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ABSTRACT 

Optimization techniques find its application in almost every field of concern. The task of 

optimization is obtaining the maxima or minima, subject to the various constraints 

specified. The problems can be single objective or multi-objective and correspondingly 

the techniques can be categorized as a single objective optimization technique and multi-

objective optimization techniques. Some techniques aim at finding only the optimal 

solution and are termed as exact methods. They take exponential time in order to achieve 

their motive. An alternative to this is the approximate methods that attempt to determine 

a near optimal solution in a reasonable amount of time. The majority of the approximate 

approaches derives their concepts from Biology and Mother Nature. Evolutionary and 

swarm-based algorithms can be quoted as typical examples for this case.  

Though there are numerous optimization techniques, there also exist certain barriers that 

hurdle in attaining the maximum efficiency. They include the premature convergence, 

rigorous parameter tuning, non-generalization, high computational cost and difficult 

implementation. Further, the “No Free Lunch Theorem”, which states that all algorithms 

perform similarly when averaged on all functions and designing an algorithm to suit all 

applications will result in vain, encourages the formulation of new optimization 

algorithms.  

In this research, new optimization techniques to overcome the stated barriers have been 

formulated. The chirping behavior and movement of the insect named cricket have placed 

the primary emphasis while devising the algorithm. Initially, a cricket chirping algorithm 

(CCA) for single objective optimization is designed. In this algorithm, the unique 

chirping nature of male crickets while mating and aggression are exploited. The male 

crickets chirp with an exclusive sound in order to attract the females for mating and 

simultaneously repel the males. Another kind of chirping sound is emitted during 

aggression when another male cricket nears it with the intent to fight. In the case of 

aggression, the winner survives and takes the position of the loser and the loser is 

discarded. This behavior of cricket has been harnessed for the design and development of 

the bio-inspired algorithms for single and multi-objective optimization. The single 
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objective CCA is tested on many test functions. The parameters are fine-tuned based on 

an exhaustive analysis of the algorithm.  

Subsequently, the cricket chirping algorithm is extended to deal with the MOO problems. 

In order to achieve this, two approaches, namely the weighted sum and Pareto based are 

adopted and thus two variants of Multi-Objective Cricket Chirping Algorithm (MOCCA) 

namely MOCCA-W and MOCCA-P are formulated.  

The CCA and MOCCA are then applied on various real-time problems and compared 

against the existing popular and effective optimization algorithms in order to exhibit its 

potential. The CCA is tested on engineering optimization problems such as Tension and 

Compression Spring Design Optimization and Welded Beam Design Optimization and 

Multilevel Threshold Optimization for image segmentation. The MOCCA is evaluated on 

multi-objective Disc Brake Design Optimization and Welded Beam Design Optimization. 

The outcomes along with statistical analysis reveal the outstanding performance of the 

formulated optimization techniques.   
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Chapter 1 

INTRODUCTION 

Nature inspired meta-heuristic algorithms have been recognized to be very proficient 

in solving complex optimization problems in the recent times. Literature reports 

several inspirations from nature and biology that have been exploited to solve 

complex computational problems. This research is yet another effort in the journey 

towards the utilization of bio-inspired techniques for seeking solutions to complex 

optimization problems. In this chapter, initially, the significance of optimizing is 

highlighted. Then, the solutions towards optimization are presented. Followed by that, 

a glimpse of various nature and bio-inspired algorithms are provided. Subsequently, 

the biological aspects of cricket, the insect that has inspired in accomplishing this 

research is presented. After that, the research overview of the thesis and the 

organization of the chapters are provided. The following section presents the 

importance of optimization in real-world problems.  

1.1 OPTIMIZATION  

Generally speaking, optimization can be termed as the process of identifying the most 

cost-effective method for accomplishing the maximum performance under the 

provided constraints, by maximizing the desired factors and minimizing the undesired 

aspects. It can also be visualized as a minimization or maximization problem based on 

the problem at hand. In day to day life, every individual is posed with many options 

and is forced to choose one of them to get through the situation. Naturally, individuals 

choose one of the many available choices such that it is beneficial for them in some 

way or the other. The benefits can be related to finance, quality, personal 

development, satisfaction and many more. It is to be noted that sometimes, the 

benefits can be related to one or more aspects.  

To typify the maximization problem, a general business scenario is considered. In a 

business, the objective will be to optimize the effectiveness of the production process 

or the quality and desirability of their existing goods and commodities with minimal 

runtime or resources, etc. To illustrate an example of the minimization problem, the 

scenario of purchase of mobile can be quoted. While buying a mobile, optimization 
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can mean cost to some customers. In this context, minimizing cost will be the 

objective and hence it is easy to provide a solution. In other cases, purchasing mobile 

may be related to many factors such as cost, power backup, screen size, front camera 

resolution, back camera resolution, music quality, RAM capacity and many more. In 

such cases, the goal of a selfie lover will be to find mobiles that satisfy conditions 

such as the affordable price, average power backup, large screen size, high front 

camera resolution, average back camera resolution, average music quality and high 

RAM capacity. In the case of a music lover, the optimization constraints can differ 

such as the affordable price, high power back up, medium screen size, average front 

and back camera resolution, high music quality and high RAM capacity. 

The first scenario of purchasing mobile can be described as a Single Objective 

Optimization (SOO) problem while the second and third scenarios can be defined as 

Multi-Objective Optimization (MOO). Therefore, optimization can be generally 

categorized into single objective and multi-objective optimization. SOO is relatively 

easy whereas MOO problems are complex, expensive and time-consuming.  

In computational terms, optimization involves minimization or maximization of one 

or more objective functions involving some integer or real variables. On being 

provided with a specific domain along with its constraints, the main motive of 

optimization is to investigate the means of attaining the best value of the objective 

function. A simple mathematical representation of the optimization problem can be 

formulated as follows: 

Given a function 𝑓: 𝐵 → 𝑆 from some set of the real numbers, the goal is to find an 

element x0 in B such that 𝑓(𝑥0) ≤ 𝑓(𝑥)  for all x in B in the case of minimization or 

𝑓(𝑥0) ≥ 𝑓(𝑥) for all x in B in the case of maximization problems. Here B refers to a 

subset of the Euclidean space S. S is a collection of entities, namely constraints, 

equalities, and inequalities. The elements of B owe to satisfy these entities and are 

called as a candidate or feasible solutions. B, which defines the domain of f, is 

referred to as the search space. A feasible solution which optimizes the objective is 

called the optimal solution. Thus, optimization can also be realized by exploring and 

exploiting the search space of solutions to a problem in order to identify the optimal 

solution. The following sub-sections provide a detailed overview of SOO and MOO 

techniques. 
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1.1.1 SINGLE OBJECTIVE OPTIMIZATION (SOO) 

As the name suggests, the primary motive of SOO is to identify the best solution that 

is associated with the minimum or maximum of a single objective function. There can 

be only one global solution in this case. Hence it is relatively easy to identify the 

solution. MOO problems are more complex than SOO problems and are discussed in 

the following sub-section.  

1.1.2 MULTI-OBJECTIVE OPTIMIZATION (MOO)  

MOO deals with two or more objectives [1]  and these objectives may be conflicting 

and contrary. In such cases, it is very difficult to get a single optimal solution. The 

interactions among the different objectives may give rise to a collection of 

compromised solutions. It is often termed as trade-off or pseudo-optimal or quasi-

optimal solutions. Many real-world problems involve many objectives and MOO can 

best fit the scenario to identify the optimal solution. Some basic and primary 

definitions of the support of MOO are stated briefly as follows. 

MOO problems [2] can either be convex or non-convex. All the objective functions of 

an MOO problem are convex when the function is convex. A function f: Rn →R is 

convex if for any two pairs of solutions x1, x2∈ Rn, it satisfies the  

condition   𝑓(𝛿𝑥1 + (1 − 𝛿)𝑥2 ≤ 𝛿𝑓(𝑥1) + (1 − 𝛿)𝑓(𝑥2)  for all 0 ≤ 𝛿 ≤ 1 

A characteristic means to express a solution is by means of Pareto Optimality [3]. The 

strategy has been initially introduced in [2] and later worked out by Vilfredo Pareto. 

A solution of 𝑥 ∈ 𝑅 is considered Pareto Optimal with regard to R only when there 

exists no 𝑥 ∈ 𝑅 for which 𝑣 =  𝐹(𝑥) =  (𝑓1 (𝑥), . . . , 𝑓𝑘(𝑥)) dominates  𝑢 =  𝐹(𝑥) =

(𝑓1(𝑥), . . , 𝑓𝑘(𝑥)). Such a solution is also known as non-dominated solution. In other 

words, a solution is called Pareto optimal if there are no other solutions that can 

dominate it. This solution cannot be enhanced through any one of the objectives 

without adversely affecting at least one other objective.  

Another commonly used terminology is Pareto Dominance [4]. A vector 𝑢 =

 (𝑢1, , . . . , 𝑢𝑘) is considered to dominate another vector 𝑣 = (𝑣1, . . . , 𝑣𝑘) (denoted by u 

≤ v) only when u is partially less than v, i.e., ∀𝑖 ∈ {1, . . . , 𝑘}, 𝑢𝑖 ≤ 𝑣𝑖 ∧ ∃𝑖 ∈

{1, . . . , 𝑘} ∶  𝑢𝑖 < 𝑣𝑖 . This concept is incorporated in multi-objective optimization for 
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the purpose of comparing and ranking the decision vectors: if u dominates v in the 

Pareto sense, then it signifies that F(u) is better than F(v) objectives, and there is at 

least one objective function for which F(u) is strictly better than F(v). 

Let 𝐹(𝑥) denote a MOO problem. Then, the Pareto Optimal Set 𝑃∗ for 𝐹(𝑥) can be 

interpreted as  𝑃∗  =  {𝑥 ∈  Ω |¬∃ 𝑥′ ∈  Ω 𝐹(𝑥′)  ≤  𝐹(𝑥)}. Based on this, the Pareto 

Front 𝑃𝐹∗ can be interpreted as  𝑃𝐹∗ = {𝑢 =  𝐹(𝑥) | 𝑥 ∈ 𝑃∗}. Typically, the Pareto 

Optimal set 𝑃∗ constitutes the entire collection of Pareto-optimal solutions while 

Pareto-Optimal Front 𝑃𝐹∗ comprises the mapping of Pareto-Optimal solutions in the 

objective space. In the Pareto spirit, minimum in the Pareto sense becomes the border 

of the design space. Alternatively, it can also be defined as the locus of the tangent 

points of the objective functions [5]. Figure 1.1 shows this strategy evidently. In the 

figure, a bold line is used to denote the border line of a problem that has two 

objectives for optimization. The region of points defined by this bold line is called the 

Pareto Front. 
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Figure 1.1: Pareto Front 
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The concept of trade-off in the MOO can be defined in terms of Pareto optimality 

where the goal is to achieve the set of all Pareto optimal solutions or, at least, a good 

approximation of this set. An alternative method would be to convert the MOO 

problem into a single objective by using an approximation approach of the multiple 

objectives and can be found Pareto optimal solutions by solving these SOO problems 

using various weights. However, if certain conditions are not met, not all Pareto 

optimal solutions will be found by means of such method. 

Some strategies are followed for computing the fitness based on the various 

conflicting objectives. The fitness assignment for MOO techniques can be grouped 

into different categories such as Aggregative, Lexicographic, Sub-population, Pareto-

based, and Hybrid methods. Both SOO and MOO problems find manifold 

applications. The next sub-section spotlights on these applications. 

1.1.3 APPLICATIONS OF SINGLE OBJECTIVE AND MULTI-OBJECTIVE 

OPTIMIZATION  

Optimization is indeed a part of human life. It has its application in almost every field 

of concern. However, a few domains demand computationally effective solutions. 

They include engineering optimization problems such as tension/compression spring 

design optimization, welded beam design optimization, pressure vessel design 

optimization, speed reducer design optimization, disc brake optimization etc., 

computer vision and image processing optimization problems such as curve fitting 

optimization, threshold optimization, segmentation optimization, registration 

optimization, filtering optimization etc. Out of the diverse applications, 

tension/compression spring design optimization, welded beam design optimization, 

disc brake optimization and multi-level threshold optimization have been taken as 

case studies in this research.  

In the perspective of SOO optimization, tension and compression spring design 

optimization problem deal with weight minimization of the spring, subject to 

constraints of minimum deflection, surge frequency, shear stress, and limits on 

outside diameter and on design variables. Similarly, the motive of welded beam 

design optimization is cost minimization, subject to a set of constraints on shear 

stress, bending stress in the beam, buckling load on the bar PC, end reflection of the 
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beam and side constraints. In the case of multi-level Thresholding for image 

segmentation, the task is to determine the optimal value of the threshold, a parameter 

used for Thresholding. 

In the perspective of MOO, the goal of the welded beam problem is to minimize both 

the end deflection and the fabrication cost, subject to length of the welded area, the 

thickness of the main beam and its width and depth. Similarly, the aim of disc brake 

design optimization is to minimize the braking time and overall mass, subject to 

design variables such as outer radius of the discs, the inner radius, the number of the 

friction surface and the engaging force and design constraints such as temperature, 

pressure, length of the brake and torque.   

Having presented an overview of the problem of optimization and its kinds, the 

following section presents the various optimization techniques adopted. 

1.2 OPTIMIZATION TECHNIQUES  

As mentioned earlier, optimization is the finding of the optimal (maxima or minima) 

solution of a given problem under some circumstances. It may be single objective or 

multi-objective and constrained or unconstrained in nature.  

Optimization techniques can be categorized into two types namely exact methods and 

stochastic (approximate) methods [6]. The exact methods identify the best possible 

solution. Brute force search, branch and bound, dynamic programming, cutting plane 

method etc., come under this category. These are highly efficient for small sized 

problems. On the other hand, stochastic (approximate) approaches are efficient for 

large and complex NP-hard problems [7]. These do not guarantee for optimal 

solutions but attempt to obtain quasi-optimal solutions in a reasonable amount of 

time. Evolutionary algorithms, stochastic hill climbing, swarm algorithms, simulated 

annealing etc., belong to this category. Most of these stochastic approaches have been 

derived from the concepts of nature and biology. A brief overview of these techniques 

is provided in the following sub-section. 

1.2.1 EXACT METHODS 

Exact methods are designed to find only the optimal solution without any 

compromise. They consume long time to arrive at the solutions and hence become 
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inappropriate when the search space is very large. On the other hand, for problems 

with a smaller search space, they provide the best solutions. A few kinds of exact 

methods are presented here. 

 BRUTE FORCE SEARCH 

Brute Force search involves building all the admissible solutions and thereby attaining 

the optimal solution. This is the best method to find the optimal solution but is not 

efficient as it will take exponentially longer times even if there is a marginal growth 

in the size of the search space. Hence, other techniques which do not explore the 

entire search space but find the global optimal solution is sought. One such method is 

a branch and bound technique and is discussed subsequently. 

 BRANCH AND BOUND  

The branch and bound technique assume the candidate solutions as a tree with the root 

holding all the solutions. The branches depict the subset of the solutions. Hence, the 

branches are explored from top to bottom till a particular optimal solution is 

identified. Prior to the exploration of a particular branch, it is checked against the 

upper and lower bounds on the optimal solution. The branch is discarded without 

further exploration if it cannot yield a better solution than the one identified by the 

algorithm till then. Thus, a few admissible solutions, which cannot be optimal 

solutions, are discarded without building it thus saving time.  

 DYNAMIC PROGRAMMING 

Dynamic programming views a complicated problem as a collection of simpler sub-

problems. It finds the solutions of the simpler sub-problems only once and saves it for 

future use. In case, the sub-problem is encountered again, then it is not computed but 

the already obtained solution is utilized thus, saving the computational time. Dynamic 

programming is advantageous if the complex problem can be divided into overlapping 

simpler sub-problems.  

 CUTTING PLANES 

The cutting plane technique involves cutting planes which are hyperplanes delineating 

the current point from the optimal point. The process refines the candidate set by 

means of linear equalities called cuts. They are highly appropriate for mixed integer 
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linear programming problems. The technique operates through solving a non-integer 

linear program with an assumption that an extreme or corner point that is optimal can 

be found. The hence obtained optimum is checked for being an integer solution. If it 

is not an integer solution, then a linear inequality that separates the optimum from the 

convex hull of the candidate solution set will exist. Determining this inequality is the 

problem of identifying the cut. This process is repeated until an optimal integer 

solution is found.  

Having provided an account on a few of the exact optimization techniques, the 

following sub-section presents the approximate techniques for optimization.  

1.2.2 APPROXIMATE METHODS 

The approximate methods aim to identify the quasi-optimal solution in a considerable 

time. These methods primarily adopt many heuristics to explore the search space and 

can also be called as meta-heuristic algorithms [8]. Some heuristics have their roots in 

the concepts of nature and biology and hence these techniques are formulated based 

on the concepts of nature and biology and referred to as bio-inspired algorithms. The 

following section provides a brief note on the meta-heuristic and bio-inspired 

optimization methods [9].   

 EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms, one of the typical illustrations of bio-inspired algorithms, are 

inspired by the biological evolution process [10], It incorporates concepts such as 

selection, reproduction, crossover, mutation, and survival of the fittest. Feasible 

candidate solution set forms the population and each solution represents an individual. 

Initially, a few individuals are selected for the process. The fitness function evaluates 

its quality. Then, the reproduction process is performed to produce offsprings. The 

process continues until a termination criterion is met. It may be the number of 

generations or the ideal fitness value. Genetic algorithms, Genetic programming, 

Evolutionary programming etc., are the widely adopted evolutionary algorithms in the 

context of optimization.   

Genetic Algorithms are one of the extensively used evolutionary algorithms It 

realizes the solution in the form of bit vectors or string of numbers, characters etc.  
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Genetic Programming represents solutions in terms of computer programs or tree 

structures. The fitness function evaluates the potential of the program to solve a 

computational problem.  

Evolutionary Programming is similar to Genetic Programming in the context that it 

also represents solutions in the form of computer programs. But in this case, the 

structure of the computer program is fixed while the numeric parameters of the 

program evolve.  

 SWARM ALGORITHMS 

Swarm algorithms are inspired by the biological ecosystems and mimic the 

interactions among various organisms and its interactions with the environment [11]. 

The intelligent agents interact with each other and with the environment through 

simple rules in a decentralized environment where no central control structure would 

instruct on how to behave and interact. Particle Swarm Optimization, Artificial Bee 

Colony, and Ant Colony Optimization etc. are the sterling examples of swarm 

algorithms.  

Particle Swarm Optimization (PSO) algorithm considers the solution as a point or 

surface in the n-dimensional space [12]. Initially, the particles are randomly chosen 

with an initial velocity and a communication channel is established among the 

particles. The algorithm proceeds by moving the particles and computing the fitness at 

regular time intervals. Over time, the particles accelerate towards an optimal solution, 

thereby producing higher fitness values.  

