEGMENTATION USING CCA AND KAPUR’S METHOD

In this section, the CCA is executed considering Kapur’s Entropy method as the objective

function that is given in equation 7.7. For the complete set of benchmark images, this

method is applied by considering four different threshold points 2,3,4,5 and the results

like PSNR, SSIM, execution time etc. are calculated. The original image and segmented

image with different threshold values and their histogram and fitness graph are shown in

table 7.6. From the results, it is shown that the PSNR and SSIM values increase their

magnitude as the number of threshold points increases. The best results found using CCA

with Kapur’s function in the 50 runs for each image with the different threshold value is

shown in table 7.7.

7.2.3.2 IMAGE SEGMENTATION USING CCA AND OTSU’S METHOD

In this section, the CCA is executed considering Otsu’s between class variances method

as the objective function that is given in equation 7.15. This is applied over the whole set

of benchmark images considering four different threshold points 2,3,4,5 and the best

results like PSNR, SSIM, time etc. are stated in table 7.9 and the segmented image,

histogram, and fitness graph is shown in table 7.8. From the results, it is shown that the

PSNR and SSIM values increment their magnitude when there is an increment in the

number of threshold points.

7.2.4 COMPARISONS AND STATISTICAL ANALYSIS

In this section, three different comparisons are done to analyze the performance of the

CCA. The first comparison is executed between the two versions of CCA, via the Kapur

function and Otsu’s criterion. Secondly, examines the comparison among the CCA with

the other meta-heuristics algorithm. The third one is the statistical analysis of the

obtained results of CCA and MTEMO to validate its performance and computational

effort. All the algorithms are executed 50 times over each selected image. For each

image, the PSNR, SSIM, Time and the mean of the objective function values are

calculated. The complete test is performed using both Otsu`s and Kapur`s objective

functions.

145

Table 7.6: Resultant images after applying the CCA using Kapur’s Function

Original image Θ =2 Θ=3 Θ=4 Θ=5

Cameraman

Histogram

Fitness Graph

Zebra

Histogram

Fitness Graph

Sea Fish

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

146

Histogram

Fitness Graph

Boat man

Histogram

Fitness Graph

Ostrish

Histogram

Fitness Graph

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

147

Boat

Histogram

Fitness Graph

Tree

Histogram

Fitness Graph

Snake

Histogram

Fitness Graph

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

148

Table 7.7: Best Results after applying the CCA using Kapur’s function

Image Ɵ Best

fitness

PSNR SSIM Time(sec) Threshold value

Cameramen 2 17.5526 14.1796 0.5394 0.4604 120 193

3 20.8251 17.9649 0.6351 0.5469 100 137 216

4 25.8039 18.0425 0.6310 0.6300 36 82 155 199

5 30.2333 21.8695 0.7037 0.7115 31 91 126 149 194

Star Fish 2 18.7536 14.4390 0.4081 0.4665 90 170

3 23.2861 17.0826 0.5248 0.5484 65 127 179

4 27.4114 19.2181 0.6367 0.6410 58 93 138 193

5 31.4256 20.4641 0.7104 0.7221 43 76 121 165 207

Zebra 2 17.8065 14.4871 0.4552 0.4592 92 160

3 22.1330 16.0182 0.5352 0.5602 78 138 189

4 25.8618 19.1451 0.5639 0.6451 44 87 136 168

5 29.8213 21.2276 0.6913 0.7214 44 88 122 165 197

Boat man 2 18.0242 16.0707 0.6066 0.4620 61 147

3 22.6285 19.2583 0.7321 0.5506 66 115 177

4 26.9793 21.1183 0.7657 0.6339 45 82 131 166

5 30.9901 22.6232 0.7820 0.7164 48 78 119 148 184

Ostrich 2 22.5240 16.2691 0.0771 0.4633 64 125 186

3 22.5229 16.1868 0.4785 0.5496 73 116 176

4 26.7208 19.9436 0.7018 0.6325 27 79 121 180

5 30.4907 22.7053 0.7524 0.7199 32 64 92 141 192

Boat 2 18.0903 9.2283 0.1788 0.4734 138 202

3 22.7516 17.5315 0.5702 0.5494 66 121 196

4 26.7387 19.8912 0.6812 0.6466 65 94 139 192

5 30.8757 21.2346 0.7143 0.7208 57 89 121 168 209

Tree 2 17.2734 15.5238 17.2734 0.2463 81 141

3 21.7707 16.5785 21.7707 0.2905 68 127 196

4 25.6561 18.6202 25.6561 0.3299 57 102 141 187

5 29.2947 21.4849 29.2947 0.3922 40 79 104 149 201

Snake 2 17.9342 14.6194 0.5222 0.4603 84 176

3 22.5789 15.4028 0.5948 0.5548 84 154 199

4 26.7863 18.4103 0.7405 0.6347 66 104 165 220

5 30.5564 21.0050 0.8358 0.7187 42 86 119 164 207

149

Table 7.8: Resultant images after applying the CCA using Otsu’s function

Original image Θ=2 Θ=3 Θ=4 Θ=5

Cameraman

Histogram

Fitness Graph

Zebra

Histogram

Fitness Graph

Sea Star

Histogram

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

150

Fitness Graph

Boatman

Histogram

Fitness Graph

Ostrish

Histogram

Fitness Graph

Boat

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

151

Histogram

Fitness Graph

Tree

Histogram

Fitness Graph

Snake

Histogram

Fitness Graph

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

152

Table 7.9: Best Results after applying the CCA using Otsu’s function

Image Ɵ Best fitness PSNR MSSIM Time(sec) Threshold value

Cameramen 2 3.6517e+003 18.5827 0.5738 0.3777 70 145

3 3.7269e+003 21.1954 0.6444 0.4221 58 127 157

4 3.7733e+003 22.6114 0.686 0.4691 43 98 135 159

5 3.8033e+003 23.6897 0.6981 0.5438 52 103 130 151 175

Sea star 2 2.5466e+003 15.5738 0.4545 0.3466 84 155

3 2.7757e+003 17.8468 0.5645 0.3857 66 119 171

4 2.8594e+003 19.2581 0.6483 0.4147 52 98 132 183

5 2.8942e+003 21.2615 0.7152 0.4520 39 77 119 141 188

Zebra 2 1.3940e+003 13.9618 0.4453 0.3568 98 171

3 1.5184e+003 16.3846 0.5785 0.5267 81 121 205

4 1.5648e+003 18.6222 0.6714 0.6239 72 98 137 208

5 1.5780e+003 20.1544 0.7101 0.6898 64 81 104 154 203

Boat man 2 5.0744e+003 14.2071 0.5385 0.3552 107 193

3 5.2342e+003 17.5607 0.6743 0.3840 83 134 193

4 3080e+003 20.2656 0.7661 0.4268 59 107 153 234

5 5.3443e+003 21.3697 0.7818 0.4473 68 108 135 159 205

Ostrich 2 1.0729e+003 16.2329 0.4439 0.3614 73 133

3 1.1352e+003 17.3580 0.4815 0.3907 63 96 136

4 1.1716e+003 18.3364 0.5447 0.4205 57 84 133 180

5 1.1958e+003 22.7184 0.7019 0.4480 47 68 90 123 163

Boat 2 1.2643e+003 12.3241 0.3490 0.3654 100 153

3 1.3699e+003 18.6936 0.6477 0.3915 64 107 162

4 1.4299e+003 18.3164 0.6735 0.4215 62 99 138 190

5 1.4689e+003 21.0115 0.7260 0.2464 69 91 113 139 182

Tree 2 1.1887e+003 16.7795 0.5392 0.3101 72 119

3 1.2672e+003 19.1352 0.6553 0.3674 56 92 129

4 1.3031e+003 20.9931 0.7367 0.4197 47 80 111 153

5 1.3220e+003 24.4303 0.8341 0.4828 36 56 85 112 136

Snake 2 1.1178e+003 15.7850 0.6250 0.3233 87 132

3 1.2271e+003 18.7065 0.7594 0.3748 74 110 145

4 1.2727e+003 20.5848 0.8205 0.46164 63 96 132 156

5 1.3070e+003 22.0542 0.8619 0.5188 54 84 103 136 168

153

The MTEMO algorithm is considered for comparison as presented by Oliva et. al. [181]

[180]. The other methods like Genetic Algorithms (GA), Particle Swarm Optimization

(PSO) etc. are not considered for comparison as they were already compared with

MTEMO [67] and found inferior to its performance.

7.2.4.1 COMPARISON BETWEEN OTSU AND KAPUR IN CCA

A non-parametric statistical test known as the Wilcoxon’s rank test [182], [164] is used to

compare the results of Otsu and Kapur and it has been done for 50 independent samples.