Ant Colony Optimization (ACO) algorithm depicts the behavior of ant colonies 

[13]. The ants lay down pheromones leading each other to resources while at the same 

time exploring the environment. In an ant colony algorithm, the intelligent ant agents 

marked their best positions and the potential of their solutions so that in a lesser 

amount of time more ants find better solutions. 

Artificial Bee Colony Algorithm (ABC) is an optimization algorithm that is inspired 

by the honey bee [14] The algorithm imitates the food foraging behavior of bees. In a 

bee hive, scout bees go in search of food source. After some time they return to their 

hive and harvest the food. The bee that has identified the huge amount of profitable 
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food source performs a waggle dance to notify other members about the rich source of 

food. The length of the dance will be proportional to the quality of profitability. Then, 

more foragers are recruited to proceed with further exploration of the identified area 

of the rich source of food. Similarly, in bee optimization, the candidate solutions are 

analogous to the food source and a population of bee agents is used to explore the 

search space. The algorithm involves recruitment, local search, neighborhood 

shrinking, site abandonment and global search. The cycle is iterated for a specified 

number of times or until an optimal solution is attained.  

Cuckoo Search (CS) emulates the brooding behavior of cuckoos [15]. Cuckoo lays 

its egg in the nest of other hosts . When the host identifies it as an alien egg, it either 

gets rid of the egg or abandons the nest. In cuckoo search algorithm, the eggs form the 

potential solutions and the number of nests remains fixed. The host can identify the 

alien egg based on a probability. On identifying the egg, it abandons the nest and 

builds a completely new nest. 

Bat Algorithm (BA) is inspired by the hunting behavior of bats [16]. It is rooted in 

the concept of echolocation behavior of microbats. During the search for its prey, 

pulse emission rate and loudness revealed by bats is mimicked in the bat algorithm. It 

incorporates tuning of frequency to elevate the diversity of the solution in the 

population, but at the same time, it adopts the automatic zooming concept and 

attempts to maintain a balance between the exploration and exploitation during the 

search process. The auto zooming ability in microbats is manifested as the automatic 

adjustment from exploration to exploitation to approach the global optimality. Bat 

Algorithms is considered as one of the first kind of algorithms that balance these two 

key components in the search process. 

Firefly algorithm (FA) is another optimization algorithm that imitates the behavior 

of insects [17]. This algorithm is inspired by the flashing light behavior of fireflies. 

The flashing light is used for courtship signals and as a protective mechanism. The 

firefly search algorithm is based on the light intensity and attractiveness of fireflies. 

The brightest firefly represents the optimal solution. 
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 SIMULATED ANNEALING 

Simulated Annealing (SA) is based on the strategies adopted in the field of metallurgy 

[18]. The concept of heating and controlled cooling to increase the size of the crystal 

and decrease its defect is grabbed in simulated annealing. The technique operates on a 

search space where the choice of moving to another solution is based on one of the 

two probabilities, which are based on whether the new solution is better or worse than 

the current solution. The temperature is decreased from a positive value towards zero 

and this affects both the probabilities.  

 GRAVITATIONAL SEARCH OPTIMIZATION 

Gravitational Search Optimization (GSO) is another class of optimization technique 

with a different strategy for searching [19] . It is primarily rooted on the basis of the 

law of gravity and the idea of mass interactions. This technique considers the distance 

between the neighboring agents to update the position of the currently considered 

agent. In this algorithm, the agent is characterized by four parameters namely (i) 

position (ii) inertial mass (iii) active gravitational mass and (iv) passive gravitational 

mass. The solution is indicated by the position of the mass. Fitness measures are 

incorporated for the purpose of calculating the gravitational and inertial masses. The 

inertia mass parameter, which is used for updating the agent movement, is inversely 

proportional to the motion of the agent. A bigger inertia mass facilitates slower 

motion of the agents in the search space. This leads to a more precise local search 

with increased diversity in search space. On the other hand, higher the gravitational 

mass, higher will be the attraction of agents, thus leading to a faster convergence. The 

algorithm proceeds by adjusting these two masses namely the gravitational and inertia 

masses, wherein each mass signifies a solution. The masses are attracted by the 

heaviest mass. Hence, the heaviest mass offers an optimal solution in the search 

space. 

 ELECTRO-MAGNETISM OPTIMIZATION 

Electro-Magnetism Optimization (EMO) is a metaheuristic algorithm based on the 

attraction-repulsion mechanism to move the sample points towards the optimality 

[20]. Here, each sample point is anticipated as a charged particle that is released to 

space. The objective function value is the charge of each point that has to be 

optimized. This charge defines the magnitude of attraction or repulsion of the point 
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over the sample population; the higher the magnitude of attraction, the better the 

objective function value. After calculating these charges, they are used to find a 

direction for each point to move in subsequent iterations. This direction is selected by 

evaluating a combination force applied to the point via other points.  

 STOCHASTIC HILL CLIMBING 

Stochastic hill climbing is a variant of the deterministic hill climbing. The algorithm 

moves to a nearby solution only if it can yield improvement over the current solution. 

The stochastic version is implemented to overcome the local optima problem 

encountered by the deterministic version.  

Mother Nature has always been an unending source of inspiration for the scientific 

community. The behavior of genes, bees, bacteria, glow worms, slime molds, 

cockroaches, mosquitoes, crickets, Firefly, cuckoo and other organisms have inspired 

researchers to develop new optimization algorithms for solving numerous SOO and 

MOO problems due to the inherent simplicity, effectiveness, and efficiency observed 

in their behavior.  A few of these algorithms are spotlighted here. 

Similarly, the behavior of many insects, birds, and animals are imitated to devise 

optimization algorithms. The following section presents an account of the swarm 

characteristics of another insect cricket, whose characteristics are exploited to 

formulate an optimization technique in this research.  

1.3 CHARACTERISTICS OF CRICKET 

Cricket belongs to the family of Gryllidae. They are insects resembling very close to 

bush crickets and grasshoppers. They are nocturnal and hide themselves during the 

day. For their defense, they adopt camouflaging, fleeing, colorings and aggression 

[21] [22]–[26]. Another unique characteristic of the crickets is their chirping. Mostly, 

only male crickets possess this feature while female crickets do not chirp. The male 

crickets produce a loud chirping sound by scraping two specially textured limbs 

together. The crickets chirp differently on different occasions. The chirping song can 

be categorised as (i) calling song, which attracts female crickets for mating and repels 

the male crickets (ii) counting song, which signifies that the female cricket is ready to 

mate (iii) the triumph song after mating to encourage the female to lay eggs and (iv) 
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the aggressive calling, which is triggered when another male cricket nears it with the 

intention of fighting. Figure 1.2 shows the natural behaviors of cricket. 

 

 

 

 

 

 

 

 

 

The chirping rate varies among the various species of the crickets and is dependent on 

the temperature of the surroundings. The chirping rate increases with the increase in 

temperature. The forecasting of temperature through chirping rate and frequency 

tuning of chirping has been modeled to solve computational problems. The chirping 

behavior is a unique feature of these insects and they chirp with unique frequency and 

loudness for every action. The chirping of the crickets thus inspires this research to 

formulate an optimization algorithm that could solve both single and MOO problems.  

The following section provides a note on the research overview. 

1.4 RESEARCH OVERVIEW 

The outline of the work done in this research is presented in this section. The research 

focuses on formulating a nature-inspired optimization technique that suits SOO and 

MOO problems. Primarily, the chirping behavior of crickets is mimicked to devise the 

optimization technique. The chirping behavior is a specialty for these insects. This 

specialty is incorporated to develop a new optimization technique that can solve real-

world complex optimization problems.  

Cricket 

Mating Fighting 

Figure 1.2 Cricket’s Natural Behavior  
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Figure 1.3: Research Overview 
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Initially, an SOO technique is developed. To devise this technique, the chirping 

characteristics of crickets and their movement in the environment for mating and 

aggression is emulated. Each cricket is considered as a feasible solution and is 

characterized by its position in the search space. Few of the crickets are assigned as 

females by the user. As mentioned already, only the male crickets can chirp and its 

chirping rate is based on the outside temperature.  

As any meta-heuristic algorithm is greatly influenced by the parameter settings, the 

fixing of parameter values is very important. Thus, subsequently, the parameters are 

tuned to suit the problems in hand. 

Subsequently, an MOO technique is designed to handle multi-objective problems. In 

this case, the algorithm has to handle conflicting objectives to provide an optimal 

solution. 

The multi-objective variant is extended and two variants are proposed. The variation 

is based on the fitness computation strategy. In the first type, the weighted sum 

strategy is adopted while in another, the Pareto notion is incorporated. Then, the 

potential of the proposed algorithms is justified through appropriate case studies.  

In figure 1.3, the complete research undertaken is shown. The Cricket Chirping 

Algorithm for single objective optimization (CCA) is inspired by the chirping of 

crickets during mating and aggression. It is formulated in the view of providing 

efficient solutions to SOO problems.  

Further, as the parameters of optimization algorithms greatly influence their 

performance, the performance tuning of the algorithm is emphasized. 

Then, Multi-Objective Cricket Chirping Algorithm (MOCCA) is developed as an 

extension to CCA in order to support the MOO problems. The strategy of weighted 

sum and Pareto has been used for this purpose.  

Then, appropriate case studies are taken to justify the potential of the proposed 

algorithms. Optimization of tension and compression spring design, welded beam 

optimization and multi-level Thresholding for image segmentation are chosen as case 

studies for SOO and the design of welded beam and disc brakes are selected for multi-

objective optimization.  
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The research thus focuses on providing efficient SOO and MOO techniques. The 

following section provides the organization of the remaining chapters of the thesis. 

1.5 ORGANIZATION OF THE THESIS 

This section describes in detail about the overall structure of the thesis. 

CHAPTER 2 

This chapter presents the literature review of the existing meta-heuristic algorithms 

proposed for single and multi-objective problems. It also presents the earlier work on 

optimization of the various case studies undertaken.  

CHAPTER 3 

In this chapter, the problem is defined clearly with the motivation and objectives of 

this research. The objective of this research is to develop a bio-inspired meta-heuristic 

optimization algorithm for SOO and MOO problems. Further, the scope of the work 

and research methodology is described. 

CHAPTER 4 

In this chapter, the details of the design and development of Cricket Chirping 

Algorithm (CCA) for SOO is projected. Further, the experimental results and analyses 

on benchmark problems are given along with statistical analysis using ANOVA. 

CHAPTER 5 

The performance of the meta-heuristic algorithms is primarily based on the apt 

selection of parameter values. In this chapter, the fine-tuning of various parameters of 

the proposed algorithm is discussed. The fine-tuned algorithm is compared with the 

existing state of the art algorithm and statistical analysis using ANOVA is carried out.  

CHAPTER 6 

The CCA is extended to suit the MOO problems. The design and implementation of 

this algorithm, Multi-Objective Cricket Chirping Algorithm (MOCCA) are detailed in 

this chapter. The two strategies adopted for handling the multi-objectives is presented 

in detail and the comparison with benchmark problems are highlighted. A statistical 

analysis using ANOVA is also carried out. 
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CHAPTER 7 

Various case studies are undertaken to prove the effectiveness of the proposed 

algorithms. Appropriate case studies in terms of SOO and MOO are taken into 

consideration. The proposed algorithms are used to solve the problems and the 

experimental results are analyzed. 

CHAPTER 8 

This chapter provides the conclusions derived from this work and discusses the 

possible future enhancements. 
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Chapter 2 

LITERATURE SURVEY 

This chapter describes the existing work related to meta-heuristic optimization 

algorithms. The chapter initially presents a detailed overview of the various 

extensively used meta-heuristic algorithms in the view of the SOO. Then, the 

commonly used fitness strategies for extending the SOO to MOO techniques are 

reviewed. Then, the popular variants of meta-heuristic algorithms for MOO are 

presented. Subsequently, the earlier works on the optimization of the case studies 

undertaken are presented. The following section presents the various meta-heuristic 

algorithms for SOO. 

2.1 META-HEURISTIC OPTIMIZATION TECHNIQUES FOR 

SINGLE OBJECTIVE OPTIMIZATION 

This section presents some classes of popularly used meta-heuristic algorithms that 

have been used for SOO problems. They include Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony 

Optimization (ABCO), Cuckoo Search Optimization (CS), Bat Algorithm (BA), 

Firefly Algorithm (FA), Gravitational Search Algorithm (GSA) and Electro-

Magnetism Optimization (EMO). The following sub-sections present these techniques 

and its variants in detail with the main emphasis on SOO.  

2.1.1 GENETIC ALGORITHMS  

Genetic Algorithms (GA) is one of the extensively adopted Evolutionary algorithms, 

developed by John Holland in the year 1970, being inspired by the theory of evolution 

[27]. The algorithm starts with an initial population. The initial population comprises 

of a set of individuals, representing feasible solutions and fitness of each individual is 

evaluated. Then a selection process is performed in order to decide which individuals 

should go to the mating pool for crossover and mutation. The selected individuals are 

operated through genetic operators namely crossover and mutation to produce new 

offspring. The crossover and mutation are carried out based on the pre-defined 

probabilities. Crossover is done in the view of identifying stronger individuals while 

mutation is done to bring out diversity in the solution. Then, the fitness of the new 
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offspring is identified. The process is repeated for several iterations as set by the user 

or till convergence. This imitates the survival of the fittest.  

Variations in Genetic Algorithms pertain to variations and proposals of new genetic 

operators, selection methods, representations etc. Variations can also pertain to hybrid 

methodologies that combine GA with other techniques to improve its potential. The 

concept of elitism has been introduced into the standard GA. This strategy retains the 

best individual of the current generation and carries it to the next generation. The 

individual is not altered by means of the genetic operators. Similar to crossover 

probability, and mutation probability, the number of elitists can also be set as a 

parameter to the algorithm.  

Applications that use GA and its variants include various problems [28]. It has also 

been providing efficient results for engineering optimization problems. GA is an 

appropriate choice when fitness evaluation is very complex 

2.1.2 PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) is one of the oldest algorithms in the context of 

population-based swarm intelligence meta-heuristic optimization approach. It has 

been put forth by Eberhart and Kennedy in the year 1995 [29]. The algorithm is 

primarily motivated by the flocking behavior of birds and schooling of fishes. In PSO, 

the swarm is the population of the algorithm and particles (individual) are the member 

in swarms that represent the potential solution. Some basic terminologies in PSO are 

as follows: 

With respect to position, there are three parameters, namely; (i) pbest, that represent 

the personal best position of a given particle till then, (ii) lbest, the local best, that 

depicts the position of the best particle member of the neighborhood of a given 

particle and (iii) gbest, the global best that signifies the location of the best particle in 

the entire swarm. The particles are initialized at random positions and they keep 

moving with a certain velocity till the global best improves no longer. The parameter 

Velocity (vector) is utilized to determine the direction and speed in which a particle 

should travel in order to enhance its present position. The inertia weight (w) is 

incorporated to govern the influence of the earlier velocities on the present velocity of 

a provided particle. There exist two Learning factors C1 and C2. C1 is the cognitive 
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learning factor signifying the attraction of a particle towards its own success while C2 

is the social learning factor representing the attraction of a particle towards the 

success of its neighbors. These learning factors are usually constant that is defined 

during the inception of the procedure. Neighbourhood topology signifies the set of 

particles that contribute to the computation of the local best value (lbest) of a given 

particle. 

The particles denote the individual feasible solutions. Each particle changes its 

position based on its own experience and also the experience of its neighbors. This is 

incorporated by storing the best position visited by it and its neighbors and based on 

this the local and global positions are determined. [13] PSO involves two main 

operations namely updation of velocity and updation of position. Every particle in the 

swarm is geared to march towards its best-known position and the global best 

position. After that, the velocity of each particle is recomputed based on its present 

velocity, the distance from its previous best position and the distance from the global 

best position. This recomputed velocity is then employed to estimate the next position 

of the particle in the solution search space. This process is iteratively performed for a 

predefined number of times or until a minimum error is accomplished. PSO or 

hybridization of PSO has been widely utilized in solving the single optimization 

problems because of its high convergence speed and relative simplicity [30]. 

However, the effectiveness of the algorithm greatly depends on the proper selection of 

parameter values as inappropriate parameter values easily pave the way to divergent 

results.  

2.1.3 ANT COLONY OPTIMIZATION  

Ant Colony Optimization (ACO) has been introduced by Dorigo in the year 1992 

[31]. It has been developed by emulating the activities of real ant colonies and has 

been put to use in solving optimization problems. The meta-heuristics involved in 

ACO is primarily based on the strategies adopted by ants while in search of food. 

During its search for food, the main motive of ants is to identify the shortest path 

between its nest and the food source. Every path established by the ants portrays a 

potential solution to the problem under consideration. During its forage, ants lay down 

a chemical substance known as pheromone. Through these deposits of pheromone, the 

ants tend to communicate with each other locally. This indirect communication 



 
 

21 
  

mechanism is known as stigmergy. On identifying a path between its nest and food 

source, the ants deposit a certain quantity of pheromone in the path in order to 

influence other ants to take the same path. This is called positive feedback. As a result 

of successive deposits of pheromone on the same path, more ants tend to take this 

path which in turn results in still more pheromone getting deposited and subsequently 

still more ants will get attracted to it. Various variants of ACO are proposed for 

solving different types of SOO problems. 

Ant systems [32], a variant of ant colony optimization, has been advocated with 

exclusive characteristics such as positive feedback, distributed computation and the 

utilization of a constructive greedy heuristic. It has been evaluated on the traveling 

salesman problem and the results report superior performance when compared with 

the performance of tabu search and simulated annealing. ACO has been employed to 

optimize the job shop scheduling problem [33]. The ACO approach adopts a local 

search technique namely food stepping in order to explore the solution space. In 

contrast to many other local search techniques, the food stepping technique is not 

problem specific and is flexible owing to the fact that it does not modify the ant 

system algorithm. On the other hand, it alters the information collected by the ants to 

enhance the current solution. The ACO methodology is used in the field of data 

mining for the purpose of classification. An ant-based classification technique called 

AntMiner [34], [35] is put forth with specific characteristics namely better performing 

max-min ant system, a clearly defined and augmented environment for the ant to 

move, the inclusion of class variables to tackle the multi-class problems and the 

capability to include interval rules in the rule list. The parameters have been tunes 

through an automated process. The performance reveals that it achieves better 

classification performance than traditional classification procedures.  Subsequently, 

an ACO system named continuous orthogonal ant colony has been put forward for 

solving the continuous optimization problems more effectively [36], [37]. In this 

technique, the pheromone deposit mechanisms facilitate the artificial ant agents to 

search for solutions collaboratively and selectively. Through the incorporation of the 

orthogonal design strategy, ant agents in the feasible solution domain have the 

capacity to explore their chosen regions rapidly and efficiently. In addition to this, the 

inclusion of the adaptive regional radius reduces the risk of being caught into the local 
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optima and therefore enhances the global search capability and accuracy [38]. An 

elitist strategy is also incorporated in the motive of retaining the most valuable points.  