By using this test method, the differences between two related methods can be measured.

In this analysis, a 5% significance level is considered over the PSNR data corresponding

to the test images with two to five threshold points. The hypothesis is considered as

follows:

 The Null Hypothesis: There is no difference between the values of the two

objective functions Otsu and Kapur functions

 The alternative Hypothesis: is considered that there is a significant difference

between the values of the two objective functions.

In table 7.10 the p-values produced by Wilcoxon’s rank test for a pairwise comparison of

the PSNR values between the Otsu and Kapur objective functions are shown. Here, h

represents the hypothesis. All p-values stated in table 7.10 are less than the significance

value 0.05. Thus it is strongly evidenced against the null hypothesis. So it is concluded

that there is a significant difference between the values of two methods, i.e. Otsu’s

objective method’s performance is statistically better than Kapur’s objective method.

7.2.4.2 COMPARISON OF CCA WITH MTEMO

The proposed method is compared with another meta-heuristic method MTEMO

(Multilevel Thresholding using Electro-Magnetism Optimization) as it has proved itself

to be better than another popular metaheuristic algorithm. Both the algorithms are run 50

times for each image. The mean of the objective function values, PSNR, SSIM, and time

154

for each image are reported in table 7.7 and 7.9. Table 7.11 and table 7.12 shows the

comparison of CCA and MTEMO for Kapur’s and Otsu’s methods respectively.

Table 7.10: Wilcoxon’s rank test comparing Otsu vs. Kapur over PSNR

Image ɵ P-value: Otsu

vs. Kapur

h Image ɵ P-value: Otsu

vs. Kapur

H

Cameramen 2 0.00 1 Ostrich 2 0.00 1

3 0.00 1 3 0.00 1

4 0.00 1 4 0.00 1

5 0.00 1 5 0.00 1

Sea star 2 0.00 1 Boat 2 0.00 1

3 0.00 1 3 0.00 1

4 0.00 1 4 0.00 1

5 0.00 1 5 0.00 1

Zebra 2 0.00 1 Tree 2 0.00 1

3 0.00 1 3 0.00 1

4 0.00 1 4 0.00 1

5 0.00 1 5 0.00 1

Boat man 2 0.00 1 Snake 2 0.00 1

3 0.00 1 3 0.00 1

4 0.00 1 4 0.00 1

5 0.00 1 5 0.00 1

155

Table 7.11: Comparison of CCA and MTEMO using Kapur's method

Image ɵ MTEMO CCA

 PSNR mean SSIM Time PSNR Mean SSIM Time

Cameramen 2 13.626 17.5842 0.5202 3.1307 14.1255 17.5663 0.5394 0.4604

3 14.4602 21.976 0.5966 4.6054 17.4939 21.9109 0.6351 0.5469

4 20.1531 26.586 0.6672 6.2591 20.1656 26.2674 0.6310 0.6300

5 20.661 30.506 0.6850 8.0842 21.8695 30.2333 0.7037 0.7115

Sea star 2 14.3982 18.7542 0.4008 3.1986 14.5611 18.7503 0.4081 0.4665

3 16.987 23.3233 0.5257 4.6772 17.0149 23.2790 0.5248 0.5484

4 18.304 27.5817 0.5901 6.2660 18.9300 27.4544 0.6367 0.6410

5 20.165 31.5626 0.6697 8.1592 20.7114 31.1217 0.7104 0.7221

Zebra 2 13.8051 17.8802 0.4455 3.2240 14.2625 17.7929 0.4552 0.4592

3 15.0013 22.3129 0.5162 4.8551 15.8788 22.1162 0.5352 0.5602

4 15.5085 26.5212 0.5440 6.7635 16.2427 26.0255 0.5639 0.6451

5 20.2723 30.2664 0.7052 8.2603 20.5283 29.5575 0.6913 0.7214

Boat man 2 15.8962 18.0625 0.6238 3.3536 16.0127 18.0066 0.6258 0.4620

3 18.1776 22.8079 0.7079 4.7672 19.1801 22.6660 0.7498 0.5708

4 20.1480 27.2968 0.7738 6.4385 21.0354 26.8740 0.7852 0.6469

5 22.2361 31.3337 0.8137 8.1236 22.6732 30.9901 0.8355 0.7264

Ostrich 2 10.8341 18.1959 0.0804 3.3250 10.9067 18.1839 0.0840 0.4833

3 16.0263 22.5932 0.4415 4.8669 16.3296 22.5554 0.4785 0.5496

4 16.2206 26.8341 0.4528 6.7516 19.1780 26.6143 0.7018 0.6325

5 20.7745 31.0419 0.7763 8.6439 21.5161 30.4390 0.7825 0.7220

Boat 2 9.3556 18.0709 0.1629 3.2673 9.7614 18.0781 0.1963 0.4705

3 17.1017 22.9471 0.5558 4.7784 17.4877 22.8050 0.5702 0.5494

4 18.9648 27.1648 0.6253 6.4803 19.7622 26.8680 0.6812 0.6466

5 19.8263 31.0884 0.6556 8.4225 20.5056 30.5153 0.7143 0.7208

Tree 2 15.6147 17.2739 0.4821 3.3594 15.8236 17.2706 0.4962 0.4776

3 15.7403 21.8542 0.4905 4.8322 16.3621 21.7709 0.5507 0.5578

4 16.9652 26.0243 0.5553 6.6374 18.4098 25.8224 0.6246 0.6436

5 18.5409 29.9408 0.6343 8.5643 21.4849 29.4536 0.7698 0.7108

Snake 2 14.7184 17.9398 0.5357 3.2498 14.8246 17.9321 0.5431 0.4748

3 15.4042 22.6388 0.5879 4.7376 16.2885 22.5853 0.5604 0.6482

4 17.5795 26.9963 0.7205 6.7119 18.4103 26.7863 0.7405 0.6347

5 19.7672 31.0221 0.8011 8.8380 21.0050 30.5564 0.8358 0.7187

156

Table 7.12: Comparison of CCA with MTEMO using Otsu’s method

Image ɵ MTEMO CCA

 PSNR Mean SSIM Time(s) PSNR Mean SSIM Time(s)

Cameramen 2 17.2474 3.6519e+003 0.5964 2.9145 18.1827 3.6519e+003 0.6022 0.3777

3 20.2114 3.7270e+003 0.6415 4.5650 21.0693 3.7227e+003 0.6512 0.4221

4 21.5328 3.7824e+003 0.6648 6.5646 22.6114 3.7733e+003 0.6599 0.4691

5 23.2235 3.8119e+003 0.6951 8.6998 23.5897 3.8033e+003 0.7058 0.5438

Star Fish 2 14.8158 2.5469e+003 0.4230 3.6676 15.5738 2.5466e+003 0.4545 0.3466

3 17.3301 2.7799e+003 0.5485 5.8401 17.8468 2.7757e+003 0.5645 0.3857

4 19.1259 2.8657e+003 0.6386 8.1728 19.2581 2.8594e+003 0.6483 0.4147

5 20.7674 2.9128e+003 0.7092 10.7722 21.2615 2.8942e+003 0.7152 0.4520

Zebra 2 13.4728 1.3947e+003 0.4310 3.8425 13.9618 1.3940e+003 0.4453 0.3568

3 15.2286 1.5263e+003 0.5444 5.9443 16.3846 1.5184e+003 0.5785 0.5267

4 16.8718 1.5825e+003 0.6509 8.3692 18.6222 1.5648e+003 0.6714 0.6239

5 18.2373 1.6105e+003 0.7101 10.8720 20.1544 1.5780e+003 0.7101 0.6898

Boat man 2 12.6309 5.0750e+003 0.5422 3.5575 14.0071 5.0744e+003 0.5385 0.3552

3 15.0155 5.2399e+003 0.6383 5.4001 17.3007 5.2342e+003 0.6743 0.3840

4 17.6208 5.3169e+003 0.7547 7.4238 20.0656 5.3080e+003 0.7661 0.4268

5 18.8359 5.3559e+003 0.7973 9.5893 21.0697 5.3443e+003 0.7818 0.4473

Ostrich 2 15.6925 1.0735e+003 0.4219 3.7034 16.0329 1.0729e+003 0.4439 0.3614

3 16.8151 1.1392e+003 0.4534 5.7863 17.3580 1.1352e+003 0.4815 0.3907

4 17.4478 1.1786e+003 0.4870 8.2029 18.3164 1.1716e+003 0.5447 0.4205

5 18.7970 1.2037e+003 0.5584 10.2127 22.1184 1.1958e+003 0.7019 0.4480

Boat 2 12.3263 1.2645e+003 0.3492 3.8212 12.3241 1.2643e+003 0.3490 0.3654

3 17.8963 1.3749e+003 0.5972 6.7030 18.6936 1.3699e+003 0.6477 0.3915

4 19.1961 1.4373e+003 0.6504 9.0585 18.3164 1.4299e+003 0.6735 0.4215

5 20.9881 1.4794e+003 0.7201 11.8090 20.9115 1.4689e+003 0.7260 0.2464

Tree 2 16.7057 1.1890e+003 0.5241 4.1409 16.7595 1.1886e+003 0.5392 0.3101

3 18.6252 1.2693e+003 0.6271 6.4711 19.1352 1.2663e+003 0.6553 0.3674

4 20.2430 1.3135e+003 0.7005 8.5807 20.9931 1.3038e+003 0.7367 0.4197

5 21.7758 1.3344e+003 0.7497 11.1699 24.0303 1.3225e+003 0.8341 0.4828

Snake 2 15.6662 1.1186e+003 0.6226 3.8269 15.7050 1.1182e+003 0.6250 0.3233

3 17.9818 1.2313e+003 0.7354 5.9151 18.4765 1.2275e+003 0.7594 0.3748

4 19.6907 1.2865e+003 0.8005 8.0355 20.3848 1.2770e+003 0.8205 0.46164

5 20.8990 1.3170e+003 0.8395 10.8160 22.0442 1.3032e+003 0.8619 0.5188

157

7.2.4.3 STATISTICAL ANALYSIS

For statistical analysis of the result shown in the table 7.11 and 7.12, one way ANOVA

test has been done. To perform the analysis a 5% significance level is considered over the

execution time corresponding to the test images with two to five threshold points. In this

analysis, the hypothesis is set as follows.

Null hypothesis H0: There is no significant difference in the execution time

between the two methods MTEMO and CCA.

Alternative hypothesis H1: There is a significant difference in the execution time

between the two approaches MTEMO and CCA.

Table 7.13: ANOVA test based on Kapur’s method for the CCA and MTEMO.

ANOVA
Time

 Sum of

Squares

Df Mean

Square

F Sig.

Between

Groups
422.678 1 422.678 220.149 .000

Within Groups 119.037 62 1.920

Total 541.715 63

Table 7.14: ANOVA test for the CCA and MTEMO based on Otsu’s method

ANOVA
Time

 Sum of

Squares

Df Mean

Square

F Sig.

Between

Groups
695.128 1 695.128 195.789 .000

Within Groups 220.124 62 3.550

Total 915.253 63

158

The one way ANOVA Test is conducted using SPSS tool and the results found in the

experiment is shown in table 7.13 and table 7.14. Table 7.13 presents the result of

ANOVA test regarding execution time that is obtained from table 7.11. Table 7.14

presents the result of ANOVA test regarding execution time that is obtained from table

7.12. Here the null hypothesis is rejected since the p-value (0.00) is less than the

significance value 0.05. Therefore it can be concluded that there is a significant

difference in the execution time between MTEMO and CCA.

7.3 MULTI-OBJECTIVE ENGINEERING DESIGN

OPTIMIZATION USING MOCCA-W

The design optimization using meta-heuristics algorithm has many applications in

engineering and industry [128], [125], [183]. There are plenty of benchmarks design

optimization problem, among them the disc brake design and design of welded beam are

most popular. In this section, these two design benchmark problems are solved using

MOCCA-W.

7.3.1 DESIGN OF A WELDED BEAM

The design of welded beam problem is a multi-objective design problem which has been

solved by many researchers using different methods [19] [179], [184] . This design

problem consists of four design variables such as length of the welded area (l), the

thickness of the main beam (h), width (w) and the depth (d). It has two objectives to

optimize. The objective is to minimize both the end deflection δ and the overall

fabrication cost. The mathematical formulation of the problem is given below:

Minimize,

 (7.21)

Subject to

  xf1

   ldhlwxf  0.1404811.010471.1 2

2

  ,01  hwxg

    ,025.02  xxg 

    ,0600,133  xxg 

    ,0000,304  xxg 

159

Where,

With the range 0.1≤l≤2.0, 0.1 ≤d≤10, 0.125≤w≤10, 0.1≤h≤2.0.

7.3.2 DESIGN OF A DISC BRAKE

The disc brake design is an optimization problem having two objectives. The objectives of

designing multiple disc brakes are to minimize the braking time and the overall mass by

choosing optimal design variables. This problem has also four design variables such as

outer radius (R) of the discs, the inner radius(r), the number of the friction surface (S) and

the engaging force (F). It consists of some design constraints such as temperature,

pressure, the length of the brake and torque [185] [54]. It is mathematically formulated as:

Minimize,

    1109.4 225

1   srRxf (7.22)

  ,0125.06  wxg

  ,060007  Pxg

    00.51404811.010471.0 2

5  lwhwxg

 
2

504000

hd
x 

  22 B
R

ABl
Ax 

J

MR
B

wh
A  ,

2

6000











2
146000

l
M

22

24







 


dwl
R

 







 


26
2

22 dwl
wlJ

 
3000,30

856,65

hd
x 
















28

4830
1

6
1061423.0

3
6 ddh

P

160

 

 
 33

226

2

1082.9

rRFs

rR
xf





 Subject to,

g5(x) = 900 −
0.0266Fs(R3 − r3)

(R2 − r2)
≤ 0

 g4(x) =
2.22×10-3F(R3-r3)

(R2-r2)
-1 ≤ 0,With the range 1000≤F≤3000, 75≤R≤110, 55≤r≤80,

2≤s≤20.

7.3.3 EXPERIMENTAL RESULTS

The algorithm is run for 1000 iterations for both the welded beam design and the design

of disc brake problem. The optimal Pareto fronts found in the experiments for both the

problem are shown in figure 7.1 and figure 7.2.

Figure 7.1 Pareto front of the Welded Beam Design using CCA

 
 

,04.0
14.3 223 




rR

F
xg

 
 

 
,01

1022.2
22

333

4 







rR

rRF
xg

     ,0201  rRxg

     ,03015.22  sxg

161

Figure 7.2 Pareto front of Disc Brake Design using CCA

7.4 MULTI-OBJECTIVE ENGINEERING DESIGN OPTIMIZATION

USING MOCCA-P

In this section, the engineering design problems Welded Beam Design and Disc brake

problem are solved using MOCCA-P. The details about both the problems are explained

in the previous section 7.3.1 and 7.3.2.

The algorithm MOCCA-P is run for 1000 iterations for both the welded beam design and

the design of disc brake problem. The optimal Pareto front found in the experiment is for

both problems welded beam design and disc brake are shown in figure 7.3 and figure 7.4

respectively.

162

Figure 7.3: Pareto front of welded beam design using MOCCA-P

Figure 7.4: Pareto front of Disc brake design using MOCCA-P

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1st objective

2nd
 o

bj
ec

tiv
e

Welded Beam

10 15 20 25 30 35 40 45 50 55
1

1.5

2

2.5

3

3.5

1st objective

2nd
 o

bj
ec

tiv
e

Disc Brake

163

7.5 SUMMARY

In this Chapter, different case studies for both SOO and MOO have been taken up and

optimized using CCA and its variants. CCA is applied to mechanical engineering design

problems and multilevel thresholding (MT) for image segmentation. In engineering

design, two problems namely spring design and welded beam design are solved using

CCA and compared the performance with PSO and BA algorithm. Then the CCA is

applied to solve multilevel thresholding in image segmentation. Two popular MT

methods Otsu’s and Kapur’s method are used as objective function and combined with

the searching capabilities of CCA. With the purpose of measuring the performance, the

PSNR that measures the quality of segmentation by complying the oddity between the

segmented and the original images, SSIM (Structural Similarity) and Computational time

is used. To analyze the performance of Otsu’s and Kapur’s methods with CCA for

multilevel thresholding of image segmentation, the Wilcoxon’s rank test is used. The

proposed algorithm is then compared with MTEMO and statistically analyzed using one

way ANOVA test. Finally, it is concluded that CCA is better than its counterparts in term

of fitness value, PSNR, SSIM and computational times. The algorithm MOCCA-W and

MOCCA-P are applied to solve the engineering design problem having multiple

objectives like welded beam design and disc brake design problem.

164

CHAPTER 8

CONCLUSION AND FUTURE ENHANCEMENTS

This chapter provides the conclusions derived from this work and discusses the possible

enhancements that could be done in future.