2.1.4 ARTIFICIAL BEE COLONY OPTIMIZATION  

The Artificial bee colony (ABC) algorithm is one of the most popular swarm based 

evolutionary methods developed by D. Karaboga and B. Basturk [39] based on the 

foraging behavior of honey bees. The most essential and motivating characteristics of 

the bee are their foraging behavior, how they search the food source and collect the 

nectar and bring success to their hive. In real bee colony, the bees can be categorized 

into three types like scout bee, employed bee, and onlooker bee. The scout bees 

(unemployed bee) explore the food source and share the food source information with 

other bees by a special dance called waggle dance. The onlooker bees make the 

decision to choose food source by observing the dance regarding food source; the 

amount of nectar and direction of the source. In a powerful search process, both the 

process of exploration and exploitation should be performed simultaneously. In order 

to execute both the exploration and exploitation processes together, the exploration 

process is managed by the scout bees while the exploitation process is taken care of 

the employed bees and onlookers. The total cardinality of employed bees and the 

onlookers constitute the cardinality of the total population. The employed bee is 

transformed into a scout bee when its food source is exhausted. The position of a food 

source constituting a considerable amount of nectar depicts a possible solution to the 

optimization problem. 

The ABC algorithm has been adopted for many applications. ABC algorithm has been 

utilized to deal with discrete optimization problem namely the leaf constrained 

minimum spanning tree problem [40]. In this problem, a spanning tree of minimum 

weight but having at least l leaves is sought for in an undirected, connected and 

weighted graph. ABC algorithm has been employed in order to reconstruct the gene 

regulatory network from the gene expression data [15]. In this technique, the notion of 

crossover and mutation has been incorporated to enhance the performance of ABC. 

The technique has also been put to use in noise-free and noisy time series datasets.  

The ABC root inference method has shown its potential in discovering considerable 

gene regulations and it has also shown comparable results when compared against its 

counterparts. 
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A memetic ABC algorithm has been put forth in [41]. In this, the technique only the 

best particle of the current swarm updates itself in its proximity. The memetic ABC 

algorithm involves four phases namely employed bee phase, onlooker bee phase, 

scout bee phase and the memetic search phase. Subsequently, a randomized memetic 

ABC has been suggested to improve the local search potential of the algorithm. It also 

involves four phases, out of which the first three are similar to memetic ABC while 

the fourth step is incorporated with two new parameters, whose values are arbitrarily 

chosen every time. During the fourth phase, global section search is utilized for 

producing solutions in proximity to the best solution. Experimental results show the 

improved performance in the context of reliability, efficiency, and accuracy. 

2.1.5 CUCKOO SEARCH OPTIMIZATION 

The Cuckoo Search (CS) Algorithm is introduced by Yang and Dev. It is rooted in the 

parasitic behavior and flight behavior of birds. It mimics the obligate brood parasitic 

behavior of few cuckoo species and the flight characteristics of some birds. The 

cuckoos lay its eggs in other bird’s nest. In case the host bird identifies the alien egg, 

then either it gets rid of the egg or leaves the nest and build a completely new nest. 

This behavior is emulated in the CS algorithm [42]. Then, a Binary Cuckoo Search 

algorithm (BCS) has also been put forth to solve binary optimization problem based 

on a sigmoid function by [43]. They have potential applications in the domain of 

routing, job shop scheduling and flow shop scheduling. The standard cuckoo search 

algorithm represents the solutions in the form of a set of real numbers. In order to 

extend it to binary cuckoo search, these must be converted into binary. The binary 

cuckoo search is characterized by levy flights that are used to obtain a new cuckoo 

and binary representation to estimate the flipping chance of each cuckoo through 

sigmoid function. Other than that, the selection and objective function estimation is 

similar to standard algorithms.  

Another variant of cuckoo search is the discrete cuckoo search algorithm (DCSA) 

[44]. It has been primarily adopted to solve Travelling salesman problem (TSP) in 

various ways. It has been operated on specific domain specific parameters to gear up 

the convergence. Then, Ouaarab et. al. have proposed a new category of cuckoos, 

thereby rebuilding the population to solve TSP, combinatorial and continuous 

problems effectively. Another variant of DCSA with two phases has been put forward 
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[45]. During the initial phase, discrete step size denoting the distance between the 

cuckoo and best cuckoo in the generation is computed. During the second phase, the 

cuckoos are updated using the step size and a random step length derived from levy 

distribution called levy flight. 

Yet another variation of the cuckoo search algorithm is the modified cuckoo search 

algorithm (MCSA) [46]. With regard to unconstrained optimization problems, an 

MCSA has been advocated. The variation is proposed in the context of determining 

the step size. A random walk in a biased way with some random step sizes through 

the application of a different function set has been introduced to determine the step 

size. Subsequently, MCSA with rough sets has been introduced in [16]. In this 

method, the fitness function is formulated through two factors namely the number of 

features and the classification quality. The number of features is reduced which 

signify that the number of learning parameters is decreased, thereby yielding a faster 

convergence. Another variant called One-Rank CSA has been suggested. In this 

technique, the exploration and exploitation phases are integrated to produce new 

solutions. In basic CSA, exploiting new solutions is achieved based on Levy flights to 

achieve large moves. In some cases, the solutions can also skip the solution space as 

the step size is based on the scale of the problem. In this method, optimal utilization 

of Levy flight and elimination of invalid randomly selected solutions is efficiently 

handled. Then, Dinh et. al [47] has recommended an MCSA for Short-term 

hydrothermal scheduling by considering the existence of reservoir volume, fuel cost 

function thermal unit and power losses in the transmission line. The method tries to 

provide a new CSA solution based on alien egg discovery. Based on the value of their 

fitness function, all eggs are partitioned into high or low quality. The best egg selected 

will be used to obtain the increased value. 

2.1.6 BAT ALGORITHM 

Bat algorithm, inspired by echolocation behavior of microbats, is put forth by Yang 

[48]. Bat algorithm (BA) incorporates frequency tuning to increase the diversity of 

solutions while at the same time adopts automatic zooming in the view of trying to 

maintain a balance between exploration and exploitation during the process of 

searching thus mimicking the variations of pulse emission rates and loudness of bats 

when hunting for its prey. The characteristics of BA are as follows: All bats in the 
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search space employ echolocation in order to sense distance. The bats are also capable 

of distinguishing the food/prey as against the background obstacles barriers. Bats 

make their flight randomly characterized with a velocity vi at position xi with a 

frequency fmin, varying wavelength λ and loudness A0 in the view of recognizing its 

target prey. They have the potential to regulate the wavelength (or frequency) of their 

emitted pulses and also modify their rate of pulse emission r ∈ [0,1] automatically in 

accordance with the proximity of their target. Though there are many possible 

variations in their loudness, for simplicity it is defined tat the loudness varies between 

a large (positive) A0 to a minimum constant value Amin. 

Though BA has many advantages, the primary advantage is attaining a quick 

convergence during its inception stage itself by switching from exploration to 

exploitation. Hence it becomes very appropriate for applications such as classification 

when faster results are expected. Though it converges very quickly, in some cases, it 

might get stuck in the local optimum. Hence many strategies have been adopted to 

increase the diversity of the solutions.  

A variant which integrated the K-Means clustering procedure and the BA has also 

been advocated in the view of superior performance in clustering. The chaotic search 

has been incorporated into Bat Algorithms to result in Chaotic Bat Algorithms [49]. It 

adopts Levy flights and chaotic maps to perform parameter estimation in dynamic 

systems. Then, a binary version of the BA has also been put forward [17]. It is a 

discrete variant of the original BA and has been highly appropriate in dealing with 

classification and feature selection problems. Subsequently, Differential operators and 

Levy flight operators have been incorporated into the BA. The Differential operators 

and Levy flight Bat Algorithm has demonstrated its effectiveness in function 

optimization problems. After that, Jamil et al [17] have proposed a variation of BA by 

including a combination of Levy flights and minor variations in loudness and pulse 

emission rates.   

Some other variants have also been proposed by grabbing a few concepts of other 

optimization algorithms. Mutation operator has been included in Bat algorithm with 

the view of improving the diversity of the solutions and tested in image matching 

applications. A hybrid version of Bat Algorithm and Harmony search algorithm has 

also been proposed and tested on numerical optimization of functions. 
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2.1.7 FIREFLY ALGORITHM 

Firefly Algorithms (FA) is another class of optimization algorithms put forth by Yang 

during the year 2008, being inspired by the flashing light behavior of fireflies [50]. 

The flashing of lights acts as a courtship signal for mating. The males emit their light 

and to its response, the female emits back the flashlight. They tune among themselves 

emitting a particular pattern of light and then initiate mating. This behavior is 

emulated in the swarm intelligence based firefly algorithms.  

The FA algorithm is primarily rooted in the physical characteristics of light intensity 

that decreases proportionally to the increase in the square of the distance. As the 

distance increase, the light may be absorbed and hence weakened. This concept is 

mainly utilized to design the objective function or fitness function. Some 

characteristics of fireflies that have been emulated in the optimization algorithm 

include the following: All fireflies are unisex and their attractiveness is proportional 

to their light intensity. The light intensity of the Firefly is based on the landscape of 

the fitness function. The original firefly algorithm has been very efficient in solving 

multi-modal optimization applications [51] and non-linear pressure vessel 

optimization [52].  

Several variants have been proposed to the original firefly algorithms. The random 

motion of the brightest firefly has been modified. The modification attempts to 

improve the current position of the brightest firefly through the generation of m 

uniform random vectors and taking it towards the best performance. A large variety of 

binary firefly algorithms have been put forth for solving different optimization 

problems. In order to convert the traditional FA into Binary FA, almost all 

components need to be modified to suit the representation. A binary FA [53] has been 

proposed for cryptanalysis of Merkle-Hellman Knapsack cipher thereby deciphering 

the plaintext from the ciphered text. Another binary FA [54] that adopts binary 

encoding of the solution, an adaptive light absorption coefficient for gearing the 

search and domain knowledge to handle infeasible solutions.  

A modified FA has been advocated to control the motion of fireflies. A Gaussian 

distribution has been utilized to control the speed and lead to convergence [55]. 

Though the randomization has been fixed, the parameters can be updated adaptively. 
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Another variant that incorporates the Levy flight into the motion of fireflies has been 

put forth [56]. Yet another variant that involves integrating the chaotic maps and the 

traditional FA has been introduced in the view of improving the convergence [57]. 

Then, a parallel version of FA has been put into operation [58] to improve the speed 

and quality of convergence.   

To add more, many hybrid versions of FA have been formulated. An eagle strategy 

has been combined with FA to produce better results [59]. Eagle strategy emulates the 

foraging behaviors of eagles. The Eagles move in a random manner in search of their 

prey and once they find the prey, they try to capture it as efficiently as possible. It 

involves a random search by Levy flight and an intensive local search, which is 

replaced by FA in the proposed methodology. A hybrid version of GA and FA has 

also been put forth in which the FA algorithm utilizes the crossover and mutation 

operators to produce strong and diverse solutions [60]. After that, Evolutionary 

Firefly algorithm has been introduced which combines the classical firefly algorithm 

and the evolutionary Differential evolution algorithm [69]. This hybrid algorithm 

aims to improve the search accuracy and the information sharing among the fireflies. 

Then, another hybrid variant that combines the FA with the local search heuristics has 

been suggested and applied to graph coloring problem and has proved its efficiency 

[61]. The FA algorithms have also been used along with the back propagation method 

in order to train a feed-forward neural network [79]. In this methodology, the FA 

algorithm has been incorporated into the back propagation model in order to 

accomplish faster and improved convergence. Yet another hybrid FA that integrates 

the cellular learning automata into FA for increasing the diversity of the solutions has 

been advocated [62] . Also, a flexible neural tree for dealing with microarray data has 

been put forth [63].  

FA and its variants can be used to solve optimization problems in any field. They 

have been extensively utilized in the fields of image processing, sensor networks and 

several other areas where optimization is very essential. 

Having provided a detailed account of many bio-inspired meta-heuristic algorithms, 

the following section presents an optimization technique named Gravitational Search 

Algorithm that has been inspired by the law of gravity. 
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2.1.8 GRAVITATIONAL SEARCH ALGORITHM 

Gravitational search algorithm (GSA) is developed by Rashedi et. al. in the year 2009 

[64]. The optimization algorithm is formulated from the concepts of the universal law 

of gravity. In GSA, a collection of objects interact with each other based on the law of 

gravity and low of motion. Each object characterizes a mass that represents the 

performance of the object and is computed through an appropriate fitness function. 

The position of the mass of the object depicts the solution to the problem. These 

positions are updated during every iteration and the best fitness of the object is kept 

track of. The algorithm proceeds by tuning the gravitational and inertia masses. 

Intuitively, the objects with heavier mass attract other objects. After executing a pre-

defined number of iterations, the best fitness of the corresponding object turns out to 

be the global solution to the problem. In general, there exist around nine parameters 

that have to be initialized and tuned for the operation of GSA. Some of them include 

the number of objects N, the number of objects with top fitness to be selected, number 

of iterations and a few parameters that control convergence, exploration, and 

exploitation. 

GSA has been effective in providing optimal solutions in various optimization 

algorithms. The two highlighting issues in the search process include parameter 

convergence at local optimum due to rapid reduction of diversity and rapid 

convergence at the initial stage and slow convergence near the optimum of the local 

search resulting in ineffective iterations thereby failing inaccurate estimation of the 

optimum. Thus, a number of variants of GSA have been proposed in the literature to 

improve its performance.  

Rashedi et. al., the founder of GSA, has proposed a variant of it namely the Binary 

Gravitational Search Algorithm (BGSA). It is based on the notion that if an object is 

very close to the global optimum, then its velocity should be near to zero. To 

incorporate this idea, a probability function is formulated for the absolute value of 

velocity such that the probability of changing the position is low for small values of 

velocity and probability of changing the position is high for large values of velocity. 

The main difference between continuous GSA and Binary GSA is that the position 

updates switches between 0 and 1 in BGSA whereas the updating of the force 

acceleration and velocity are all continuous as in the case of conventional GSA.The 
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BGSA has been evaluated on a range of uni-modal and multi-modal benchmark test 

functions and has demonstrated improved results.  

The traditional GSA is memoryless. Attempts have been made to incorporate the 

concepts of memory and social behavior from PSO into GSA in the view of 

improvement [65]. As PSO uses a memory to store the best previous position of a 

particle and incorporates a velocity update mechanism, a similar technique is included 

in GSA also. Then, Li and Zhou [19] have put forth an improved GSA through the 

incorporation of moving strategy in the search space obeying the law of gravity, 

memory and social information of PSO. Two constants namely c1 and c2 are defined. 

The parameters are tuned such that a balance is maintained between the effectiveness 

of law of gravity and memory and social information. When these constants are set to 

0, then it becomes the traditional GSA. The algorithm has been tested on parameter 

identification of hydraulic turbine growing systems. Khajezadeh et al [66] have 

proposed a controlled trajectory into the traditional GSA. This is done by defining a 

minimum and maximum velocity that an object can move. Also, a time-varying 

profile for velocity is defined. 

2.1.9 ELECTRO-MAGNETISM OPTIMIZATION 

The Electro-Magnetism Optimization (EMO) has been developed by getting inspired 

by the principles of electromagnetism [67] It searches a solution based on the 

attraction and repulsion among prototype candidates. It emulates the behavior of 

charged particles in an electromagnetic field in the view of evolving the members of 

the population thereby attaining an optimal solution. The primary benefit of this 

procedure is that even though it characterizes interesting search capabilities, it incurs 

only a very low computational complexity. On comparing the methodology with that 

GA, It does not involve the genetic operator namely crossover and mutation to 

explore feasible regions but incorporates collective attraction and repulsion to carry 

out the exploration process. It incurs a low computational cost in the context of 

memory allocation and execution time. It does not necessitate gradient information.  

The methodology of EM-like algorithm initially involves generating a group of 

random solutions from the domain of feasible solutions. Each of the generated 

solutions is considered as a charged particle. The fitness function is utilized to 
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estimate the charge of every particle. Owing to the charge designated to a particle, it 

moves with attraction or repulsion force among the population. The attraction-

repulsion mechanism of this algorithm can be regarded analogous to the genetic 

operators of GA namely the reproduction, crossover, and mutation. The algorithm 

then computes the resultant force in the population for determining the direction of 

the considered particle’s movement. This is done based on the Coulomb’s law and 

superposition principle. The resultant force is estimated in accordance with the 

charges and distance associated with each particle. According to this technique, 

higher, the charge of the particle more will be the force of attraction or repulsion. The 

resultant force is negatively related to the distance between the particles. The EMO 

algorithm can enhance the current optimal solution through local search and move 

ahead of the feasibility of enhancing through global search. The EMO has been used 

for circle detection presented in an image by C.Erik Oliva et. al. [68]. Again this 

algorithm has been used in image segmentation for multilevel Thresholding. In this 

context, the search capabilities of EMO are integrated with the multi-threshold 

methods suggested by Kapur and Otsu. The methodology initiates by selecting a few 

samples randomly within the histogram of the image. These samples form the 

particles of the EMO algorithm. Its fitness is assessed based on the objective function 

that has been devised based on the methods advocated by Otsu or Kapur. On the basis 

of these objective values, a collection of solutions represented by the charged particles 

are evolved until an optimal solution is identified. The methodology evolves a multi-

level algorithm for segmentation of images in the view of determining the threshold 

values within a fewer iteration and lesser computational complexity when compared 

to that of the originally proposed methods. 

2.2 FITNESS COMPUTATION STRATEGIES 

The fitness assignment for MOO techniques can be categorized broadly as (i) 

Aggregative (ii) Lexicographic (iii) Sub-population (iv) Indicator based (v) Pareto-

based, and (vi) Hybrid methods. Out of these methods, most of the research works 

have placed its focus on Pareto-based approaches. All the extensions of SOO 

algorithms to MOO algorithms fall under any of the above-said categories. In this 

section, a brief explanation of each method is dealt and the classification of various 

fitness assignment methods is shown in figure 2.1.  
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Figure 2.1 Fitness assignment method of MOOT 

2.2.1 AGGREGATIVE APPROACHES 

In aggregating approach, the multi-objectives are integrated to a single objective. The 

primary benefit owing to the aggregating method is that it results in one single 

solution. However, the challenge in defining such a goal function necessitates intense 

domain knowledge, which is unavailable many times. The widest aggregation 

approaches include the weighted-sum, goal attainment, target vector optimization, and 

Epsilon constraint method [69]. These popular aggregating approaches are briefed 

subsequently.  