8.1 CONCLUSION

The NP-hard combinatorial optimization problems are the most challenging problems

nowadays. Compared to other methods for solving the optimization problem, meta-

heuristics techniques are getting more attention in the research field because of their

efficiency, optimality, and speed. There has previously been plenty of research on meta-

heuristics techniques. In this research work, the research motivations have been

thoroughly analyzed from the literature review and the research objectives have been

framed.

Based on the research motivation and objectives a new meta-heuristics bio-inspired

algorithm called Cricket Chirping Algorithm (CCA) is developed for SOO. A set of

benchmark functions have been used to test and validate the CCA and compare its

performance with some of the popular algorithms such as GA, PSO, ABC, BA, and CS

for both lower dimension and higher dimension problems.

Since the tuning of parameter plays a vigorous role in the performance of an algorithm,

the impact of various parameters used in CCA is analyzed. The parameters viz.,

environmental Temperature Tc, Aggression Rate Ar, Crossover Rate Cr and Female

Selection Fs have an effective contribution to the performance of CCA. When comparing

the initial and final set of parameters, it is found that the final set provides better results

than the initial parameter configuration for the problem under study. As per the analysis

of the experiment the higher the temperature, the higher the fitness value of the crickets.

The cricket produces high-frequency sound at high temperatures. But, in low aggression

rate, it shows better performance for low dimension problems. In female selection, the

best fit female selection converges faster compared to other female selection schemes.

165

The values obtained through various experimental settings could be fixed as the standard

parameters for the CCA algorithm in future.

The CCA is extended for solving MOO problems in two ways i.e. using weighted sum

approach (MOCCA-W) and Pareto based technique, mimicking some interesting

behavior of crickets (MOCCA-P). The MOCCA-P differs from the basic CCA in two

terms. First, the male cricket is allowed to search the female cricket in the search space

and secondly, when the male cricket chirps for aggression the winner is selected

depending on the seven aggression levels. A different fitness calculation method is also

developed and an external archive is used to retain the non-dominated solutions. The

MOCCA-P is implemented and experimented with some standard benchmark test

problems with constraints and without constraints and compared with three popular

techniques i.e. MOPSO, SPEA2, and NSGA2. The experimental results show better

results compared to its counterparts in term of generational distance, spacing and

maximum spread, the popular metrics used to validate Multiobjective optimization

algorithm.

 In the last, the different case studies for both single and MOO has been taken up and

optimized using CCA and its variants. CCA is applied to mechanical engineering design

problems and multilevel thresholding (MT) for image segmentation problem. In

engineering design, two problems, namely spring design, and welded beam design are

solved using CCA and compared the performance with PSO and BA algorithm. Then the

CCA is applied to solve multilevel thresholding in image segmentation. Two popular MT

methods Otsu’s and Kapur’s method are used as objective function and combined with

the searching capabilities of CCA. With the purpose of measuring the performance, the

PSNR that measures the quality of segmentation by complying the oddity between the

segmented and the original images, SSIM (Structural Similarity) and Computational time

is used. To see the effect of Otsu’s and Kapur's methods with CCA for multilevel

thresholding of image segmentation, the Wilcoxon’s rank test is used. The performance

of the algorithm is then compared with MTEMO and statistically analyzed using one way

ANOVA test. Then, it is concluded that CCA is better than the popular meta-heuristics

algorithm in terms of fitness value, PSNR, SSIM and computational times.

166

Finally, the extended version of CCA, i.e., MOCCA-W and MOCCA-P are applied to

solve the engineering design problem having multiple objectives like welded beam

design and disc brake design problem and found to produce promising results.

8.2 FUTURE ENHANCEMENTS

In this research work, CCA is applied only in a few areas. The CCA can be extensively

used and modified or improved for various fields of real-world SOO and MOO problems.

In future, the MOCCA-P could be tested for many objective optimization problems and

applied to various fields. Moreover, the algorithm could be tested for many objective

functions with and without constraints by exploiting other characteristics of crickets.

167

REFERENCES

[1] M. Caramia and P. Dell’Olmo, Multi-objective Optimization. 2008.

[2] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary

Algorithms for Solving Multi-Objective Problems. 2007.

[3] I. Tome, “Cours d ’ Économie politique,” 1919.

[4] M. Management, “Multi-objective Optimization,” 2008, pp. 11–37.

[5] P. Festa, “A brief introduction to exact, approximation, and heuristic algorithms

for solving hard combinatorial optimization problems,” Int. Conf. Transparent

Opt. Networks, pp. 1–20, 2014.

[6] K. Sörensen and S. Kenneth, “Metaheuristics -- the metaphor exposed

Metaheuristics – the Metaphor Exposed,” no. March, 2017.

[7] C. A. C. Coello, “Metaheuristics for Multiobjective Optimization,” no. 2508, pp.

1–15, 2015.

[8] X. Yang and L. Press, Nature-Inspired Metaheuristic Algorithms Second Edition. .

[9] P. Agarwal and S. Mehta, “Nature-Inspired Algorithms: State-of-Art, Problems

and Prospects,” Int. J. Comput. Appl., vol. 100, no. 14, pp. 14–21, 2014.

[10] D. Whitley, “An overview of evolutionary algorithm: practical Issues and common

pitfalls,” Inf. Softw. Technol., vol. 43, pp. 817–831, 2001.

[11] N. Theorems and X. Yang, “Swarm-Based Metaheuristic Algorithms and,” 2011.

[12] M. Settles, “An Introduction to Particle Swarm Optimization,” pp. 1–8, 2005.

[13] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” Proc.

1999 Congr. Evol. Comput. (Cat. No. 99TH8406), vol. 2, pp. 1470–1477, 1999.

[14] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical

function optimization: Artificial bee colony (ABC) algorithm,” J. Glob. Optim.,

vol. 39, no. 3, pp. 459–471, 2007.

[15] X. Yang and S. Deb, “Cuckoo Search via Lévy Flights,” in India. IEEE

Publications, 2009, pp. 210–214.

[16] X. Yang, “A New Metaheuristic Bat-Inspired Algorithmin,” Stud. Comput. Intell.

Springer Berlin, vol. 284, pp. 65–74, 2010.

[17] X. Yang, “Firefly Algorithm, L´ evy Flights and Global Optimization,” Res. Dev.

168

Intell. Syst. XXVI, pp. 209–218, 2010.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science (80-.)., vol. 220, no. 4598, pp. 671–680, 1983.

[19] Ş. I. Birbil and S. C. Fang, “An electromagnetism-like mechanism for global

optimization,” J. Glob. Optim., vol. 25, no. 3, pp. 263–282, 2003.

[20] K. Lorenz and N. Tinbergen, “Behavior of the House Cricket , Acheta

domesticus,” no. 1, 2010.

[21] D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85,

1994.

[22] C. R. Reeves, “A genetic algorithm for flowshop sequencing,” Comput. Oper.

Res., vol. 22, no. 1, pp. 5–13, 1995.

[23] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional

knapsack problem,” J. Heuristics, vol. 4, no. 1, pp. 63–86, 1998.

[24] D. M. Deaven and K. M. Ho, “Molecular geometry optimization with a genetic

algorithm,” Phys. Rev. Lett., vol. 75, no. 2, pp. 288–291, 1995.

[25] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the Flexible

Job-shop Scheduling Problem,” Comput. Oper. Res., vol. 35, no. 10, pp. 3202–

3212, 2008.

[26] M. Kumar, M. Husian, N. Upreti, and D. Gupta, “Genetic Algorithm: Review and

Application,” Int. J. Inf. Technol. Knowl. Manag., vol. 2, no. 2, pp. 451–454, 2010.

[27] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

ICNN’95 - International Conference on Neural Networks, 1995, vol. 4, pp. 1942–

1948.

[28] M. Pant, R. Thangaraj, and A. Abraham, “Particle Swarm Optimization :

Performance Tuning and Empirical Analysis,” vol. 3, pp. 101–128, 2009.

[29] Q. Bai, “Analysis of Particle Swarm Optimization Algorithm,” Comput. Inf. Sci.,

vol. 3, no. 1, 2010.

[30] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a colony

of cooperating agents,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 26,

no. 1, pp. 29–41, 1996.

[31] A. Rabanimotlagh, “An Efficient Ant Colony Optimization Algorithm for

169

Multiobjective Flow Shop Scheduling Problem,” vol. 5, no. 3, pp. 127–133, 2011.

[32] M. Dorigo and T. Stützle, Ant Colony Optimization. 2004.

[33] B. Chandra Mohan and R. Baskaran, “A survey: Ant Colony Optimization based

recent research and implementation on several engineering domain,” Expert Syst.

Appl., vol. 39, no. 4, pp. 4618–4627, 2012.

[34] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theor.

Comput. Sci., vol. 344, no. 2–3, pp. 243–278, Nov. 2005.

[35] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, and B. Baesens,

“Classification with ant colony optimization,” IEEE Trans. Evol. Comput., vol. 11,

no. 5, pp. 651–665, 2007.

[36] Q. Yang et al., “Adaptive Multimodal Continuous Ant Colony Optimization,”

IEEE Trans. Evol. Comput., no. c, pp. 1–1, 2016.

[37] D. KARABOGA, “An Idea based on honey bee swarm for numerical

optimization,” 2005.

[38] D. Karaboga and B. Basturk, “Artificial Bee Colony (ABC) Optimization

Algorithm for Solving Constrained Optimization,” Lnai 4529, pp. 789–798, 2007.

[39] D. Karaboga, S. Okdem, and C. Ozturk, “Cluster based wireless sensor network

routing using artificial bee colony algorithm,” Wirel. Networks, vol. 18, no. 7, pp.

847–860, 2012.

[40] J. Bansal, H. Sharma, K. V. Arya, and A. Nagar, “Memetic search in artificial bee

colony algorithm,” Soft Comput., vol. 5, no. 2, pp. 1–18, 2013.

[41] A. Layeb, “A Multi-objective Binary Cuckoo Search for Bi- criteria Knapsack

Problem,” no. October, pp. 8–15, 2013.

[42] A. Ouaarab, B. Ahiod, and X.-S. Yang, “Discrete cuckoo search algorithm for the

travelling salesman problem,” Neural Comput. Appl., vol. 24, no. 7–8, pp. 1659–

1669, Jun. 2014.

[43] A. Bouaziz, A. Draa, and S. Chikhi, “A Cuckoo search algorithm for fingerprint

image contrast enhancement,” Complex Syst. (WCCS), 2014 Second World Conf.,

pp. 678–685, 2014.

[44] M. Sreenivasa Rao and N. Venkaiah, “A modified cuckoo search algorithm to

optimize Wire-EDM process while machining Inconel-690,” J. Brazilian Soc.

170

Mech. Sci. Eng., vol. 39, no. 5, pp. 1647–1661, 2017.

[45] S. Walton, O. Hassan, K. Morgan, and M. R. Brown, “Modified cuckoo search: A

new gradient free optimisation algorithm,” Chaos, Solitons and Fractals, vol. 44,

no. 9, pp. 710–718, 2011.

[46] B. H. Dinh, T. T. Nguyen, and D. N. Vo, “Adaptive cuckoo search algorithm for

short-term fixed-head hydrothermal scheduling problem with reservoir volume

constraints,” Int. J. Grid Distrib. Comput., vol. 9, no. 5, pp. 191–204, 2016.

[47] A. H. Gandomi and X. S. Yang, “Chaotic bat algorithm,” J. Comput. Sci., vol. 5,

no. 2, pp. 224–232, 2014.

[48] R. Y. M. Nakamura, L. A. M. Pereira, K. A. Costa, D. Rodrigues, J. P. Papa, and

X. S. Yang, “BBA: A binary bat algorithm for feature selection,” in Brazilian

Symposium of Computer Graphic and Image Processing, 2012, pp. 291–297.

[49] M. Jamil and X.-S. Yang, “A Literature Survey of Benchmark Functions For

Global Optimization Problems Citation details: Momin Jamil and Xin-She Yang,

A literature survey of benchmark functions for global optimization problems,” Int.

J. Math. Model. Numer. Optim., vol. 4, no. 2, pp. 150–194, 2013.

[50] X.-S. Yang, “Firefly Algorithm, Stochastic Test Functions and Design

Optimisation,” Mar. 2010.

[51] B. Crawford et al., “A binary coded firefly algorithm that solves the set covering

problem,” Rom. J. Inf. Sci. Technol., vol. 17, no. 3, pp. 252–264, 2014.

[52] S. Palit, S. N. Sinha, M. A. Molla, A. Khanra, and M. Kule, “A cryptanalytic

attack on the knapsack cryptosystem using binary Firefly algorithm,” in 2011 2nd

International Conference on Computer and Communication Technology, ICCCT-

2011, 2011, pp. 428–432.

[53] S. M. Farahani, A. A. Abshouri, B. Nasiri, and M. R. Meybodi, “A Gaussian

Firefly Algorithm,” vol. 1, no. 5, 2011.

[54] X.-S. Yang, “Firefly algorithm, Lévy flights and global optimization,” in Research

and Development in Intelligent Systems XXVI: Incorporating Applications and

Innovations in Intelligent Systems XVII, 2010, pp. 209–218.

[55] S. H. Strogatz, “Nonlinear Dynamics and Chaos,” Library, vol. 48, no. 3. p. 498,

1994.

171

[56] M. Subutic, M. Tuba, and N. Stanarevic, “Parallelization of the firefly algorithm

for unconstrained optimization problems,” Latest Adv. Inf. …, pp. 264–269, 2012.

[57] and M. R. M. Sh. Mashhadi Farahani, A. Amin Abshouri, B. Nasiri, “Some hybrid

models to improve Firefly algorithm performance,” Int. J. Artif. Intell., vol. 8, no.

12 S, pp. 97–117, 2012.

[58] M. Younes and R. L. Kherfane, “Hybrid FA and GA for generation allocation

problem optimization,” J. Electr. Eng., vol. 14, no. 1, pp. 108–113, 2014.

[59] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-the-

art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, 2011.

[60] T. Hassanzadeh and M. R. Meybodi, “A new hybrid algorithm based on firefly

algorithm and cellular learning automata,” in ICEE 2012 - 20th Iranian

Conference on Electrical Engineering, 2012, pp. 628–633.

[61] A. Rajini and V. David, “A Comparative Performance Study on Hybrid Swarm

Model for Micro array Data,” Int. J. Comput. Appl., vol. 30, no. 6, pp. 10–14,

2011.

[62] X. S. Yang and X. He, “Firefly algorithm: recent advances and applications,” Int.

J. Swarm Intell., vol. 1, no. 1Yang, Xin She, and Xingshi He. “Firefly Algorithm:

Recent Advances and Applications.” International Journal of Swarm Intelligence

1, 1 (2013): 36. doi:10.1504/IJSI.2013.055801., p. 36, 2013.

[63] F. Shabbir and P. Omenzetter, “Particle swarm optimization with sequential niche

technique for dynamic finite element model updating,” Comput. Civ. Infrastruct.

Eng., vol. 30, no. 5, pp. 359–375, 2015.

[64] C. Li and J. Zhou, “Parameters identification of hydraulic turbine governing

system using improved gravitational search algorithm,” in Energy Conversion and

Management, 2011, vol. 52, no. 1, pp. 374–381.

[65] M. Khajehzadeh, M. R. Taha, A. El-Shafie, and M. Eslami, “A modified

gravitational search algorithm for slope stability analysis,” Eng. Appl. Artif. Intell.,

vol. 25, no. 8, pp. 1589–1597, 2012.

[66] E. Cuevas, D. Oliva, D. Zaldivar, M. Pérez-Cisneros, and H. Sossa, “Circle

detection using electro-magnetism optimization,” Inf. Sci. (Ny)., vol. 182, no. 1,

pp. 40–55, 2012.

172

[67] D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar, and V. Osuna, “A Multilevel

thresholding algorithm using electromagnetism optimization,” Neurocomputing,

vol. 139, pp. 357–381, 2014.

[68] A. Abraham, L. Jain, and G. (Eds) Robert, Evolutionary Multiobjective

Optimization. 2005.

[69] N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms 1 Introduction,” vol. 2, no. 3.

[70] W. Stadler, “A survey of multicriteria optimization or the vector maximum

problem, part I: 1776-1960,” J. Optim. Theory Appl., vol. 29, no. 1, pp. 1–52,

1979.

[71] D. a. Van Veldhuizen, “Multiobjective Evolutionary Algorithms: Classifications,

Analyses and New Innovations,” IRE Trans. Educ., 1999.

[72] E. Zitzler and K. Simon, “Indicator-Based Selection in Multiobjective Search,” 8th

Int. Conf. Parallel Probl. Solving from Nat. (PPSN VIII), vol. 3242, no. i, pp. 832–

842, 2004.

[73] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,

“Multiobjective evolutionary algorithms: A survey of the state of the art,” Swarm

Evol. Comput., vol. 1, no. 1, pp. 32–49, 2011.

[74] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic

algorithms,” 1st Int. Conf. Genet. Algorithms, no. JANUARY 1985, pp. 93–100,

1985.