 WEIGHTED SUM APPROACH 

This approach has been the first attempt to obtain non-inferior solutions in the context 

of MOO. In this approach, the multi-objective context is transformed into a single 

objective function through the summation of the functions via different weight 

coefficients allocated for each one of them. This approach is also known as 

scalarization method [70]. It can be formulated mathematically as shown in equation 

2.1. 

Min/Max         ∑ 𝑤𝑖𝑓𝑖
𝑘
𝑖=1 (�̅�)                                                                              (2.1) 

In Equation 2.1, 𝑤𝑖 ≥ 0  refers to the weight coefficients that signify the relative 

significance of the objectives. Generally, the weight coeffients are assigned values 

such that  ∑ 𝑤𝑖 = 1
𝑘
𝑖=1 . Computational efficiency is one of the primary benefits of this 

approach. This technique is appropriate for generating a powerful non-dominated 
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solution at the initial stage, which can be further, evolved using other methods. 

Nevertheless, determining the suitable weights during lack of enough information 

about the problem poses difficulty in using this approach. Besides this, it is also hard 

to identify all the non-dominated solutions through the weighted sum approach as 

long as every objective function and its feasible solution space possess the 

characteristic of convexity. As mentioned, the key challenge lies in associating 

suitable weight coefficients to each of the objectives. The weight coefficients are not 

actually proportional to the respective significance of the objectives or do not allow 

trade-offs between the objectives to be expressed. Moreover, the boundary of the non-

inferior solution tend to be non-concurrent making a few solutions in accessible.  

 GOAL ATTAINMENT 

In goal attainment method, a collection of design goals is related to a collection of 

objectives [71]. The problem formulation permits the goals to be under-achieved or 

over-achieved. This makes the initial design goals relatively imprecise. The relative 

degree of under or over achievement of the objectives is governed by a vector of 

weight coefficients. This incorporates a component of flexibility into the problem. 

Otherwise, the condition would have been such that the objectives should be rigidly 

met. The weight vector, w, facilitates in exhibiting a measure of respective tradeoffs 

between the goals. For illustration, assigning the weight vector w to the inceptive 

goals signifies the attainment of the same degree of under or over achievement. The 

hard constraints are taken into account in the design by assigning a specific weight 

factor to zero. The goal attainment approach furnishes a handy understandable 

explanation for the design problem in hand. A set of coefficients of weights w = [w1, 

w2, . . . , wk] interpreting the respective under or over-achievement of the desired 

motives has to be provided. For identification of the best optimal solution  𝑥∗, the 

equation 2.2 must be followed.  

Minimize      α 

Subject to,   𝑧𝑖
𝑟𝑒𝑓
  +  𝛼. 𝑤𝑖 ≥ 𝑓𝑖(𝑥);       𝑖 =  1, . . . , 𝑘,                                         (2.2) 

  𝑥 ∈ 𝑋 

In equation 2.2, α represents a scalar variable that can take any sign. The values 

assigned to the weight coefficients w1, w2, ., . ., wk are normalized so that ∑ |𝑤𝑖|
𝑘
𝑖=1 =

1 holds true. In case, any weight coefficient, wi = 0 (i = 1,2.,.,., k), it signifies that the 
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maximum value achived by the objectives fi(x) will be zi
ref

. Through this method, by 

incorporating variations in weights, all Pareto optimal solutions can be obtained with 

wi ≥ 0 (i = 1,2.,.,., k) even for problems that do not satisfy the convexity constraint. 

The vector z
ref

 is depicted by the decision motive of the decision maker. He is the one 

who is responsible for deciding on the direction of w also. On being provided with w 

and z
ref

, the direction of the vector z
ref

 +𝛼.w can be estimated. Hence, the problem 

defined in equation 2.2 can be regarded as equivalent to identifying a feasible point 

that is the closest to the origin on this vector. From equation 2.2, it is evident that the 

optimal solution is the first point at which z
ref

 + w cuts the feasible region in the 

objective space. If such a intersecting point exists, then it can be confirmed to have a 

Pareto optimal solution. The optimal value indicates the attainability of the goals. A 

negative value of z
ref 

indicates the attainability of the goal and hence an enhanced 

solution is sought after that. 

 TARGET VECTOR OPTIMIZATION 

In these approaches, targets or goals that are intended to be achieved in each objective 

have to be assigned. Goal Programming, Goal Attainment,and the min-max approach 

are some of the most popular techniques. The approach results in a dominated 

solution in case the objectives are selected in the feasible domain. This constraint can 

be considered as a bottleneck in applying this technique to many problems. 

 EPSILON-CONSTRAINT METHOD: 

An approach that solves a few of the convexity issues faced by the weight sum 

method is the ∊-constraint method. In this method, the most preferred or primary 

objective is to minimize Fp and expressing or considering the other objectives in the 

form of inequality constraints bound by some allowable levels ϵi as stated in equation 

2.3. 

 Minimize,         𝐹𝑝(𝑥),       𝑥𝜖𝜴                                                                       (2.3) 

      Subject to,        𝐹𝑖(𝑥) ≤ 𝜖𝑖,           𝑖 = 1,2, … . 𝑛 

In equation 2.3, ϵi are the assumed values of the objective functions. The search is 

stopped when a satisfactory solution is identified. Though the ∊-constraint method 
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does not demand convexity, it yields only one non-dominated solution when certain 

particular conditions are satisfied. 

2.2.2 LEXICOGRAPHIC METHOD 

In this method, the goals are ranked on the basis of their order of significance. The 

objective functions are minimized one by one, initiating from the most significant 

objective and then continuing based on the rank of the objectives, in order to attain the 

optimal solution. The method is suitable only for a very less number of objectives, say 

two to three. Also, the performance of the approach is highly influenced by the 

ranking of the goals.  

The subscripts of the objectives are intended to denote the objective function as well 

as the priority of the objectives. According to this assumption, f1(x) and fk(x) are the 

respective highest and the lowest significant objective functions. Initially, the first 

problem is framed according to equation 2.4 and its solution xi and f1 = (x1
*
) is 

obtained.  

     Minimize,             𝑓1(𝑥)                                                                                       (2.4) 

     Subject to             𝑔𝑗(𝑥) ≤ 0,     𝑗 = 1,2, … .𝑚 

After that, the second problem is formulated as in equation 2.5 and the solution of this 

problem is got as x2 and  𝑓2 = 𝑓2(𝑥2
∗) 

      Minimize            𝑓2(𝑥)                                                                                       (2.5) 

      Subject to           𝑔𝑗(𝑥) ≤ 0,       𝑗 = 1,2, … .𝑚      

                      𝑓1(𝑥) = 𝑓1
∗       

This process is iterated until all k objectives have been taken into account. In general 

terms, the i
th

  problem is defined as in equation 2.6.  

Minimize            𝑓𝑖(𝑥)                                                                                        (2.6)                                                                                                            

Subject to                 𝑔𝑗(𝑥) ≤ 0,       𝑗 = 1,2, … .𝑚      

                      𝑓𝑙(𝑥) = 𝑓𝑙
∗      

 

The solution obtained at the end, i.e. xk, is considered to be the desired solution x* of 

the problem.  
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2.2.3 SUB-POPULATION 

In this technique, the whole population is partitioned into m smaller subpopulations 

and every subpopulation has the same size subject to the same constraints but 

different optimization objectives. The separation of the individuals into smaller 

groups allows a greater convergence speed in each sub-population. Also, if there 

exists certain independence between the sub-populations, each of them can result in 

converging at a different region in the solution search space thereby aiding to 

maintain some degree of diversity. These population-based methods make an effort to 

identify many Pareto-optimal solutions in one run of simulation. 

2.2.4 PARETO-BASED METHOD 

Pareto-based fitness assignment has been initially put forward in [72]. All methods 

based on this technique mandatorily and evidently utilize the concept of Pareto 

dominance the view of estimating the reproduction probability of each individual. The 

basis of a majority of MOO is the consideration that there are two contradicting 

motives namely (i) distance minimization towards the Pareto-optimal set and (ii) 

diversity maximization within the Pareto-optimal set. In general, there are mainly 

three goals in handling the multi-objective problems [71], [73], [74]. These are stated 

as (i) maximization of the cardinality of elements in the Pareto optimal set identified 

(ii) minimization of the Pareto front’s distance generated by the optimization 

procedure with regard to the original (global) Pareto front and (iii) maximization of 

the spread of solutions identified, in order to gain a vector distribution that is as 

smooth and uniform as possible.  

2.2.5 INDICATOR-BASED METHOD 

The primary notion behind this technique is a formalization of preferences in terms of 

continuous generalizations of the dominance relation leading to a simple algorithmic 

concept. There are two types of indicator-based approaches namely Epsilon based and 

Hyper-volume Based. The Indicator based evolutionary algorithm permits adaptation 

towards arbitrary preference information and optimization cases. Also, it does not 

require any diversity maintenance methods [74]. It is more general owing to the 

flexibility that an arbitrary size of the population can be used. It is also faster as it 

considers only pairs of individuals for comparison and does involve the entire 

approximation sets. 
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2.2.6 HYBRID METHOD 

In hybrid method, the above-mentioned approaches in Section 2.2.1 through 2.2.5 are 

used collaboratively on the bases of two factors namely the domain and the 

considered problem for optimization. 

Having briefed on the various common strategies adopted during fitness computation 

in the context of multi-objective optimization, the subsequent section deals with the 

multi-objective variants of the popular meta-heuristic algorithms.  

2.3 META-HEURISTIC OPTIMIZATION TECHNIQUES FOR 

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 

This section presents the variants of the popular meta-heuristic algorithms that have 

been proposed and applied for solving MOO problems. 

2.3.1 EVOLUTIONARYAPPROACHESFOR MULTI-OBJECTIVE 

OPTIMIZATION PROBLEMS 

Evolutionary Algorithms are not very sensitive to the Pareto front’s shape and 

continuity characteristics and deal with a set of Pareto optimal solutions. Genetic 

Algorithms is one of the widely used meta-heuristic algorithms. It has been utilized 

for MOO problems as well. By evolving a population of solutions, multi-objective 

evolutionary algorithms (MOEAs) are capable of approximating the Pareto optimal 

set in a single run [75]. A few popular methods are presented subsequently.  

 VECTOR EVALUATED GENETIC ALGORITHM (VEGA) 

By extending the Grefenstette’s GENESIS program in order to solve the multiple 

objective functions, a variant namely Vector Evaluated Genetic Algorithm (VEGA) 

[76] has been put forth. In VEGA, the population is partitioned into N equal sub-

populations. Each sub-population is designated a fitness based on the various 

objective functions. In the view of finding a trade-off solution, the crossover is 

permitted between two solutions in the entire population. The process of selection is 

carried out for each objective separately. Fitness proportionate selection technique is 

adopted during selection.  
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 NON-DOMINATED SORTING GENETIC ALGORITHM (NSGA) 

Non-dominated Sorting Genetic Algorithm (NSGA) [77] is another variation of GA 

that has been developed on the basis of various layers of classifications of the 

individuals. The ranking of the population is performed with respect to the non-

dominated nature of the individuals. The entire sets of non-dominated individuals are 

categorized into a group wherein they share a dummy fitness value in order to 

maintain diversity within the population. The primary benefit while adopting this 

algorithm is that as many objectives can be reduced to a dummy fitness through the 

non-dominated sorting, there lies no restriction in the number of objectives that can be 

solved. Moreover, both maximization and minimization problems can be handled.  

 NON-DOMINATED SORTING GENETIC ALGORITHM 2 (NSGA2) 

This  is the improved version of NSGA proposed by Deb et al. called NSGA 2 [78] . 

It is more efficient and uses elitism and a crowded comparison operator. It does not 

use an external memory and no additional parameter for diversity.Pareto rankings are 

used but keep tournament selection. It does not use an external memory and no 

additional parameters for diversity.  

 NICHED PARETO GENETIC ALGORITHM (NPGA): 

The Niched Pareto Genetic Algorithm (NPGA) [79] is a variant of GA that involves 

tournament selection grounded on Pareto dominance. A tie situation occurs in the 

scenario when both the individuals involved in the tournament are either dominated or 

non-dominated. In this case, the outcome that is the winner, of the tournament is 

decided on the basis of fitness sharing. In order to handle the noise during the 

selection method, a large population size is utilized in this approach. Yet another 

variation of NPGA has been proposed and named as NPGA2. In this technique, 

Pareto rankings are adopted along with tournament selection. No external memory is 

used and elitism mechanism is same as NSGA2. 

 MULTI-OBJECTIVE GENETIC ALGORITHM (MOGA) 

Multi-objective Genetic Algorithm (MOGA) is yet another variant of Genetic 

Algorithm in the view of solving multi-objective problems [80]. In this approach, an 

individual is ranked on the basis of the cardinality of chromosomes in the present 
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population by which it is dominated. In this technique, fitness computation is done via 

three steps. Initially, the population is sorted based on the rank. Secondly, the fitness 

of the individuals is formulated through interpolation from the best to the worst rank. 

Finally, the fitnesses of individuals with the same rank are averaged so that all of 

them will be grouped at the same rate.  

 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM BASED ON 

DECOMPOSITION(MOEA/D) 

Another variation is proposed based on decomposition and is called as Multi-

Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [81]. It is 

based on conventional aggregation approaches in which an MOO problem is 

decomposed into a number of scalar objective optimization problems, which can also 

be called as sub-problems. One main advantage of this approach is that a scalar 

objective local search can be used in each sub-problem in a natural way since its task 

is to optimize a scalar objective sub-problem. 

 PARETO ARCHIVES EVOLUTION STRATEGY (PAES) 

One more variant termed as Pareto Archived Evolution Strategy (PAES) [82] 

comprising of (1+1) evolution strategy has been introduced. In this approach, one 

parent can produce only one offspring. Then, it is included in the external archive in 

case it is a non-dominated solution. In this technique, the potential of the parent and 

the child is evaluated against each other. During evaluation of the potential, in case, if 

the child dominates the parent, then the child becomes the next parent and the 

iteration of the procedure continues. On a contrary situation, if the parent dominates 

the child, the child is discarded and mutation is executed subsequently in order to 

bring about diversity among the population. Suppose if both the child and the parent 

do not dominate each other, the individual to be retained is chosen between the child 

and the parent in the view of maintaining diversity among the solutions. In order to 

execute this strategy, an archive of non-dominated solutions is kept track of. In case 

of the mentioned scenario, the child is evaluated against all the candidates in the 

archive in order to examine if it dominates any one of the solutions. If it does, then the 

child becomes the new parent. Then, the dominated solution in the archive will be 

discarded. On the other hand, if the child does not dominate any candidates of the 
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archive, then the nearness of both the parent and child to the candidates of the archive 

is investigated. During this computation, if the child lies in the least crowded region 

among the candidates of the archive, then it becomes the parent and is also included 

as a candidate of the archive. Subsequently, another variation of PAES called the 

multi-parent PAES has been put forward with similar principles and concepts as 

mentioned above.  

 STRENGTH PARETO EVOLUTIONARY ALGORITHM (SPEA) 

Another extension of GA to support MOO problems is the Strength Pareto 

Evolutionary Algorithm (SPEA) [83]. It employs an external archive to store all the 

non-dominated solutions obtained till then. During every generation, all the obtained 

non-dominated candidates are pushed to the archive. In case if any duplicates or 

dominated solutions exist among the candidates of the archive, they are discarded 

during the update operation. On encountering the maximum size of the archive, a few 

candidates are excluded from the archive through a clustering procedure that 

preserves the non-dominated nature of the archive. Moreover, the candidates in the 

archive are also permitted to take part in the genetic operations of the procedure. 

During every generation, a combined population is evolved through the integration of 

candidates from the archive and the current population. The fitness value that is 

designated to each individual of the combined population is estimated on the basis of 

the number of solutions dominated by the considered candidate individual. Also, the 

fitness values are allocated such that the dominated solutions get a value lower than 

the least fitness of any non-dominated solution. This strategy of fitness assignment 

assures that the search is geared towards the non-dominated solutions.  

Subsequently, another version of SPEA namely SPEA2 has been put forth [84]. It 

differs in terms of three aspects namely (i) fitness assignment that takes into account 

the number of solutions dominated by it and the number of solutions it is dominated 

by with respect to each individual (ii) nearest neighbor density estimation that 

facilitates a more precise guidance for the search process and (iii) a different archive 

truncation method that assures the preservation of boundary solutions. The main 

difference from SPEA to SPEA2 is with regard to archive updating operation.   
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2.3.2 PSO FOR MULTI-OBJECTIVE OPTIMIZATION   

The basic PSO is not applicable directly to Multi-objective problems.  The solution of 

a multi-objective problem comprises of a set of equally adequate solutions. Initially, 

PSO has been extended to multi-objective optimization by Moore and Chapman [85]. 

A p-list has been utilized in order to maintain a track of all the non-dominated 

solutions explored by the particle in the search space. During every updation of the x-

vector of a particle, it is compared to the solutions in the p-list to examine if it is a 

non-dominated solution. If true, it is included in the p-list. Moreover, the p-list is also 

constantly updated to ensure that it comprises of only non-dominated solutions. 

Majority of the proposed multi-objective Particle Swarm Optimization (MOPSO) 

approaches to define the notion of leaders. Each particle may possess several leaders, 

out of which only one is chosen to update its position [86]. These leaders are stored in 

an external archive, which is a separate location from that of the swarm. It holds the 

responsibility of holding track of all the non-dominated solutions identified till 

then.The solutions stored in the external archive are considered as leaders when the 

positions of the particles in the swarm need to be updated. Further, the solutions 

stored in the external archive are also revealed as the final outcome of the procedure. 

The most straightforward and elementary means to determine a leader selection is to 

deem all the non-dominated solutions as leaders and then select one of them. 

However, in this approach, a chief consideration is associated with the estimation of 

quality indicating how potential a leader is. Functions of density measure have also 

been employed for electing the leader. In the context of multi-objective optimization, 

the most widely used density estimators include those that are based on Nearest 

neighbor and Kernel [87]. Nearest neighbor density estimator provides an insight into 

the crowd density of the nearest neighbors of the considered particle. On the account 

of sharing its resources with others, the fitness of such particles is degenerated by a 

parameter in proportion to the cardinality and the nearness to the particles that bound 

it. The neighborhood of a particle, called a niche, which signifies the radius of the 

neighborhood, is defined in terms of a parameter known as σ
share

.  