[75] N. Srinivas and K. Deb, “Multiobjective optimization using nondominated sorting

in genetic algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221–248, 1994.

[76] K. Deb, S. Agrawal, S. Pratab, and T. Meyarivan, “A fast elitist non- dominated

sorting genetic algorithm for multi-objective optimization: NSGA-II.,” Parallel

Probl. Solving from Nat. VI Conf., 2000.

[77] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for

multiobjective optimization,” Evol. Comput. 1994. IEEE World Congr. Comput.

Intell. Proc. First IEEE Conf., vol. 1, pp. 82–87, 1994.

[78] Open Source Engineering, “M Ultiobjective Optimization and Genetic

Algorithms.”

173

[79] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algorithm Based

on Decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.

[80] J. D. Knowles and D. W. Corne, “Approximating the Nondominated Front Using

the Pareto Archived Evolution Strategy,” Evol. Comput., vol. 8, no. 2, pp. 149–

172, 2000.

[81] E. Zitzler and L. Thiele, “An Evolutionary Algorithm for Multiobjective

Optimization : The Strength Pareto Approach,” no. 43, 1998.

[82] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2 : Improving the Strength Pareto

Evolutionary Algorithm,” pp. 1–21, 2001.

[83] J. Moore and R. Chapman, “Application of particle swarm to multiobjective

optimization,” Dep. Comput. Sci. Softw. Eng. Dep. Auburn Univ., pp. 1–4, 1999.

[84] C. a. Coello Coello and M. Reyes-Sierra, “Multi-Objective Particle Swarm

Optimizers: A Survey of the State-of-the-Art,” Int. J. Comput. Intell. Res., vol. 2,

no. 3, 2006.

[85] C. a C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives

with particle swarm optimization,” Evol. Comput. IEEE Trans., vol. 8, no. 3, pp.

256–279, 2004.

[86] X. Hu and R. Eberhart, “Multiobjective optimization using dynamic neighborhood

particle swarm optimization,” Congress on Evolutionary Computation, vol. 2. pp.

1677–1681, 2002.

[87] X. H. X. Hu, R. C. Eberhart, and Y. S. Y. Shi, “Particle swarm with extended

memory for multiobjective optimization,” Proceedings of the 2003 IEEE Swarm

Intelligence Symposium. SIS’03 (Cat. No.03EX706). 2003.

[88] C. A. Coello Coello and M. S. Lechuga, “MOPSO: A proposal for multiple

objective particle swarm optimization,” Proc. 2002 Congr. Evol. Comput. CEC

2002, vol. 2, pp. 1051–1056, 2002.

[89] S. Janson, D. Merkle, and M. Middendorf, “Molecular docking with multi-

objective Particle Swarm Optimization,” vol. 8, pp. 666–675, 2008.

[90] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-Objective Particle Swarm

Optimization with time variant inertia and acceleration coefficients,” Inf. Sci.

(Ny)., vol. 177, no. 22, pp. 5033–5049, 2007.

174

[91] N. Tian and Z. Ji, “Pareto-Ranking Based Quantum-Behaved Particle Swarm

Optimization for Multiobjective Optimization,” vol. 2015, 2015.

[92] Y. Wang and Y. Yang, “Particle swarm optimization with preference order ranking

for multi-objective optimization,” Inf. Sci. (Ny)., vol. 179, no. 12, pp. 1944–1959,

2009.

[93] V. L. Huang, P. N. Suganthan, and J. J. Liang, “Comprehensive learning particle

swarm optimizer for solving multiobjective optimization problems,” Int. J. Intell.

Syst., vol. 21, no. 2, pp. 209–226, 2006.

[94] S. Z. Zhao and P. N. Suganthan, “Two-lbests based multi-objective particle swarm

optimizer,” Eng. Optim., vol. 43, no. 1, pp. 1–17, 2011.

[95] X. Yu and X. Zhang, “Multiswarm comprehensive learning particle swarm

optimization for solving multiobjective optimization problems,” PLoS One, vol.

12, no. 2, pp. 1–21, 2017.

[96] D. S. Liu, K. C. Tan, S. Y. Huang, C. K. Goh, and W. K. Ho, “On solving

multiobjective bin packing problems using evolutionary particle swarm

optimization,” Eur. J. Oper. Res., vol. 190, no. 2, pp. 357–382, 2008.

[97] J. Rada-Vilela, M. Chica, O. Cordon, and S. Damas, “A comparative study of

Multi-Objective Ant Colony Optimization algorithms for the Time and Space

Assembly Line Balancing Problem,” Appl. Soft Comput., vol. 13, no. 11, pp.

4370–4382, 2013.

[98] M. Dorigo and M. Birattari, “Multi-Objective Ant Colony Optimization,” Encycl.

Mach. Learn., no. October 2003, 2010.

[99] Z. Zhang, C. Gao, Y. Lu, Y. Liu, and M. Liang, “Multi-objective ant colony

optimization based on the physarum-inspired mathematical model for bi-objective

traveling salesman problems,” PLoS One, vol. 11, no. 1, pp. 1–23, 2016.

[100] D. Angus, “Crowding population-based ant colony optimisation for the multi-

objective travelling salesman problem,” Proc. 2007 IEEE Symp. Comput. Intell.

Multicriteria Decis. Making, MCDM 2007, no. Mcdm, pp. 333–340, 2007.

[101] J. Cheng, G. Zhang, Z. Li, and Y. Li, “Multi-objective ant colony optimization

based on decomposition for bi-objective traveling salesman problems,” Soft

Comput., vol. 16, no. 4, pp. 597–614, 2012.

175

[102] B. Barán and M. Schaerer, “A Multiobjective Ant Colony System for Vehicle

Routing Problem with Time Windows,” in 21st IASTED International Conference

on Applied Informatics, 2003, pp. 97–102.

[103] J. M. Pasia, R. F. Hartl, and K. F. Doerner, Solving a bi-objective flowshop

scheduling problem by pareto-ant colony optimization, vol. 4150. 2006.

[104] T. B. Kurniawan, Z. Ibrahim, N. K. Khalid, and M. Khalid, “A Population-Based

Ant Colony Optimization Approach for DNA Sequence Optimization,” 2009 Third

Asia Int. Conf. Model. Simul., pp. 246–251, 2009.

[105] J. A. Sabino, J. E. Leal, T. Stützle, and M. Birattari, “A multi-objective ant colony

optimization method applied to switch engine scheduling in railroad yards,”

Pesqui. Operacional, vol. 30, no. 2, pp. 486–514, 2010.

[106] L. A. Moncayo-Martínez and D. Z. Zhang, “Multi-objective ant colony

optimisation: A meta-heuristic approach to supply chain design,” Int. J. Prod.

Econ., vol. 131, no. 1, pp. 407–420, 2011.

[107] M. López-Ibánez and T. Stützle, “The automatic design of multiobjective ant

colony optimization algorithms,” Evol. Comput. IEEE …, no. February, 2012.

[108] S. N. Omkar, J. Senthilnath, R. Khandelwal, G. Narayana Naik, and S.

Gopalakrishnan, “Artificial Bee Colony (ABC) for multi-objective design

optimization of composite structures,” Appl. Soft Comput., vol. 11, no. 1, pp. 489–

499, 2011.

[109] S. A. R. Mohammadi, M. R. F. Derakhshi, and R. Akbari, “An Adaptive Multi-

Objective Artificial Bee Colony with crowding distance mechanism,” Iran. J. Sci.

Technol. - Trans. Electr. Eng., vol. 37, no. E1, pp. 79–92, 2013.

[110] B. Akay, “Synchronous and asynchronous Pareto-based multi-objective Artificial

Bee Colony algorithms,” J. Glob. Optim., vol. 57, no. 2, pp. 415–445, 2013.

[111] P. Rakshit, A. Konar, and A. K. Nagar, “Artificial Bee Colony induced multi-

objective optimization in presence of noise,” Proc. 2014 IEEE Congr. Evol.

Comput. CEC 2014, pp. 3176–3183, 2014.

[112] Y. Xiang, Y. Zhou, and H. Liu, “An elitism based multi-objective artificial bee

colony algorithm,” Eur. J. Oper. Res., vol. 245, no. 1, pp. 168–193, 2015.

[113] Y. Xiang and Y. Zhou, “A dynamic multi-colony artificial bee colony algorithm

176

for multi-objective optimization,” Appl. Soft Comput. J., vol. 35, pp. 766–785,

2015.

[114] Y. Huo, Y. Zhuang, J. Gu, and S. Ni, “Elite-guided multi-objective artificial bee

colony algorithm,” Appl. Soft Comput., vol. 32, pp. 199–210, 2015.

[115] W. Y. Wu Chunming, Li Tingting, “A Novel Multiobjective Optimization Method

Based on Improved Artificial Bee Colony Algorithm,” Int. J. Signal Process.

Image Process. Pattern Recognit., vol. 9, no. 3, pp. 231–238, 2016.

[116] W. Zou, Y. Zhu, H. Chen, and H. Shen, “A novel multi-objective optimization

algorithm based on artificial bee colony,” Proc. 13th Annu. Conf. companion

Genet. Evol. Comput. - GECCO ’11, p. 103, 2011.

[117] L. Ma, K. Hu, Y. Zhu, and H. Chen, “Cooperative artificial bee colony algorithm

for multi-objective RFID network planning,” J. Netw. Comput. Appl., vol. 42, pp.

143–162, 2014.

[118] D. L. González-Álvarez, M. A. Vega-Rodríguez, J. A. Gómez-Pulido, and J. M.

Sánchez-Pérez, “Finding motifs in DNA sequences applying a Multiobjective

Artificial Bee Colony (MOABC) algorithm,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6623 LNCS, pp.

89–100, 2011.

[119] K. Atashkari, N. NarimanZadeh, a. R. Ghavimi, M. J. Mahmoodabadi, and F.

Aghaienezhad, “Multi-objective optimization of power and heating system based

on artificial bee colony,” 2011 Int. Symp. Innov. Intell. Syst. Appl., pp. 64–68,

2011.

[120] M. Silva Maximiano, M. a. Vega-Rodríguez, J. a. Gómez-Pulido, and J. M.

Sánchez-Pérez, “A new Multiobjective Artificial Bee Colony algorithm to solve a

real-world frequency assignment problem,” Neural Comput. Appl., pp. 1447–1459,

2012.

[121] R. K. Jena, “Artificial Bee Colony Algorithm based Multi-Objective Node

Placement for Wireless Sensor Network,” Int. J. Inf. Technol. Comput. Sci., vol. 6,

no. 6, pp. 25–32, 2014.

[122] T. Sag and M. Cunkas, “Color image segmentation based on multiobjective

artificial bee colony optimization,” vol. 34, pp. 389–401, 2015.

177

[123] Z. Wang, M. Li, L. Dou, Y. Li, Q. Zhao, and J. Li, “A novel multi-objective

artificial bee colony algorithm for multi-robot path planning,” 2015 IEEE Int.

Conf. Inf. Autom. ICIA 2015 - conjunction with 2015 IEEE Int. Conf. Autom.

Logist., no. August, pp. 481–486, 2015.

[124] A. K. Dwivedi, S. Ghosh, and N. D. Londhe, “Low power FIR fi lter design using

modi fi ed multi-objective arti fi cial bee colony algorithm,” Eng. Appl. Artif.

Intell., vol. 55, pp. 58–69, 2016.

[125] X. S. Yang and S. Deb, “Multiobjective cuckoo search for design optimization,”

Comput. Oper. Res., vol. 40, no. 6, pp. 1616–1624, 2013.

[126] H. V. H. Ayala and L. Dos Santos Coelho, “Multiobjective cuckoo search applied

to radial basis function neural networks training for system identification,” IFAC

Proc. Vol., vol. 19, pp. 2539–2544, 2014.

[127] M. Akbari and H. Rashidi, “A multi-objectives scheduling algorithm based on

cuckoo optimization for task allocation problem at compile time in heterogeneous

systems,” Expert Syst. Appl., vol. 60, pp. 234–248, 2016.

[128] X. Yang, “Bat Algorithm for Multi-objective Optimisation,” pp. 1–12, 2011.

[129] L. M. Amine and K. Nadjet, “A Multi-objective Binary Bat Algorithm,” Proc. Int.

Conf. Intell. Inf. Process. Secur. Adv. Commun. - IPAC ’15, pp. 1–5, 2015.

[130] N.-C. Yang and M.-D. Le, “Multi-objective bat algorithm with time-varying

inertia weights for optimal design of passive power filters set,” IET Gener.

Transm. Distrib., vol. 9, no. 7, pp. 644–654, 2015.

[131] T. K. Tharakeshwar, K. N. Seetharamu, and B. Durga Prasad, “Multi-objective

optimization using bat algorithm for shell and tube heat exchangers,” Appl. Therm.

Eng., vol. 110, pp. 1029–1038, 2017.

[132] N.-C. Yang and M.-D. Le, “Optimal design of passive power filters based on

multi-objective bat algorithm and pareto front,” Appl. Soft Comput., vol. 35, pp.

257–266, 2015.

[133] A. M. Elewe, K. B. Hasnan, and A. B. Nawawi, “Hybridized firefly algorithm for

multi-objective Radio Frequency Identification (RFID) Network planning,” ARPN

J. Eng. Appl. Sci., vol. 12, no. 3, 2017.

[134] C. Yammani, S. Maheswarapu, and S. K. Matam, “A Multi-objective Shuffled Bat

178

algorithm for optimal placement and sizing of multi distributed generations with

different load models,” Int. Trans. Electr. Energy Syst., vol. 26, no. 2, pp. 274–

292, 2016.

[135] X.-S. Yang, “Multiobjective Firefly Algorithm for Continuous Optimization,” vol.

29, no. 2, pp. 175–184, 2013.

[136] X. S. Yang, S. S. S. Hosseini, and A. H. Gandomi, “Firefly Algorithm for solving

non-convex economic dispatch problems with valve loading effect,” Appl. Soft

Comput. J., vol. 12, no. 3, pp. 1180–1186, 2012.

[137] S. Santander-Jiménez and M. A. Vega-Rodríguez, “A multiobjective proposal

based on the firefly algorithm for inferring phylogenies,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2013, vol. 7833 LNCS, pp. 141–152.

[138] C.-W. Tsai, Y.-T. Huang, and M.-C. Chiang, “A non-dominated sorting firefly

algorithm for multi-objective optimization,” in 2014 14th International

Conference on Intelligent Systems Design and Applications, 2014, pp. 62–67.

[139] C. Zhao et al., “Decomposition-based multi-objective firefly algorithm for RFID

network planning with uncertainty,” Appl. Soft Comput. J., vol. 55, pp. 549–564,

2017.

[140] X. Yang, “Engineering Optimization and Metaheuristics Metaheuristics and

Engineering Optimization Introduction Design Optimization Conventional

Approach Metaheuristics Genetic Algorithms & Simulated Annealing Particle

Swarm Optimization Firefly Algorithm & Cuckoo S.”

[141] S. Akhtar, K. Tai, and T. Ray, “A Socio-Behavioural Simulation Model for

Engineering Design Optimization,” Eng. Optim., vol. 34, no. 4, pp. 341–354, 2002.

[142] A. H. Aguirre, A. E. M. Zavala, E. Villa, A. Hern, and A. E. Mu, “COPSO :

Constrained Optimization via PSO algorithm,” vol. 2007.

[143] L. C. Cagnina, S. C. Esquivel, U. Nacional, D. S. Luis, S. Luis, and C. A. C.

Coello, “Solving Engineering Optimization Problems with the Simple Constrained

Particle Swarm Optimizer : SiC-PSO,” Informatica, no. 32, pp. 319–326, 2008.

[144] B. Akay and D. Karaboga, “Artificial bee colony algorithm for large-scale

problems and engineering design optimization,” J. Intell. Manuf., vol. 23, no. 4,

179

pp. 1001–1014, 2012.

[145] X. Yang and S. Deb, “Engineering Optimisation by Cuckoo Search,” pp. 1–17,

2009.

[146] V. Nannen, S. K. Smit, and A. E. Eiben, “Costs and benefits of tuning parameters

of evolutionary algorithms,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2008, vol. 5199 LNCS, pp. 528–538.

[147] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A New Method for Gray-Level

Picture Thresholding Using the Entropy of the Histogram,” Computer Vision

Graphics and Image Processing, vol. 29. pp. 273–285, 1985.

[148] M. Waseem Khan, “A Survey: Image Segmentation Techniques,” Int. J. Futur.

Comput. Commun., vol. 3, no. 2, pp. 89–93, 2014.

[149] M. Molga and C. Smutnicki, “Test functions for optimization needs,” Test Funct.

Optim. needs, no. c, pp. 1–43, 2005.

[150] C. Tsallis, “Entropic nonextensivity: A possible measure of complexity,” Chaos,

Solitons and Fractals, vol. 13, no. 3, pp. 371–391, 2002.

[151] M. Portes de Albuquerque, I. A. Esquef, A. R. Gesualdi Mello, and M. Portes de

Albuquerque, “Image thresholding using Tsallis entropy,” Pattern Recognit. Lett.,

vol. 25, no. 9, pp. 1059–1065, 2004.