The retaining of solutions throughout the entire search process is another important 

challenge in multi-objective optimization. Usage of an external archive is the most 

common means to retain solutions that are non-dominated with regard to all the 
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earlier swarms. Such an archive permits the inclusion of a solution only if: (a) it is 

non-dominated with regard to the already existing solutions in the archive or (b) it 

dominates any of the solutions within the archive. The main disadvantage of the 

external archive is that the archive size increases very quickly as in every generation 

the archive has to be updated. This update may become very expensive if the size of 

the archive grows too high. In MOPSO, a set of leaders is also initialized with the 

non-dominated particles from the swarm and stored in an external archive. When it is 

mapped for MOO generally three archives are used. The first one is utilized to store 

the global best solutions, the second one is used for saving the personal best values 

and a third one is employed for keeping track of the local best. However, in reality, 

utilization of more than three repositories for implementation of MOPOSOs have 

been reported. Most of the existing MOPSOs apply some sort of mutation operator or 

turbulence operators after performing the flight [88]. 

X. Hu and R. Eberhart [88] have modified the PSO to deal with the MOO problem by 

considering a Dynamic Neighborhood strategy, a new particle updating strategy. In 

dynamic neighbor, each particle has a different neighbor in each generation based on 

the fitness value. The updating strategy updates only if they encounter those solutions 

that dominate the current pbest. Later, this Dynamic Neighborhood PSO has been 

modified by using extended memory to store the global optimal solution [89]. An 

extension of PSO has been advocated through the adoption of Pareto Dominance for 

estimation of the flight direction of a particle [90]. A global repository is incorporated 

to keep track of the non-dominated solutions earlier obtained. This can be exploited 

by other particles to regulate their own flight in future. A variant of this approach, 

incorporating secondary repository with the intention of regulating the flight and 

mutation operation, thereby enriching the exploratory capabilities of the algorithm, 

has been put forth [91]. The disadvantage of the original method is the multi-frontal 

problem, which has been overcome in the extended version. The main aim of 

mutation operator is to explore remote regions of the search space and to ensure that 

the full range of each decision variable is explored. The main objective of the external 

repository (or archive) is to maintain historical information of the non-dominated 

solutions found along the search process. The two primary constituents of the external 

repository are the archive controller that holds the responsibility of deciding whether a 

solution should be included in the archive or not and the adaptive grid that holds the 
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responsibility of generating well-distributed Pareto fronts. The primary benefit of 

using the grid as against niching is that the computational cost incurred during grid 

implementation is lower. 

Then, yet another variation in PSO has been put forward by integrating PSO with 

clustering for the purpose of partitioning all particles into various sub-swarms and 

then utilizing it for automated docking. Then, a Time-Variant MOPOSO (TV-

MOPSO) that is adaptive with regard to its inertia weight and acceleration coefficients 

has been suggested [92]. Owing to its capability of adaptability, exploration of search 

space is still more effective thereby achieving a good balance between the exploration 

and the exploitation of the search space. A diversity parameter is also employed for 

assuring considerable diversity amongst the solutions of the non-dominated fronts. 

The parameter also takes care that the convergence to the Pareto-optimal front is 

maintained. An investigation on Pareto-ranking based quantum-behaved PSO (QPSO) 

has been presented [93], In this method, an external repository is employed for 

maintaining and keeping tracking of the non-dominated solutions. The global best 

position is selected from this archive. For selecting the elitists, three different schemes 

namely preference order, sigma value, and random selection methods have been 

adopted. Then, an optimality criterion grounded on preference order strategy has been 

propounded for obtaining the best compromise solution [94]. This preference order 

has been put forth to rank all the particles and thus to identify the global best particle.  

V.L. Huang et.al. [95] have presented a multi-objective comprehensive learning 

particle swarm optimizer (MOCLPSO). Here a learning strategy is used which utilizes 

the history regarding the best position of all other particles to update the velocity of a 

particle. This strategy enhances the diversity and prevents premature convergence. A 

two-local-best (lbest)-based multi-objective PSO (2LB-MOPSO) technique that is 

different from canonical MOPSO has been suggested by S.Z. Zhao and P.N. 

Suganthan [96]. It employs two local bests rather than a single personal best and 

global best in order to direct each particle. In the view of improving the local search 

ability of the process, the selection of two local bests is made in such a way that they 

are in proximity to each other. This method demonstrates high benefits with regard to 

convergence speed and fine-searching ability. X. Yu and X. Zhang [97] have 

developed multi-swarm CLPSO (MSCLPSO) for multi-objective optimization. It 
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incorporates multiple swarms wherein every swarm is attached to an exclusive 

original objective. It employs conventional archives in order to save the elitists. 

MSCLPSO varies from existing MOPSO in three aspects. Firstly, every swarm 

attempts to optimize the attached objective without gaining knowledge about the 

elitists or the other swarms. Secondly, elitists are subjected to mutation as the concept 

of mutation exploits the personal best positions and elitists suitably. Finally, a 

modified differential evolution (DE) concept is put to operate on a few extreme and 

least crowded elitists. The difference among the elitists is used as a basis by the DE 

for updating of elitists. The personal best positions characterize important information 

regarding the Pareto set while the mutation and DE strategies aid the MSCLPSO in 

discovering the true Pareto front. 

There are endless applications for various MOPSO in different fields and domains. 

Molecular docking problem has been handled by a variant of MOPSO [98]. In this 

context, the particles are partitioned into groups. Then, the global best of a particle is 

identified from its own group. Then, a weighted-sum of the objectives is utilized to 

keep track of its local best. D.S. Liu et. al. [98] has devised a Multi-objective 

Evolutionary PSO (MOEPSO) algorithm that incorporates concepts of Evolutionary 

algorithms such as the use of mutation operator as a source of diversity. It has been 

used for solving multi-objective bin packing problem. It is characterized by the fact 

that particle movement is directed by means of either personal best or global best 

only. This is in contrast to the concept followed in earlier works, wherein the 

movement of a particle is influenced by both personal and global best at the same 

time.  

2.3.3 ACO FOR MULTI-OBJECTIVE OPTIMIZATION  

Variants of ACO are proposed for solving different types of SOO problem as well as 

MOO problems. The multi-objective algorithms manifest different design choices for 

dealing with the traits of multi-objective contexts. One of the significant 

characteristics of the Multi-objective ACO (MOACO) algorithms is the incorporation 

of heuristics in the context of enhancing the potential of the identified solutions. On 

the account that heuristics provides further insights into the problem at hand, it can be 

expected to yield much better solutions than that of those algorithms that do not 

incorporate it [99]. In MOACO, the management of the pheromone information is an 
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intricate task. It involves defining the pheromone information such as (i) the approach 

utilized to aggregate the weights of various pheromones (ii) the strategy for selection 

of solutions that can update the pheromone information and (iii) the methodology 

adopted by these solutions to change the pheromone information. The incorporation 

of multiple colonies has also been put forward so that each of the colonies works 

independently weighing the relative importance of the multiple objectives variedly. 

When multiple colonies are taken into consideration, handling of pheromone 

information becomes even more complex [100]. Therefore, in some methods, the 

usage of local search methods is also considered. All these features can be viewed as 

various components of a specific configuration of a generic MOACO algorithm. 

Broadly, there are two different search strategies used to handle the MOACO 

problems. They are the dominance relations and several scalarizations of the objective 

vector. Some of the ACO algorithms that perform highly effective in the case of SOO 

are the Ant Colony System (ACS) and Min-Max Ant Systems (MMAS). These 

algorithms can be extended to MOACO with equivalent strategies to handle multi-

objective problems. [101]. 

Since last twenty years, more interest has been shown on exploiting the potential of 

MOACO in various fields with various modification and improvement.  For instance, 

MOACO has been widely used to solve problems such as traveling salesman, vehicle 

routing, flow-shop scheduling and portfolio selection [102],[103],[99],[100],[104] etc. 

An optimization strategy for MOACO has been put forth through optimization of the 

initialization of the pheromone matrix using the prior information obtained through 

Physarum-inspired Mathematical Model (PMM) [105]. This has been applied to solve 

binary-TSP.  

 An extension to the Population-based ACO algorithm is proposed by incorporating a 

crowding population replacement scheme to enhance the effectiveness of the search 

process and has been applied to solve multi-objective traveling salesman problem. 

The Crowding Population ACO (CPACO) algorithm has the capability of identifying 

and maintaining a diverse set of solutions across the Pareto front. This, in turn, 

facilitates in identifying better solutions from all regions of this front. As the CPACO 

builds solutions on the basis of pheromone matrix, which indicates the performance of 

the entire population irrespective of the position of the solution on the approximate 
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Pareto front, there can be some futile efforts during the implementation of this 

procedure.  

T.B. Kurniawan et. al. [106] has proposed a Population-based Ant Colony 

Optimization (P-ACO) to solve the DNA sequence optimization.  Sabino Jodelson A. 

et. al. [107] has developed two variants of the Ants algorithm to tackle the specific 

problem of switch engine scheduling in a railroad yard (SESR). This SESR problem is 

solved by using multiple ant colonies. For solving a multi-objective supply chain 

design problem, a Pareto ACO has been advocated by Moncayo-Martínez et. al. 

[108]. In this regard, a number of colonies ants are used in a sequence to explore the 

solution space and search for a successively better non-dominated set of supply chain 

designs. A multi-objective Ant Colony Optimization has been proposed by López-

Ibánez et.al [109] for solving an automatic design problem. This MOACO algorithm 

provides various design choices for handling the characteristics of the multi-objective 

problems.   

2.3.4 ABC  FOR MULTI-OBJECTIVE OPTIMIZATION  

As the ABC algorithm has proved its effectiveness in solving the SOO, it has been 

extended for solving multi-objective as well as many objective optimization 

problems. The conventional ABC algorithm has been extended to support multi-

objective problems through the incorporation of a grid-based technique in order to 

maintain and adaptively evaluate the Pareto front. The Pareto set is utilized for the 

purpose of controlling the behavior of flight of individuals and structure of the bee 

colony. A fixed-sized archive is employed for keeping track of the good solutions. 

This archive is managed through the ∊-dominance method. While using ∊-dominance, 

the size of the external archive is based on the user-defined ∊ value. The employed 

bees incorporate the social information got from the external archive to adjust their 

flying trajectories. The grid manages in maintaining the diversity within the external 

archive. The solutions generated by the employed bees are assessed by the onlooker 

bees so they can update their next position based on the solution attained. Finally, the 

solutions that have attained trial limit are replaced by the scout bees with a new 

random solution in the search space.  
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Vector Evaluated ABC (VEABC) is a parallel vector evaluated variant of the ABC for 

solving MO problems. An extended version of this algorithm  [110] primarily for 

discrete variables has been put forth in the context of  optimization of composites. An 

Adaptive Multi-Objective Artificial Bee Colony (A-MOABC) Optimizer has been 

proposed [111] through the incorporation of Pareto dominance concept. It also 

involves the concepts of crowding distance and windowing mechanism. An adaptive 

windowing mechanism is employed by the employer bees in order to choose their 

own leaders and in order to change their current positions. In addition to this, the 

positions of the onlooker bees are modified based on the food sources advocated by 

the employer bees. Crowding distance technique employed in this procedure aids in 

managing the diversity in the archive.  

Three variations of MOABC algorithms have been suggested with its roots in 

synchronous and asynchronous models employing Pareto dominance and non-

dominated sorting [112]. The algorithms include (i) Asynchronous MOABC 

optimization with Pareto Dominance (A-MOABC/PD) (ii) Asynchronous MOABC 

Optimization with Non-dominated Sorting (A-MOABC/NS) and (iii) Synchronous 

MOABC Colony Optimization with Non-Dominated Sorting (S-MOABC/NS). S-

MOABC/NS is demonstrated to be highly scalable and efficient when compared to 

the other two variations. The conventional Non-dominated Sorting ABC  algorithm 

has been extended in order to obtain Pareto-optimal solutions effectively and 

efficiently even in the presence of noise on the fitness landscapes [113] For this 

purpose,  three strategies have been devised. The first strategy involves the adaptive 

selection of sample-size in order to maintain the trade-off between accurate estimation 

of fitness and the computational complexity. The second strategy deals with 

estimating the statistical expectation as a metric of fitness for trial solutions rather 

than the usual averaging. The third strategy is associated with extending the 

Goldberg’s approach to checking if a slightly inferior solution can be placed in the 

optimal Pareto front. Y. Xiang et. al. [114] has recommended an elitist MOABC 

(eMOABC) using an elitism strategy and a crowding-distance archive to keep a good 

spread of the obtained solutions. During every iteration, the algorithm chooses two 

elites which have a maximum crowding distance and are defined as the archived 

intermediate solution. These elites are them utilized in adjusting the trajectories of 

flight of both the employed and onlooker bees. The algorithm incorporates the elites 
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as well as the neighbors to direct the bees’ trajectories of flight. During the employed 

bees phase, an intermediate solution that has the maximum crowding-distance is 

chosen as the elite, which is then utilized to generate new food sources. After 

updating the entire bee colony, the crowding-distances are estimated once again. 

Then, another elite is chosen with the maximum distance. Now, this elite will be 

subjected to exploitation in the subsequent onlooker bees’ phase. The elitism strategy 

is targeted at enhancing the exploitation potential of the eMOABC algorithm. The 

merit of this algorithm can be stated as the ability to exploit more potential non-

dominated solutions and preserve the diversity of solutions.  

A dynamic multi-colony MOABC algorithm (DMCMOABC) has been advocated by 

employing the multi-deme model and a dynamic information exchange concept. 

[115]. This algorithm is designed such that k different colonies search independently 

for the majority of the time and shares the essential information intermittently. Each 

colony comprises a fixed number of bees such that the number of the onlooker and 

employed bees are equal. For every source of food, either of the bees will explore 

temporary position generated through neighboring information. The richness of the 

food source is estimated through a greedy selection approach and the better one is 

retained for the subsequent iterations. An external archive is employed to save the 

non-dominated solution while the diversity within the archive is maintained through 

the crowding distance method. If a randomly generated number is smaller than the 

migration rate R, then an elite is selected and the food source with the worst fitness is 

replaced by this elite. During each migration, an elite is chosen from the external 

archive. The migration direction is dynamic as the elite may be selected by any 

colony. It is also to be noticed that the colony that receives the elite is also estimated 

stochastically. 

By applying the fast non-dominated sorting and population selection strategy to 

measure the quality of the solution and select the better ones, Y. Huo et. al [116] has 

proposed an elite-guided MOABC. The elite-guided generation of the solution is 

devised in order to exploit the neighborhood of the existing solutions on the basis of 

the guidance attained from the position of the elite. In addition to this, a fitness 

calculation method has been discussed to compute the probability of choosing the 

onlookers. Selection model and searching scheme of artificial bee colony algorithm 
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and diversity maintaining scheme have been improved by W. Y. Wu Chunming and 

Li Tingting in [117]. W. Zou et. al. [118] presented an MOO method based on the 

artificial bee colony using the concept of Pareto dominance to determine the flight 

direction and it maintains the non-dominated solution vectors in an external archive. 

They sort bees based on non-domination in the initialization phase and store them in 

the external archive. In their method, all the bees are regarded as onlookers and there 

does not exist employed and scout bees. 

The different variants of MOABC are applied in various field like static routing and 

wavelength assignment problem [119], motif discovery problem and discovering 

novel transcription factor binding sites in DNA sequences [120], power and heating 

system [121], frequency assignment problems [122]., wireless sensor network [123], 

image segmentation [124], robot path planning [125], FIR filter design [126] etc.  

2.3.5 CUCKOO SEARCH ALGORITHM FOR MULTI-OBJECTIVE 

OPTIMIZATION 

The cuckoo search has been extended for MOO by Yang and Deb [127]  For MOO 

problems with K different objectives, the CS algorithm is modified as follows: each 

cuckoo lays K eggs at a time and dumps them in a nest that is randomly chosen. The 

best nests depicting high quality will sustain and be carried over to the subsequent 

generations. The cardinality of available host nests is constant. The egg laid by a 

cuckoo is recognized by the host bird with a probability pa. Once the host identifies 

the cuckoo egg, it can either get rid of the egg or abandon its nest and build a new 

nest. Also, the probability can be used by n host nests to replace the new nests, if 

better. Some random mixing can be used to generate diversity. 

A. Layeb has proposed a cuckoo search for binary multi-objective optimization. 

Pareto dominance is used to find optimal Pareto solution. It has been evaluated on the 

knapsack problem. H. V. H et al. [128] has applied the multi-objective cuckoo search 

algorithm to Radial Basis Function Neural Networks Training for System 

Identification. I. Kahvazadeh and M. S. Abadeh have proposed a Pareto based multi-

objective cuckoo search algorithm that evolves efficient association rules from 

numeric datasets. The parameters related to the generation of association rules namely 

the support, confidence, interestingness, and comprehensibility are regarded as the 
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objectives to be optimized. The algorithm evolves rules incrementally such that 

during every run, a few efficient rules are generated. In order to perform task 

scheduling effectively on heterogeneous systems, M. Akbari and H. Rashidi [129] 

have put forward an algorithm based on multi-objective scheduling cuckoo 

optimization algorithm (MOSCOA) in the view of reducing execution time while 

allowing for maximum parallelization.  

2.3.6 MULTI-OBJECTIVE BAT ALGORITHM 

The Bat algorithm has been extended for the multi-objective problems by using the 

weighted sum approach, where all the objectives are combined into a single objective 

[130] In this case, the weights are assigned randomly based on uniform distribution. 

This provides the possibility to vary the weights with considerable diversity so that 

the Pareto front can be approximated suitably. In order to incorporate Bat algorithm 

effectively in binary space, a multi-objective binary bat algorithm (MBBA) [131] that 

employs a modified bat position updating strategy to suit binary problems has been 

put forward. It also characterizes a mutation operator for enhancing the local search 

potential and maintaining diversity. Then, an approach based on Pareto dominance 

along with the external elitist archive has been put forth to identify optimal Pareto 

solutions. It also involves a procedure to choose the leader of flight in order to aid in 

the flight of the bats. Then, Yang Nien-Che and Minh-DuyLe have developed a 

method to optimize the design of passive power filters (PPFs). The most useful inertia 

weight with the best effect has been selected to optimize performance [132]. The 

external archive has been utilized in order to retain the multi-objective solutions. 

Subsequently, Tharakeshwar T. K et. al. [133] has adopted Multi-objective BA for 

solving shell and tube heat exchange problem. Again, Yang Nien-Che and Minh-Duy 

Le [134] have proposed a MOOby using modified BA and Pareto front for solving 

passive power filters (PPFs) design problem in order to suppress critical harmonics 

and improve power factor.  

Hybrid versions of BA have been introduced in the view of improved performance. 

Bat algorithm has been hybridized with Artificial Bee Colony Algorithm and has been 

used to solve the Multi-objective Radio Frequency Identification network planning 

problem [128]. In this technique, the search procedure of the original BA is enhanced 

by incorporating onlooker mechanism from ABC algorithm.  