[152] H. Laurent, S. Chabrier, C. Rosenberger, and B. Emile, “Optimization-based

image segmentation by genetic algorithms,” Eurasip J. Image Video Process., vol.

2008, 2008.

[153] K. E. Melkemi, M. Batouche, and S. Foufou, “A multiagent system approach for

image segmentation using genetic algorithms and extremal optimization

heuristics,” Pattern Recognit. Lett., vol. 27, no. 11, pp. 1230–1238, 2006.

[154] S. Yilmaz, E. U. Kucuksille, and Y. Cengiz, “Modified bat algorithm,” Elektron. ir

Elektrotechnika, vol. 20, no. 2, pp. 71–78, 2014.

[155] K. Hammouche, M. Diaf, and P. Siarry, “A multilevel automatic thresholding

method based on a genetic algorithm for a fast image segmentation,” Comput. Vis.

Image Underst., vol. 109, no. 2, pp. 163–175, 2008.

[156] A. Chander, A. Chatterjee, and P. Siarry, “A new social and momentum

180

component adaptive PSO algorithm for image segmentation,” Expert Syst. Appl.,

vol. 38, no. 5, pp. 4998–5004, 2011.

[157] M. Maitra and A. Chatterjee, “A hybrid cooperative-comprehensive learning based

PSO algorithm for image segmentation using multilevel thresholding,” Expert

Syst. Appl., vol. 34, no. 2, pp. 1341–1350, 2008.

[158] X. S. Yang and S. Deb, “Cuckoo search via L??vy flights,” in 2009 World

Congress on Nature and Biologically Inspired Computing, NABIC 2009 -

Proceedings, 2009, pp. 210–214.

[159] Y. Liu, C. Mu, W. Kou, and J. Liu, “Modified particle swarm optimization-based

multilevel thresholding for image segmentation,” Soft Comput., pp. 1311–1327,

2014.

[160] A. D. M. Wilson, E. M. Whattam, R. Bennett, L. Visanuvimol, C. Lauzon, and S.

M. Bertram, “Behavioral correlations across activity, mating, exploration,

aggression, and antipredator contexts in the European house cricket, Acheta

domesticus,” Behav. Ecol. Sociobiol., vol. 64, no. 2010, pp. 703–715, 2010.

[161] R. D. . Alexander, “Aggressiveness , Territoriality , and Sexual Behavior in Field

Crickets (Orthoptera : Gryllidae),” vol. 17, no. 2, pp. 130–223, 1961.

[162] B. M. & J. G. William D. Brown, Adam T. Smith, “Aggressive contests in house

crickets : size , motivation and the information content of aggressive songs,” vol.

72, pp. 225–233, 2006.

[163] A. Osyczka and S. Kundu, “A modified distance method for multicriteria

optimization, using genetic algorithms,” Comput. Ind. Eng., vol. 30, no. 4, pp.

871–882, 1996.

[164] T. Ray and K. M. Liew, “A swarm metaphor for multiobjective design

optimization,” Eng. Optim., vol. 34, no. 2, pp. 141–153, 2002.

[165] A. R. Yıldız, N. Öztürk, N. Kaya, and F. Öztürk, “Hybrid multi-objective shape

design optimization using Taguchi’s method and genetic algorithm,” Struct.

Multidiscip. Optim., vol. 34, no. 4, pp. 317–332, 2007.

[166] A. R. Yildiz, “An effective hybrid immune-hill climbing optimization approach for

solving design and manufacturing optimization problems in industry,” J. Mater.

Process. Technol., vol. 209, no. 6, pp. 2773–2780, 2009.

181

[167] X. S. Yang, M. Karamanoglu, and X. He, “Multi-objective flower algorithm for

optimization,” in Procedia Computer Science, 2013, vol. 18, pp. 861–868.

[168] G. Reynoso-Meza, X. Blasco, J. Sanchis, and J. M. Herrero, “Comparison of

design concepts in multi-criteria decision-making using level diagrams,” Inf. Sci.

(Ny)., vol. 221, pp. 124–141, 2013.

[169] P. Sabarinath, M. R. Thansekhar, and R. Saravanan, “Multiobjective optimization

method based on adaptive parameter harmony search algorithm,” J. Appl. Math.,

vol. 2015, 2015.

[170] M. Sarkar, “Multi-Objective Welded Beam Design Optimization using T-Norm

and T-Co-norm based Intuitionistic Fuzzy Optimization Technique,” vol. 12, no. 3,

pp. 549–575, 2017.

[171] S. Mirjalili, P. Jangir, and S. Saremi, “Multi-objective ant lion optimizer: a multi-

objective optimization algorithm for solving engineering problems,” Appl. Intell.,

vol. 46, no. 1, pp. 79–95, 2017.

[172] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”

IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997.

[173] T. C. Service, “A No Free Lunch theorem for multi-objective optimization,” Inf.

Process. Lett., vol. 110, no. 21, pp. 917–923, 2010.

[174] A. Dolbear, “The cricket as a thermometer,” Am. Nat., pp. 970–971, 1897.

[175] K. Deb, “Optimal Design of a Welded Beam via Genetic Algorithms,” AIAA J.,

vol. 29, no. 11, pp. 2013–2015, 1991.

[176] S. He, E. Prempain, and Q. H. Wu, “An improved particle swarm optimizer for

mechanical design optimization problems,” Eng. Optim., vol. 36, no. 5, pp. 585–

605, 2004.

[177] N. OTSU, “A Threshold Selection Method from Gray-Level Histograms,” IEEE

Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979.

[178] Z. Wang, A. C. Bovik, H. R. Sheikh, S. Member, E. P. Simoncelli, and S. Member,

“Image Quality Assessment : From Error Visibility to Structural Similarity,” 2

IEEE Trans. IMAGE Process., vol. 13, no. 4, pp. 1–14, 2004.

[179] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: From error visibility to structural similarity,” IEEE Trans. Image

182

Process., vol. 13, no. 4, pp. 600–612, 2004.

[180] S. Garc??a, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-

parametric tests for analyzing the evolutionary algorithms’ behaviour: A case

study on the CEC’2005 Special Session on Real Parameter Optimization,” J.

Heuristics, vol. 15, no. 6, pp. 617–644, 2009.

[181] W. Gong, Z. Cai, and L. Zhu, “An efficient multiobjective differential evolution

algorithm for engineering design,” Struct. Multidiscip. Optim., vol. 38, no. 2, pp.

137–157, 2009.

[182] J. Andersson and J. Andersson, “A survey of multiobjective optimization in

engineering design,” Optimization, p. 34, 2000.

[183] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for

engineering,” Structural and Multidisciplinary Optimization, vol. 26, no. 6. pp.

369–395, 2004.

[184] B. Akay, “A study on particle swarm optimization and artificial bee colony

algorithms for multilevel thresholding,” Appl. Soft Comput. J., vol. 13, no. 6, pp.

3066–3091, 2013.

[185] M. Caramia and P. Dell’Olmo, “Multi-objective Optimization,” Multi-objective

Manag. Freight Logist., pp. 11–36, 2008.

LIST OF PUBLICATION

183

International Journal Publications

1. Jonti Deuri and S. Siva Sathya., “A Novel Cricket Chirping Algorithm for

Engineering Optimization Problem”. Adv. in Nat. Appl. Sci., 9(6): 397-402, 2015.

2. Jonti Deuri and S. Siva Sathya "Impact of Parameter Tuning on the Cricket Chirping

Algorithm." International Journal of Intelligent Systems and Applications 9, no. 9

(2017): 58.

3. Jonti Deuri and S. Siva Sathya “Cricket Chirping Algorithm: an efficient meta-

heuristic for numerical function optimization”, Int. J. Computational Science and

Engineering, Inderscience, (in Press),

Book Chapter Publication

4. Sathya, S. Siva, and Jonti Deuri. "Multilevel Thresholding for Image Segmentation

Using Cricket Chirping Algorithm." Bio-Inspired Computing for Image and Video

Processing (2018).

International Conference Publication

5. Jonti Deuri, and S. Siva Sathya. "Cricket chirping algorithm for multi-objective

engineering design optimization." Information Communication and Embedded

Systems (ICICES), 2017 International Conference on. IEEE, 2017.

Communicated

6. Jonti Deuri and S. Siva Sathya, “ Cricket Chirping Algorithm for Multi-objective

Optimization’’, Applied Computing and Informatics, Elsevier

7. Jonti Deuri and S. Siva Sathya, “A Survey on recent Swarm Based Multi-objective

optimization Techniques”