 
 

50 
  

The concept of fuzzy logic has been introduced in the bat algorithm in [135] The 

fuzzy logic bat algorithm offers fuzzy good judgments in the set of rules, thereby 

providing an efficient solution. Again in the same year, Yang [136] extended BA to 

solve MOO problems. The technique has proved its effectiveness in many engineering 

design optimization problems.  

2.3.7 FIREFLY ALGORITHM for MULTI-OBJECTIVE OPTIMIZATION 

The original firefly algorithm is extended for tackling MOO problem. FA can be 

directly used for MOO by using weighted sum approach [137]. Another way to solve 

MOO problem is producing Pareto optimal front by modifying or improving the 

original methods. The FA has been extended to solve MOO problem and applied in 

engineering design optimization [138]. Fran SérgioLobato and Jr. Valder Steffen have 

extended FA for multi-objective by associating the classical FA with the fast non-

dominated sorting and the crowding distance [139]. All the dominated solutions are 

removed from the population by using the fast non-dominated sorting and sorted into 

the non-dominated front. The FA has been used to generate new firefly population 

and when the number of individuals has increased, it is truncated by using a crowding 

distance operator. An anti-stagnation operator has been adopted in order to avoid the 

stagnation process. This MOFA has been utilized to solve classical (bio) chemical 

engineering system design. Subsequently, a multi-objective non-dominated sorting 

firefly algorithm (MONSFA) has been advocated [140].  In the view of updating the 

population with high-quality solutions, characteristics such as the global search 

ability, the non-dominated sorting, and population crowding distance selection are 

incorporated during every iteration. This updated strategy is analogous to that of the 

strategy adopted in NSGA-II only with an exception of a different formula to compute 

the crowding distance as the formula used in NSGA- II is not appropriate when the 

number of objectives is more. The method also facilitates in choosing better solutions 

in the non-dominated set that are more evenly distributed.  

Two modified versions of the firefly algorithm, one using the weighted sum method 

and the other employing the Pareto-dominance method have been suggested to solve 

the multi-objective task scheduling problem. A decomposition-based firefly algorithm 

has been designed to solve FRID network planning problem [141]. Radio frequency 
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identification (RFID) is widely used for item identification and tracking. Thus multi-

objective firefly algorithm finds its application in many multi-objective problems.  

2.4 OPTIMIZATION TECHNIQUES IN ENGINEERING 

OPTIMIZATION PROBLEMS 

There are various optimization problems in real world. Out of these, five problems 

have been taken as a case study in this research. This section provides the earlier 

works performed in the context of optimization in these case studies [142]. The 

studies include (i) Tension and Compression Spring Design Optimization and Welded 

Beam Design Optimization in the context of SOO (ii) Welded Beam Design and Disc 

Brake Design Optimization with regard to MOO and (iii) Multi-level threshold 

optimization for image segmentation. The following sub-section deals with the 

existing works in these problems. 

2.4.1 EARLIER WORK IN SINGLE OBJECTIVE OPTIMIZATION OF 

TENSION AND COMPRESSION SPRING DESIGN AND WELDED 

BEAM DESIGN 

The existing algorithms to handle spring design optimization and beam design 

optimization are concisely presented here. Based on the socio-behavioral concept of 

society and civilization Akhtar et al. [143] has developed a method for solving single 

objective constrained optimization problems. The primary idea is to interact with 

leaders of all societies for the improvement of the society. They have tested their 

algorithm using Welded Beam Design problem. It requires 19,154 evaluations to get 

the objective value 2.4426. After that, Mahdavi et. al. (2007) have proposed an 

improved harmony search algorithm that generates new solutions to enhance the 

accuracy and the convergence rate of the harmony search. They have solved the 

spring design problem and welded beam design problem using 50,000 and 300,000 

evaluations respectively. The best values identified have been good but it has taken a 

higher number of iterations compared to other algorithms. Then, Hernandez et al. 

[144] have introduced constraint optimization using PSO including two new 

perturbation operators to prevent premature convergence and applied to solve 

engineering design problem by [145] .  
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An extended version of ABC algorithm has been advocated through the inclusion of a 

constraint handling technique during the selection process so that the feasible regions 

are chosen rather than the entire search space. This extended algorithm has been 

employed for solving engineering design problems. Their method requires 30,000 

evaluations to obtain the best value for both problems of spring design optimization 

and welded beam design optimization. Cagnina et al [146] have proposed a simple 

method using PSO to handle constraints and a different mechanism to update the 

velocity and position of each particle. Yang and Deb [147] has introduced cuckoo 

search method which is based on the breeding behavior of cuckoos to solve 

Engineering optimization problem.  

The following sub-section provides an account of the earlier works with respect to 

Multi-Level Threshold Optimization and multi-objective welded beam design and 

disc brake design.  

2.4.2 EARLIER WORK IN MULTI-LEVEL THRESHOLD OPTIMIZATION 

FOR IMAGE SEGMENTATION  

The existing works pertaining to multi-level threshold optimization is briefly 

presented in this sub-section. The approaches usually select thresholds by optimizing 

(maximization or minimization) some criterion functions defined for images  There 

exist several classical thresholding methods like Otsu’s class variance method that 

maximizes the variance between classes, Kapur’s Entropy Criterion Method that uses 

the maximization of the entropy to measure the homogeneity among classes, Non-

extensive or Tsallis entropy method etc. Since the classical methods search for the 

best values exhaustively to optimize the objective function for multi-level 

thresholding, it is computationally expensive and the use of evolutionary approaches 

for optimization has proved to be efficient. Various meta-heuristic algorithms such as 

Genetic Algorithm, Particle Swarm Optimization (PSO), Bacterial Foraging 

Optimization (BFO), Differential Evaluation (DE), Artificial Bee Colony (ABC), 

Cuckoo Search (CS), Galaxy-based Search Algorithm, Harmony Search 

Optimization, Bat Algorithm, Electro-magnetism Optimization. Firefly Algorithm, 

hybrid method etc. are widely used for solving the optimal multi-level image 

segmentation problem. The classical and optimization algorithm based thresholding 
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methods are employed to find the best possible threshold in the segmented histogram 

by satisfying some guiding parameters. 

A general scheme to segment images through GA using an evaluation criterion is 

developed by S. Chabrier which quantifies the quality of the image segmentation 

result. This method utilizes the knowledge of the ground truth when available in the 

view of setting the desired level of precision of the final outcome. GA is then utilized 

to identify the best combination of information that has been elicited from by the 

selected criterion. A framework formulated on the basis of Multi-Agent System 

theory and hybrid GA has been proposed for the purpose of image segmentation.  In 

this method, initially, every segmentation agent considers a sub-optimal image and 

implements the Iterated Conditional Modes algorithm and yields the segmented image 

to the coordinator agent. The coordinator then diversifies these initial sub-optimal 

images by subjecting it to hybrid genetic operators in order to produce new promising 

starting solutions which are refined once again by the segmentation agents. Then, 

Kamal H., et. al. has proposed a method for image segmentation by combining GA 

and wavelet transform [148]. Firstly, the length of the original histogram is 

diminished through the application of wavelet transform. With the histogram of this 

lower resolution image, the number of thresholds and values of the threshold are 

estimated through GA. Similarly using PSO, Akhilesh Chander, et. al. has presented a 

self-iterative method (Otsu’s method) to find the appropriate number of thresholds in 

order to delineate an image. The thresholds that are attained as an outcome of this 

iterative procedure are considered as initial thresholds. Then, for the current PSO 

variant, the particles are generated randomly around these thresholds. This algorithm 

adapts social and momentum characteristics of the velocity equation in order to 

update the movement of the particles. A hybrid cooperative-comprehensive learning 

based PSO algorithm for image segmentation using multilevel thresholding is 

developed by M. Maitra and A. Chatterjee where an improved variant of PSO 

employs cloning of fitter particles, at the expense of worst particles, in an attempt to 

further enhance the capability of the optimization strategy. PSO is also modified and 

hybridized with another algorithm for multilevel thresholding image segmentation  

[149]. Then, P. D. Sathya and R. Kayalvizhi [150], [151], [152],[153] have adopted 

bacterial foraging algorithm to find the optimal threshold values for maximizing the 

Tsallis, Kapur’s and Otsu’s objective functions. Using ABC algorithm, Ming-Huwi 
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Horng [154] has put forth the maximum entropy based ABC thresholding (MEABCT) 

method for image segmentation. After that, Miao Ma et. al.[155] and Kazim Hanbaya 

and M. Fatih Talu [156] have also incorporated ABC and improved ABC algorithm 

for SAR Image segmentation. Then, Diego Oliva et. al. has used the Harmony Search 

algorithm for multilevel thresholding in image segmentation that encoded random 

samples from a feasible search space inside the image histogram as candidate 

solutions[157], whereas their quality has been evaluated considering the objective 

functions that are employed by the Otsu’s or Kapur’s methods [158]. Some other 

meta-heuristics algorithm like cuckoo search [159], Galaxy-based Search Algorithm 

[20], [160]–[162], Bat Algorithm [163], Electro-magnetism Optimization [164], 

Firefly Algorithm [165] etc. are also used widely in image segmentation. Diego Oliva 

et. al. have put forth a method that integrates the characteristic search potential of the 

EMO algorithm with the objective functions of the widely used MT methods 

proposed by Otsu and Kapur. 

2.4.3 EARLIER WORK IN MULTI-OBJECTIVE OPTIMIZATION OF 

WELDED BEAM DESIGN AND DISC BRAKE DESIGN 

This sub-section elaborates on the existing works that have been carried out in the 

optimization of two multi-objective Engineering Design problems namely the welded 

beam design and the disc brake design.  

The disc brake optimization problem has been formulated by Osyczka and Kundu 

[166]. The authors have utilized the modified distance method in GA to solve the disc 

brake problem and have compared their results with that of a plain stochastic method. 

Then, Ray and Liew [125] have adopted a swarm metaphor approach in which a new 

optimization algorithm based on behavioral concepts similar to real swarm have been 

proposed to solve the disc brake problem. After that, Yıldız et al. [135] have 

employed a hybrid GA combining Taguchi’s method and GA. The incorporation of 

robust design of parameters with GA via a small population of individuals has 

resulted in optimal parameter settings for design optimization problems. In order to 

evaluate this method, L16 orthogonal arrays have been tested. On the basis of the 

impact of design parameters on constraints, objectives, and inequalities, ANOVA 

statistical tests have been used to identify the optimal levels of these parameters. 

Subsequently, a hybrid approach integrating immune algorithm and the hill climbing 
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local search procedure has been advocated for attaining efficient solutions towards 

complex real-world optimization problems. The outcomes of this approach are 

reported with respect to the design of disc brake and have been compared against the 

solutions provided in the literature. In 2012, a multi-objective Bat Algorithm has been 

adopted to optimize the welded beam design [167]. Then, a multi-objective cuckoo 

search has been incorporated to solve the problems of welded beam design and the 

disc brake design [168]. In this method, the single objective Cuckoo search algorithm 

has been extended to suit the multi-objective design problem. The proposed algorithm 

yields comparable performance with regard to optimization of disc brake design and 

welded beam design at around 1000 iterations. Then, the same author [169] has used 

multi-objective firefly algorithm (MOFA) for solving this disc brake problem. By 

extending the basic ideas of FA, Yang et al. have developed multi-objective firefly 

algorithm. Then, a multi-objective flower algorithm using weight sum approach with 

random weights has been utilized to solve the two-objective disc brake problem [170]. 

The algorithm emulates the flower pollination aspects and shows good performance.  

Reynoso-Meza et al. [171] have used the evaluation of design concepts and the 

analysis of multiple Pareto fronts in multi-criteria decision-making using level 

diagrams. They have addressed the multi-objective design optimization problem of 

disc brake by considering the friction surfaces as 4 and 6 to obtain Pareto fronts. Then 

parameter adaptive harmony search algorithm has been customized to suit the multi-

objective disc brake problem [172], the weight sum approach has been adopted for 

fitness computation. In 2017, the multi-objective welded beam design is solved 

through t-norms, t-co-norms and fuzzy optimization [172]. An Intuitionistic fuzzy 

optimization technique has been formulated by incorporating the concepts of t-norm 

and t-co-norm and has proved to be efficient in handling real-world complex 

optimization problems. Subsequently, a multi-objective ant lion optimization 

algorithm has been recommended for solving both the welded beam design and disc 

brake problems [173]. In this technique, the solutions are initially stored in a 

repository. Then, solutions are chosen based on roulette wheel mechanism according 

to the coverage of solutions.  

Thus a detailed review of the existing attempts to optimize single objective, multi-

objective and multi-level thresholding has been investigated.  



 
 

56 
  

2.5 SUMMARY  

The chapter discussed the related work pertaining to meta-heuristic algorithms and 

engineering design optimization. Eight extensively used meta-heuristic algorithms 

namely Particle Swarm Optimization, Ant Colony Optimization, Artificial Bee 

Colony Optimization, Cuckoo Search, Bat Algorithm, Firefly Algorithm, Genetic 

Algorithm and Gravitational Search Algorithm have been extensively investigated 

projecting its variants and applications. Initially, the algorithms were presented in the 

context of SOO. Then, the various strategies involved in the computation of fitness in 

MOO were presented. Subsequently, the multi-objective variants of the considered 

meta-heuristic algorithms were spotlighted.  Then, the earlier works pertaining to the 

optimization of the case studies undertaken in this research were presented. Initially, 

with respect to SOO, a literature survey on optimization techniques adopted for 

tension and compression spring design and welded beam design was presented. Then 

review on optimization of multi-level segmentation techniques was discussed. After 

that, related works associated with the MOO of the welded beam, design, and disc 

brake design were detailed. 
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Chapter 3 

PROBLEM STATEMENT AND RESEARCH 

METHODOLOGY 

A detailed literature review related to meta-heuristic techniques for optimization 

problems has been presented in Chapter 2. After performing the review, the 

foundations for this research have been arrived at and presented in this chapter.  

3.1 RESEARCH MOTIVATION 

Even though the literature reports a variety of optimization techniques, it is observed 

that each type of techniques characterizes some certain merits and demerits. Usually, 

the choice of parameter values greatly impacts the performance of the algorithms. 

Only when optimal values are chosen for its parameters, which are not known in prior 

and are application specific, the optimization techniques perform effectively. The 

complexity is enhanced when dealing with MOO algorithms.  

Many optimization algorithms have their inspiration from biology and nature. Bio-

inspired meta-heuristic algorithms are of specific research interest as a result of their 

vital strength and efficiency. Over the billions of years, biological processes have 

their own develop capability such that they are endlessly becoming more effective. 

For the processes that are working in optimal ways, nature is a copious source. 

Sometimes the algorithms based on these processes are often very effective in the 

optimization of the objective functions. One of the merits of these algorithms is that 

they can easily overcome the local optima meritoriously due to the decision exercised 

in nature.  

In order to devise a new optimization technique, the motivation is derived from the 

‘No Free Lunch Theorem’ [20]. It offers both an initiative and an essential design 

guideline for developing algorithms. According to this theorem, the potential of all 

search algorithms will be identical if averaged over the entire set of possible objective 

functions [162]. This implies that if a search algorithm exhibits high efficiency with 

specific objective functions, then it will be incompetent with the other objective 

functions. Hence it can conjecture that there can be no algorithm that can demonstrate 

high efficiency in optimizing all possible objective functions. Therefore, owing to the 
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surge in cardinality of the engineering applications that employ optimization, the 

necessity for the formulation of new algorithms also increase. This acts as a driving 

force towards perpetual innovation of novel optimization algorithms. The No Free 

Lunch Theorem also emphasizes the necessity for developing an optimization 

algorithm with respect to a particular application domain. According to this theorem, 

attempting to formulate a procedure that can exhibit superiority in performance in all 

domains will result in futility. Even though meta-heuristics can be applied to all 

problems related to optimization, high performance cannot be assured. Therefore, 

understanding the characteristics of search space for which the algorithm is designed 

will be greatly useful and supportive while formulating it. On the scenario of having 

to make a decision on which optimization algorithm to adopt, the algorithm that 

exhibits the highest potential for the specific application in hand is preferred rather 

than the ones that demonstrate acceptable performance with a wide range of 

applications. Thus, the theorem conjectures that designing algorithm based on the 

application will make it more reachable and successful.  

After thoroughly investigating the earlier works, a set of goals are identified as 

desirable to be achieved by the new algorithm to be proposed. The first goal is that the 

algorithm should not make any assumption about the search domain. Therefore, 

algorithms should be designed to make it as general as possible. This means that the 

fitness values should not be incorporated directly into the algorithm. The second goal 

is related to efficiency in performance. This means producing results comparable to 

existing algorithms with a fewer number of iterations. In the case of a few 

optimization problems, the function evaluation may take a considerable amount of 

time. Therefore, the algorithm has to be efficient as well as converge faster without 

getting stuck in local optima. The third aim is to preserve simplicity. From the 

literature review, it has been found that some algorithms involve complex 

mathematical computations making them hard to comprehend. Hence, a new 

algorithm that can be easily adapted by anyone with good, general scientific or 

mathematical knowledge, rather than just by experts in the meta-heuristic field is 

sought for. This motivates to formulate a simple algorithm that performs efficiently 

for varied applications. This also signifies that the number of user-controlled 

parameters should be kept as minimum as possible. Thirdly for MOO also simpler 
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algorithms that exploit the complete potential of biological aspects need to be 

developed. 

3.2 PROBLEM STATEMENT 

Issues such as premature convergence by unsuitable bias, need for careful fine-tuning 

of parameters, non-generalization, high computational cost and difficult 

implementations are among the main limitations of early optimization techniques. 

Moreover, several natural and bio-inspired phenomenon are still unexplored and if 

they are tapped properly, they may help in solving complex optimization problems. 

The stated issues, the unexplored biological phenomena and the ideologies of no free 

lunch theorem problems have motivated this research to develop new methods 

towards optimization. The problem definition that is to be explored in this research is 

as follows: 

“Develop bio-inspired algorithms for single and multi-objective optimization 

problems that overcome all the above-said problems in the existing techniques and 

test them for diverse applications”. 

3.3 RESEARCH OBJECTIVES 

The performance of the bio-inspired algorithm is determined by its capability to 

converge to the optimal solution in a limited extent of time. Bearing in mind the 

above-mentioned issues, the objectives of this research work is to design and develop 

a simple and efficient optimization technique for SOO problems as well as MOO 

problems. With the intention to overcome the problem stated in the aforementioned 

section, the following research objectives are framed and achieved in this thesis.  

 OBJECTIVE 1 

Design a simple, robust and efficient truly bio-inspired method to handle 

single objective optimization problems.  

 OBJECTIVE 2 

Fine-tune the various parameters practice in the proposed algorithm by 

carrying out a complete analysis of the algorithm. 
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 OBJECTIVE 3  

Extend the algorithm for solving multi-objective optimization problems by 

considering both weighted sum approach and Pareto-based approach. 

 OBJECTIVE 4 

Once the algorithms are designed, apply the algorithms to diverse problems 

for measuring the performance, efficiency, and simplicity. Ensure that the 

algorithm performs competitively well against existing bio-inspired algorithms 

on problems related to optimization. 

3.4 RESEARCH CONTRIBUTIONS 

The main contributions of the research work to fulfill the stated objectives are 

illustrated below: 

 CONTRIBUTIONS 1 

The first contribution to fulfill the first objective of this research work is 

developing a novel bio-inspired algorithm harnessing the chirping behavior of 

cricket for the SOO problem. This proposed Cricket Chirping Algorithm 

(CCA) is tested on various test problems and analyzed by using different 

performance metrics to measure the performance, efficiency, and simplicity.  

 CONTRIBUTIONS 2 

The second contribution of this work is fine-tuning the various parameters of 

the proposed single objective optimization algorithm by carrying out a 

complete analysis for enhancing the performance. A statistical analysis using 

ANOVA is also done. 

 CONTRIBUTIONS 3 

The proposed algorithm is extended to solve MOO problem by designing 

and developing MOO Algorithm using two approaches. 

A. Multi-objective Cricket Chirping Algorithm with Weighted Sum 

Approach (MOCCA-W) 
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B. Multi-objective Cricket Chirping Algorithm with Pareto Ranking 

Approach (MOCCA-P). 

 CONTRIBUTIONS 4 

The proposed algorithm is applied to some real-life problems for validating its 

performance and efficiency. To test the Cricket Chirping Algorithm for SOO, 

two problems i.e. Mechanical engineering design optimization problems and 

the Multi-level Thresholding for Image Segmentation are considered. The 

developed Multi-objective Cricket Chirping Algorithm (MOCCA) is applied 

to solve benchmark test problems and the Engineering Design optimization 

problems.  

3.5 SCOPE OF THE RESEARCH 

The proposed algorithms are suitable for solving discrete and continuous optimization 

functions for both SOO problems as well as MOO problems. The CCA for the SOO 

problem is tested for 2 to 40 dimensions. In the case of MOO problems, the algorithm 

is limited to two objective functions. It is applied to various applications like 

mechanical engineering optimization problem for single and multiple objectives and 

in multi-level Thresholds for image segmentation. The algorithms are designed and 

implemented in MATLAB 2013b. Several experiments to list the efficiency of the 

algorithm in terms of correctness of results and the convergence speed are carried out. 

Also, the error rate is checked. To further substantiate the experimental results, 

statistical analysis is also done through ANOVA with SPSS package. 

3.6 SUMMARY 

The research motivations have been thoroughly analyzed and the research objectives 

have been framed in this chapter. A brief list of the research contributions is also 

provided along with the scope of the research. 
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Chapter 4 

CRICKET CHIRPING ALGORITHM FOR SINGLE-

OBJECTIVE OPTIMIZATION (CCA)  

Optimization problems in Science and Engineering are viewed as problems that are 

difficult to solve in polynomial time. In the literature, several heuristics and meta-

heuristic bio-inspired algorithms have evolved as powerful methods for solving these 

types of problems. Though there are a number of optimization techniques, it is 

observed that each type of technique retains certain advantages and disadvantages. 

Though these methods are easy to implement, they usually require some kind of 

parameter tuning. This makes them difficult to apply directly because there is no prior 

knowledge of the optimal values of these parameters and sometimes they are often 

problem-dependent. 

This chapter introduces the proposed meta-heuristic algorithm motivated by the 

chirping behavior of the cricket insect. The chirping characteristics of crickets and 

their movement for mating and aggression serve the motivation for mapping it to 

solve optimization problems. In this chapter, a detailed study of cricket’s behaviors as 

noticed in nature and the intuition behind their chirping behavior for function 

optimization is presented. The proposed algorithm is tested and validated by using 

standard benchmark mathematical functions and compared with recent meta-

heuristics techniques to show the performance of the proposed algorithm.  

4.1 CRICKET’S NATURAL CHIRPING BEHAVIOUR  

Crickets are insects that somewhat resembles grasshoppers having trampled bodies 

and long antennae. There are more than 900 species of crickets. Crickets emit a 

peculiar sound, which is known as chirping. Scientifically, it is referred to as 

‘stridulation’ since the stridulatory organ emits the sound. This is a large vein look 

like a comb running along the bottom of each wing covered with ‘teeth’. Usually, 

only the male crickets chirp, however some female crickets chirp as well. As the male 

cricket chirps, he also holds the wings up and opens, so that the wing membranes also 

act as acoustical sails. The cricket chirp or song is divided into four types based on 

their chirping behavior [174], [174],  [171]. 
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Calling Chirp / Song: The calling chirp is produced for attracting female crickets to 

mate. This song is fairly loud and this is the song that is most commonly heard during 

summer nights.  

Courting Chirp/Song: The courting chirp sounds more like a scraping noise of low 

intensity. This chirp is produced when a female cricket is near and a male attempts to 

mate with a female.  

Copulatory Chirp/Song: A copulatory chirp is produced for a brief period after a 

successful mating.  

Aggressive Chirp/Song: An aggressive chirp is triggered by chemoreceptor on the 

antennae that perceive the near presence of another male cricket. It is a very loud trill 

and is produced during or after combat with another cricket.  

Though the cricket chirping is of different types, generally crickets chirp for two 

reasons: (1) for mating (2) for aggression. They produce the calling chirp for mating 

with female crickets and aggressive chirp to fight with other male crickets. It is 

rumored that crickets can tell the outside temperature. In addition, it was scientifically 

proved by Dolbear in 1987 and is known as Dolbear’s law [16]. According to this 

law, there is a relation between the cricket’s chirping rate and the temperature of the 

atmosphere. Depending on the species and the temperature of the environment 

Cricket’s chirping rate may be different. Most species chirp at higher rates at a higher 

temperature. 

4.2 MAPPING CRICKET BEHAVIOUR TO PROBLEM-

SOLVING 

 The chirping characteristics of crickets and their mating and aggressive behavior to 

survive serve the motivation for mapping it to solve optimization problems. This 

forms the basis of the CCA that is presented in this section. Each cricket is assumed to 

be a solution in the search space and is characterized by its position in the search 

space. Out of the total cricket population, few of them as determined by the user is 

randomly designated as female populations. The male cricket can only chirp and its 

chirping rate is based on the outside temperature. The male cricket may chirp for 

mating or aggression. The male crickets move to new positions by emitting a mating 

song and mate with females producing offspring. Based on their chirping rate at a 
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certain temperature, the velocity of the sound is calculated. The offspring represents a 

new position of the cricket. By emitting an aggressive song, crickets fight with other 

male crickets, the best-fit cricket is the winner of cricket and it reaches a new position 

in the search space. The cricket that has the highest fitness will be selected as the 

winner of cricket. For simplicity, crickets are assumed to be in two phases: a mating 

phase when they produce calling chirp and aggression phase when they produce 

aggressive chirp.  

1. Mating phase: In this phase, the male cricket chirps for mating. It emits a 

peculiar sound that attracts the female crickets and other male crickets move 

away. The male cricket that has the highest chirping rate will attract more 

female crickets. It is assumed that after mating they produce offspring and 

move to a new place that means they are taken to new positions in the search 

space. The attraction is based on the loudness of the chirping sound. Based on 

the chirping rate the cricket moves to the new position.  

2. Aggression phase: When the crickets chirp for aggression, they emit an 

aggressive chirp that other male crickets are warned or called and female 

crickets will move away. All crickets may not chirp for aggression. For 

simplicity, a simple representation is used i.e., the probability of chirping for 

aggression is chosen to be between [0, 1]. When crickets chirp for aggression, 

it is assumed that they randomly walk to other male crickets and fight. The 

winner of cricket takes the place of the new solution and removes the loser 

cricket. The fitness of the male cricket is calculated based on their 

attractiveness and replace the position of low fit cricket with high fit cricket. 

The main intention is to use the new and potentially better solutions (cricket) 

to replace a not so good solution.  

The cricket’s calling chirp and aggressive chirp in nature are shown in figure 4.1. The 

relationship between the environmental temperature and the chirping rate of crickets 

was first calculated by an American physicist and naturalist named Amos Dolbear. He  

expressed the relationship using a mathematical equation  given in 4.1. It  provides a 

way to estimate the temperature Tc in degree Celsius from the number of chirps per 

minute. 
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Figure 4.1: Cricket’s behavior: (a) Calling Chirp and (b) Aggressive Chirp 

 

                                                                              (4.1) 

Or,                                                                     (4.2)       

The chirping rate is derived by using Dolbear’s law in a certain temperature Tc or Tf   

                                                                                  (4.3) 

Chirping rate (Nc) is the number of chirps per minutes. The chirping rate represents 

the frequency of the cricket’s chirp. From the frequency, the velocity of each cricket 

is calculated by using equation 4.4 as follows:  

                                                                                            (4.4) 

Here, λ is the wavelength which represents the gap between one chirp to another chirp 

which is uniformly drawn. From the velocity, the step size (sti) is calculated by using 

equation 4.5. 

                                                                  (4.5) 

Where α=0.01 is a constant value which is used to control the movements of the 

cricket within a bounded space and xi is the current position and x* is the best position 

ever encountered by the cricket. Then the cricket will move to the new position by 

using the following formula: 

                                                                                                   (4.6) 

Equations (4.1) to (4.6) are used when the crickets chirp for mating and they change 

their position according to the chirping rate at a certain temperature. 
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When crickets chirp for aggression, they have to fight with other crickets. For 

simplicity, in this design, a probability value named Aggression Rate Ar is considered. 

Crickets that exceed this probability value are allowed to produce an aggression chirp 

and move to a new position using the random walk. In the new position, two best 

positions (crickets) are chosen and a tournament is allowed between them to simulate 

a fight. The winner is chosen to be the best cricket (position or solution). The 

flowchart of the algorithm is shown in figure 4.2 and the proposed algorithm is given 

in table 4.1. 

4.3 EXPERIMENTAL RESULTS AND ANALYSIS 

The proposed CCA is implemented for various benchmark mathematical functions. In 

order to analyze the performance of CCA, a full experiment is performed for the 

proposed algorithm for ten benchmark test functions. The benchmark functions 

provide a balance between multimodal functions with many local minima and 

functions with only a few local minima as well as easy and difficult functions. 

4.3.1 BENCHMARK TEST FUNCTIONS 

There are many benchmark functions to test the performance of the optimization 

techniques. There is a need for validating and testing any new optimization technique 

against the benchmark functions. The benchmark test functions that are considered for 

this experiment are summarized in table 4.2 with the function name, formula, range, 

variables and their global optimal value. 

4.3.2 EXPERIMENTAL RESULTS 

In table 4.3, the mean of iterations and time (in seconds) for execution of different 

benchmark test functions are calculated for varying dimensions like 2, 10, 20, 30 and 

population size 20 and 40. The algorithm for each function was executed 50 times and 

the mean of iterations and time is calculated. The aggression rate (probability for 

aggression Ar) varies from 0 to 1. The implementation is done in Windows 7 

operating system computer with Intel(R) Core (TM) i5 processor and 4GB RAM. 
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Figure 4.2: Flowchart of CCA  
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Update the global best cricket 
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Start 

No 

Fight with other male cricket 

Select the winner cricket 

Set the parameter Ar=Aggression rate, Tc=Temperature 

Set the cricket population n and randomly choose 1<k<n/2 female 

crickets 

 

Randomly walk to new place 

 

If rand>Ar 
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No 
While stopping 
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Move the male crickets to new place 

Mate with female cricket 

Select  the initial  global best cricket 

Calculate the frequency of Chirp, Velocity and Stepsize 
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Table 4.1: Pseudocode for Cricket Chirping Algorithm (CCA) 

Algorithm_CCA( ) 

Begin 

Input: fc(x): Objective function; n : Number of crickets; Tc: Temperature; Ar: Aggression 

rate; k: No of female crickets, 1<k<n/2  

1. Randomly Initialize the cricket’s position 

2. Randomly choose  k crickets as female crickets  

3. Calculate the fitness of each cricket 

4. Assign best cricket  fbest_cricket ←value of the best fit cricket, Pbest_cricket← position of 

the best cricket 

5. Set gbest_ cricket   as the current fbest _cricket  //in the initial generation gbest_ cricket = 

fbest_cricket //. 

6. While (stopping criteria not met) 

a. Allow male crickets to chirp for mating //Call procedure calling_chirp()//. 

b. Allow male crickets to mate with female crickets //Call procedure mating()//. 

c. With probability Ar, allow the male crickets to chirp for aggression //Call 

procedure aggression_chirp() //. 

d. Compute the fitness of the crickets produced by mating and aggression in the 

new positions. 

e. Select  fbest_cricket, from the new positions of the cricket. 

f. If  fbest_cricket >gbest_ cricket, then update gbest_cricket  with the current  fbest_cricket. 

7. End while 

8. Return the global best cricket at termination. 

End 

Procedure calling_chirp( ) 

Begin 

for every male cricket, 

1. Calculate the frequency of Chirping  and velocity using 

equation (4.3) and (4.4) 

2. Calculate the step size using equation (4.5) 

3.  Move each cricket to the new position using equation (4.6) 

4. Return crickets in new position 

End 
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Procedure mating( ) 

// This procedure simulates the mating behavior of the cricket. // 

Begin 

1. For every male cricket Mi   in their new position, randomly choose a female cricket  

Fi 

2. Randomly choose a cut point in both Mi  and  Fi 

3. Exchange the genetic materials of both Mi and Fi   with reference to their cut points 

to produce two new offspring      // Similar to crossover in GA//. 

4. Return the two offspring and the parents as the new cricket positions. 

5. the end for 

6. return  

End 

Procedure aggr_chirp() 

Begin 

1. if  rand>Ar 

  randomly walk to the new position. 

2. Fight with other male crickets. 

3. Return the winner cricket (position). 

End 

 

 

4.3.3 COMPARISON WITH OTHER BIO-INSPIRED ALGORITHMS 

The CCA is compared with other popular optimization algorithms like GA, PSO, 

ABC, BA, and CS for various standard test functions such as Ackley, Easom, 

Griewank, Matyas, Michalewicz, Ratrigin, Rosenbrock, Schwefel, Shubert, and 

Sphere.  In GA, the standard version with no elitism and population size 1000 and 

mutation probability of pm = 0.05 and crossover probability of 0.8 is used. For PSO, 

the standard version is used with learning parameters α = 2 and the inertia function I = 

1. The number of employed and onlooker bees is fixed to 50% of population and 

scout bee to be one in ABC algorithm. In BA algorithm the loudness and pulse are set 

to 0.5 and the minimum and maximum frequency is taken as 0 and 2. In CS 

algorithm, the discovery rate of the alien egg is taken as 0.25.   
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Table 4.2: The benchmark test functions with their global optimal value 
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Table 4.3: The mean of iterations and time taken for different benchmark functions to find global optimal values using CCA 

 

 

Function Optimal 

Value 

Mean of Population=20 Population =40 

d=2 d=10 d=20 d=30 d=2 d=10 d=20 d=30 

Ackley  0 Iteration 6429.2 36018 71908.4 121598.4 13802.4 75523.2 149140 241703.2 

Time 0.00662 0.9026418 1.877198 3.36913 0.303257 1.77108 3.760026 6.374346 

Easom -1 Iteration 4617.6 4638 7215.2 7143.6 15725.6 15899.2 160669.6 160920.8 

Time 0.0808 0.0896 0.149831 0.162417 0.253321 0.28542 0.311915 0.334619 

Griewank 0 Iteration 4158.84 29597.82 54473.58 73849.44 8839.6 64642.24 118506.4 157578.6 

Time 0.092566 0.690974 1.39348 2.044292 0.18909 1.472306 2.964198 4.286906 

Matyas 0 Iteration 64686 64698 64846 64788 139174 137662 139105.6 137728 

Time 1.10283 1.2239 1.39003 1.50665 2.27423 2.5390 2.7186 2.9097 

Rastrigin 0 Iteration 3574.4 21406.56 42750.54 59855.51 7268.48 41734.4 81720 134395.54 

Time 0.2467 1.3050 2.83864 4.28271 0.40299 3.8618 5.4316 10.942278 

Rosenbrock 0 Iteration 7025 10208.94 8573.69 8707.2 15350.4 15424.2 15568.52 15204.44 

Time 0.312906 0.5451 0.52933 0.531578 0.6304452 0.712776 0.7785224 0.815933 

Shubert -186.7309 Iteration 7638.54 7974.96 8029.14 8429.82 12800.2 11944.12 12200.78 12468.1 

Time 0.140948 0.151487 0.164864 0.176701 0.210975 0.215981 0.243043 0.25916 

Sphere 0 Iteration 70531 354550 666230 955790 148900 710400 1329300 1990400 

Time 3.6360 19.5958 37.3821 56.4690 2.6309 13.93222 26.7191 42.0729 
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Each algorithm is executed 100 times to carry out meaningful statistical analysis. The 

algorithm stops when the variations of function values are less than a given tolerance τ ≤ 

10
−5

. The results are summarized in table 4.4. It shows the number of function evaluation in 

the form of an average number (mean) of function evaluations± Standard Deviation (SD) 

from the success rate of finding the global optima, i.e. mean ± SD (success rate). For 

example, 670±152 (100%) indicates that the mean of iterations required to coverage is 670 

with a standard deviation of 152 and the success rate of finding the global optima for this 

algorithm is 100%.   

Again, the quality of the solution is measured by the Average Error (AE) and Standard 

Deviation (SD) of 50 independent runs. The AE is computed using equation (4.7) which is 

obtained from [15] 

                              𝐴𝐸 =
∑ | 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑗
)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −𝑓𝑚𝑖𝑛

  |50
𝑗=1

50
                                                             (4.7) 

Where,  𝑥𝑏𝑒𝑠𝑡
𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the final solution vector corresponding to the j

th
 run and f(𝑥𝑏𝑒𝑠𝑡

𝑗
)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the 

value of the benchmark problem corresponding to the final solution vector. The true optimum 

of a particular benchmark problem is given by 𝑓𝑚𝑖𝑛.  

In table 4.5 the AE and SD of GA, PSO, ABC, BA, CS, and CCA for ten benchmark test 

functions are shown. From the results, it is shown that compared to the other methods CCA 

has a less average error.  

Figures 4.3(a)-4.3(j) show the iterative results for each benchmark problem that is considered 

for comparison. In every generation, CCA is converging to the optimal value. The graph 

shows the fitness values obtained from the iteration number for the different optimization 

algorithm. CCA is converging faster compared to its counterparts. So the convergence of the 

CCA is higher compared to other algorithms. 
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Table 4.4: Comparison of Mean , SD and success rate to find optimal value amon GA, PSO, ABC, BA, CS and CCA 

 

 

 

 

Functions GA PSO ABC BA CS CCA 

Ackley 12720 ±3127(93%) 10417±2325(95%) 9765±1285(100%) 6711 ±2693 (100%) 4062±413(100%) 2475±194(100%) 

Easom 14249 ±2397(92%) 15278 ±989(90%) 10204±2011(99%) 8673 ±952(99%) 6633±606(100%) 4890±461(100%) 

Griewangk 67945 ±8752(90%) 65770±3293(92%) 29655±23407(100%) 10675 ±6459(100%) 6858±2132(100%) 4227±259(100%) 

Matyas 3701±765(100%) 5628±5210(100%) 3855 ±1974(100%) 630±248(100%) 790±198(100%) 670±152(100%) 

Michalewicz 7325 ±3614(95%) 7026 ±897(98%) 5181±1120(100%) 3952 ±893(100%) 1701±335(100%) 1364±182(100%) 

Rastrigin 93573 ±2699(80%) 8058 ±2557(90%) 7777±2593(100%) 11563 ±3782(100%) 3137±593(100%) 1286±168(100%) 

Rosenbrock 26723 ±6901(90%) 30796 ±6825(95%) 23597±18221(95%) 8923 ±6493(100%) 4846±1589(100%) 1882±455(100%) 

Schwefel 17629 ±6172(95%) 16550 ±1275(98%) 10722±833(100%) 8929±729(99%) 4596±945(100%) 1705±195(100%) 

Shubert 65077 ±3987(90%) 20521±1250(95%) 1980±471(100%) 9995 ±5642(100%) 5629±1483(100%) 2855±957(100%) 

Sphere 20572 ±1307(100%) 9840 ±2423(100%) 4783±955(100%) 1973 ±270(100%) 1599±236(100%) 804±117(100%) 
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Table 4.5: Comparison of Mean and Standard Deviation of Error rate of the benchmark test functions among GA, PSO, ABC, BA, CS and CCA 

 

Algor-

ithm 

Mean 

& std 

Functions 

Ackley Easom Griewank Matyas Michalewics Restrigin Rosenbrock Schwefel Shubert Sphere 

GA AE 1.37E+00 3.77E+00 7.678E-03 2.35E-05 5.24E-01 1.396E+00 7.468E-03 1.722E-01 5.11E+04 1.35E-04 

SD 6.420E-01 2.987E-01 4.1207E-03 3.637E-05 1.33E-02 3.2124E-01 4.162E+00 5.381E-02 1.567E+03 3.20E-05 

PSO AE 1.675E-01 9.72E-01 7.10E-04 1.23E-04 2.26E-01 7.96E-06 2.68E-02 9.58E+01 1.01E+01 2.06E-03 

SD 1.22E-01 5.45E-04 8.78E-04 1.41E-04 2.30E-01 3.83E-05 3.60E-02 1.18E+02 1.37E+01 2.68E-03 

ABC AE 3.2276E-004 9.93E-01 1.6132E-04 9.28E-07 0 4.4139E-13 5.5050E-04 9.39E+01 2.99E-01 6.27E-18 

SD 1.40E-03 2.84E-03 1.00E-03 1.93774E-06 0 3.1180E-12 9.45E-02 7.51E+01 1.16E-01 6.2305E-18 

BA AE 1.6250E-005 0.4000 0.0118 3.8588E-012 -0.1678 6.1702E-09 5.0191E-10 7.51E+03 -6.0309E-6 5.7198E-11 

SD 8.32455E-06 0.4949 0.011653 3.58031E-12 0.0258 5.5071E-09 5.5556E-10 1.351E+03 0 2.4495E-10 

CS AE 8.8818E-016 0 1.5169E-04 3.7828E-127 0 0 0 1.43E-02 6.2885E-5 0 

SD 0 0 8.9350E-04 1.8820E-126 0 0 0 7.77E-02 0 0 

CCA AE 1.8212E-016 0 0 0 0 0 0 0 0 0 

SD 0 0 0 0 0 0 0 0 0 0 
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Figure 4.3 (a): Comparison of the convergence in 100 iterations of Ackley function 

 

Figure 4.3 (b): Comparison of the convergence in 100 iterations of Easom function 
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Figure 4.3 (c): Comparison of the convergence in 100 iterations of Griewank function 

 
 

Figure 4.3 (d): Comparison of the convergence in 100 iterations of Michaelwicz function 
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Figure 4.3 (e): Comparison of the convergence in 100 iterations of Matyas function 

 
Figure 4.3 (f): Comparison of the convergence in 100 iterations of Rastrigin function  
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Figure 4.3 (g): Comparison of the convergence in 100 iterations of Rosenbrock function 

  

 
Figure 4.3 (h): Comparison of the convergence in 100 iterations of Sphere function  
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Figure 4.3 (i): Comparison of the convergence in 100 iterations of Schwefel function 

 

 

Figure 4.3 (j): Comparison of the convergence in 100 iterations of Shubert function 
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4.3.4  STATISTICAL ANALYSIS 

To test the significance of the results produced by CCA, a statistical analysis using 

ANOVA has been carried out on the number of iterations taken by various algorithm to 

converge that is shown in table 4.4. The analysis is performed by considering a 5% 

significance level over the number of iterations to find the optimal value corresponding to 

the test functions for six different methods such as GA, PSO, ABC, BA, CS, and CCA. In 

this analysis the hypothesis is set as follows: 

Null hypothesis H0: There is no significant difference in the number of iterations 

among the methods GA, PSO, ABC, BA, CS, and CCA.  

Alternative hypothesis H1: There is a significant difference in the number of 

iterations among the methods GA, PSO, ABC, BA, CS, and CCA. 

The ANOVA Test is conducted using SPSS tool and the results found in the experiment 

are shown in table 4.6. If the p-value is less than 0.05, the null hypothesis is rejected. 

From the ANOVA test shown in table 4.6, the p values (Sig.=0.000) is less than 0.05 (5% 

significance level). So the null hypothesis is rejected. It is concluded that there is a 

significant difference in the number of iteration among the methods GA, PSO, ABC, BA, 

CS, and CCA. 

  

ANOVA 

Iteration 

 Sum of Squares Df Mean Square F Sig. 

Between Groups 6695479700.400 5 1339095940.080 5.790 .000 

Within Groups 12488919554.600 54 231276288.048   

Total 19184399255.000 59    
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4.4 SUMMARY 

In this chapter, the meta-heuristic algorithm, namely Cricket Chirping Algorithm (CCA) 

has been proposed and implemented. The CCA is inspired by the chirping behavior of 

crickets, i.e. when they chirp for mating and aggression. The proposed algorithm has 

been validated and compared with some of the popular algorithms. It generates better 

solutions as compared to its counterparts and it is also concluded that the CCA performs 

well both in low and high dimensional problems. A set of benchmark functions have been 

used to test the CCA in comparison with GA, PSO, ABC, BA, and CS for both lower 

dimension and higher dimension problems. Experimental results prove the robustness and 

accuracy of CCA over other search-based approaches, and in every generation, CCA 

improves its fitness value. The performance of CCA is analyzed by using one way 

ANOVA test. 
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Chapter 5 

IMPACT OF PARAMETER TUNING ON THE CRICKET 

CHIRPING ALGORITHM 

Most of the man-made technologies are nature-inspired including the popular meta-

heuristics techniques that solve complex computational optimization problems. Though 

these methods are easy to implement, they usually require some kind of parameter tuning. 

This makes them difficult to apply directly because the optimal values of these 

parameters cannot be recognized earlier and they are often problem-dependent. In most 

of the metaheuristics algorithms, adjusting the parameters has important significance in 

obtaining the best performance of the algorithm. While solving the problem, the 

parameter controlling the algorithm has a potential to improve the efficiency of the 

algorithm. Cricket Chirping Algorithm (CCA) employs a set of parameters for its smooth 

functioning. In this chapter the different parameters used in CCA are tuned for better 

performance of the algorithm and the impact of tuning is experimented and analyzed on a 

set of sample benchmark test functions, then fine-tuned CCA is compared with other 

popular meta-heuristic algorithms.  

5.1 PARAMETER TUNING IN CCA 

When meta-heuristics search algorithms are used to solve a particular problem, we need 

some techniques to map the original problem context with the problem-solving 

framework like the specification of the representation and evaluation of the fitness 

function. Since there is not much knowledge about the effects of parameters on the 

algorithm performance, determining the best parameter value is a tough and challenging 

task. In most of the metaheuristics algorithms, manual parameter tuning is a common 

practice. Generally, one parameter is tuned at a time and repeated for simultaneous tuning 

of more parameters. However, it leads to a huge amount of experiments and may cause 

some sub-optimal choices. Obtaining a near optimal or an optimal solution of an 

algorithm depends on the parameter values. Therefore, zeroing suitable parameter values 

is important, even if the process requires a lot of added resources. Parameter setting can 
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be done in two methods: parameter tuning (before the run) and parameter control (during 

the run). In parameter tuning, parameter values are defined first and do not change during 

the execution of the algorithm. In parameter control, parameter values are changed along 

with the algorithm run and can be deterministic, adaptive or self-adaptive.   

Adjustment of different parameters of the meta-heuristics algorithm is usually a time-

consuming task which is mostly done by trial and error method. Here, the performance of 

CCA is tested with different values of the CCA parameters like temperature, aggression 

rate, crossover rate and female selection. 

Generally, meta-heuristic algorithms with several parameters have to be fine-tuned. The 

parameters of CCA are Temperature (Tc), Aggression rate (Ar), Crossover rate (Cr) and 

Female selection (Fs). This section analyses the impact of these parameters on the 

performance of CCA. The values of each parameter are varied by keeping other 

parameter fixed. To fix the parameters for CCA the performance of different parameter 

values are studied on the benchmark mathematical function, namely Alpine, Beale, 

Goldstein and Price, Rastrigin, Sphere, and Tripod function. A brief description of these 

functions is given in the next sections and the 3D view for representation of each of these 

functions is shown in figure 5.1. 

 

(a)  Sphere Function 

 

(b)  Beale  Function 
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(c)  Goldstein & price  Function 

 

(d)  Rastrigin Function 

 

 

(e) Alpine  1 Function 

 

(f ) Tripod Function 

 

Figure 5.1(a)-(f): Two-dimensional graph representation of the  test functions 

 

5.1.1 TEST FUNCTIONS 

 ALPINE1 FUNCTIONS  

This is a multimodal minimization problem defined as follows: 

                                                              (5.1) 

Here, d represents the number of dimensions and xi ϵ[−10, 10] for i = 1, ., d. The global 

optimum is fmin= 0 where xi = 0 and i = 1, ., n. 
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 BEALE FUNCTION (HEDAR, N.D.) 

 It is a continuous, non-separable, non-scalable, differentiable, multimodal function.  The 

function is defined as follows: 

                       (5.2) 

The global minimum is  fmin =0, at (3, 0.5) for xi ∈ [-4.5, 4.5], for all i = 1, 2. 

 GOLDSTEIN & PRICE FUNCTION 

The function Goldstein & Price returns the value: 

                   (5.3) 

With domain -2 |xi| ≤ 2 and the global minimum fmin = 3 at the point (0,−1). 

 RASTRIGIN FUNCTION 

The Rastrigin function is a highly multimodal but the locations of the minima are 

distributed regularly. It has several local minima. It is shown in the figure in its two-

dimensional form. The function is given below: 

                                                          (5.4)  

The range is −5.12 ≤ xi  ≤ 5.12 and global minimum  fmin=0  at the point (0,.......,0). 

 SPHERE FUNCTION 

It is a continuous, convex and unimodal function. This function has d local minima 

except for the global one. The Sphere function can be formulated as shown below: 

                                                                                            (5.5)  

Where, xi∈ [-5.12,  5.12]  for all i = 1, . , d. The Global Minimum f (x∗ =0, at x∗ =(0,..,0). 
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 TRIPOD FUNCTION 

It is a semi-continuous problem. The global minimum is fmin =0 on (0, -50). This function 

too is theoretically easy. But it is difficult for a lot of algorithms that get trapped in the 

two local minima.  Here, d represents the number of dimensions and xi∈[-100,100]  for 

i=1,..,.d. 

                                                             (5.6) 

5.1.2 IMPACT  OF  TEMPERATURE (Tc) 

In CCA the cricket’s chirp depends on the outside temperature. Generally, the higher the 

temperature of the environment, the higher the chirping rate. Here the cricket is allowed 

to chirp at different temperatures. The temperature is taken as 10, 20, 30, 40, 50, 60, 70, 

80, 90 and 100. The program is run for 100 times for every temperature value to find the 

global optimal value and an average number of iterations is calculated. In figure 5.2(a)-(f) 

the effect of the different temperatures for the chosen benchmark function is shown. 

 

Figure 5.2(a): Alpine 1 function - Number of iterations vs Temperature 
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Figure 5.2(b): Beale function - Number of iterations vs Temperature 

 

Figure 5.2(c): Goldstein & Price function - Number of iterations vs Temperature 

 

Figure 5.2(d): Rastrigin function - Number of iterations vs Temperature 
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Figure 5.2(e): Sphere function - Number of iterations vs Temperature 

 

Figure 5.2 (f): Tripod function - Number of iterations vs Temperature 

From the graphs shown in figure 5.2 (a)-(f), it is visible that when the temperature is 

increased the number of iterations essential to find the optimal value is reduced for all 

functions. So the temperature between 90 and 100 is fixed as the optimal temperature for 

CCA to perform well. 

5.1.3 IMPACT  OF AGGRESSION RATE (Ar) 

When a cricket wants to fight, it makes an aggressive chirp. Since not all the crickets 

chirp for aggression, it is needed to choose the aggression rate (Ar). Having analyzed, the 

performance of CCA to be better at higher temperatures, this experiment analyzes the 

impact of different aggression rate Ar at the temperature of (Tc=100). The probability of 

aggression rate is varied like 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 
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0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 0.99. The program is run 100 

times for all test functions with every Ar value and the average iterations to find the 

global minima are calculated. Figure 5.3(a)-(f) shows how the aggression rate effects the 

results in different functions. 

 

Figure 5.3(a). Alpine 1 function - Number of iterations vs Aggression Rate 

 

 

Figure 5.3(b). Beale function - Number of iterations vs Aggression Rate 
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Figure 5.3(c). Goldstein & Price function - Number of iterations vs Aggression Rate 

 

Figure 5.3(d). Rastrigin function - Number of iterations vs Aggression Rate  

 

Figure 5.3(e). Sphere function - Number of iterations vs Aggression Rate 
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Figure 5.3(f). Tripod function - Number of iterations vs Aggression Rate 

From the graphs, it is clear that with a lower value of aggression rate, the number of 

iterations needed for optimization is less. CCA shows better results at aggression rate 

0.05, 0.10, and 0.15. Based on the results, [0.05 to 0.25] is considered as the optimal 

aggression rate for low dimensional problems. 

5.1.4 IMPACT  OF CROSSOVER  RATE (Cr) 

After the calling song, the female and male crickets undergo the mating process.  The 

process is similar to crossover in genetic algorithm and hence it is carried out using 

different crossover rates (Cr).  Generally, crossover rate is high in GA. So the program is 

tested for crossover rates 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 0.99 

at a temperature value of 100 and aggression rate of 0.15. The performances of different 

crossover rates in each test functions are shown in figure 5.4 (a)-(f).  

From the figure, it is shown that higher crossover rates from 0.75 to 0.85 shows good 

performance.  So the crossover rate (Cr) is fixed to 0.80. 
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Figure 5.4(a): Alpine 1 function - Number of iterations vs Crossover Rate 

 

 

Figure 5.4(b): Beale function - Number of iterations vs Crossover Rate 
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Figure 5.4(c): Goldstein & Price function - Number of iterations vs Crossover Rate 

 

 

Figure 5.4(a): Sphere function - Number of iterations vs Crossover Rate  

 



 
 

94 
 

 

Figure 5.4(f): Tripod function - Number of iterations vs Crossover Rate  

5.1.5 IMPACT OF FEMALE  SELECTION (FS) 

In CCA, only the male crickets chirp for mating. To perform the mating operation the 

male crickets have to choose the female crickets. The selection of female (Fs) crickets 

may be done in different ways. The CCA is tested for the following female cricket 

selection methods. 

 RANDOM FEMALE SELECTION 

 In this method, 50% of the total crickets are randomly chosen as female crickets and 

allowed to mate with male crickets randomly. 

 BEST FIT FEMALE SELECTION  

In the best fit selection process, the highest fit cricket is selected as female cricket and 

makes the crossover process in two ways.  First, the female cricket is allowed to mate 

with all the male crickets and second, allow mating only with one male cricket which is 

randomly chosen.  
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 WORST FIT FEMALE SELECTION 

In the worst fit process, the worst cricket is selected as female cricket and allowed to 

mate.   Since this selection does not converge to the optimal fitness value, it is not 

considered for female selection. 

The program is run for 100 iterations for the Random Selection method and Best Fit 

Selection method (both mating with one cricket and all cricket).  The fitness value 

obtained for the said  selection methods for all the test functions are run for 100 iterations 

and the graph of convergence to the optimal solution is shown in figure 5.5(a)-(f). It is 

clearly observed from the graph  that the Best Fit Selection scheme mating with all male 

crickets, offers better results in terms of convergence and speed. 

 

 

Figure. 5.5(a): Alpine 1 function - Fitness values for three female selection mechanisms  
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 Figure. 5.5(b): Beale function - Fitness values for three female selection mechanisms  

 

Figure. 5.5(c): Goldstein & Price function - Fitness values for three female selection mechanisms 
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Figure. 5.5(d): Rastrigin function - Fitness values for three female selection mechanisms 

 

Figure. 5.5(e): Sphere function - Fitness values for three female selection mechanisms  
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Figure. 5.5(f): Tripod Function - Fitness values for three female selection mechanisms  

From the experiments conducted, the best CCA parameters found are listed in table 5.1. 

Using these CCA parameter values, the CCA Algorithm is compared with another meta-

heuristic algorithm in the next section. 

Table 5.1: Parameter values of CCA 

Parameter Name Value 

Temperature 100 

Aggression rate 0.15 

Crossover rate 0.80 

Female Selection Best cricket as female and mate with all cricket 

 

5.2 COMPARISON OF CCA WITH OTHER META-HEURISTIC 

ALGORITHMS   

After fine-tuning the optimal parameter values for CCA, the algorithm is compared with 

the popular meta-heuristic algorithms to show the betterment of CCA. Bat Algorithm 

(BA) and Cuckoo Search (CS) Algorithm are considered in comparison with CCA as 
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they are the recent and popular algorithms. GA and PSO have not been compared here 

since the BA and CS have shown better results compared to them. The BA was simulated 

based on the echolocation behavior of bats[20]. The bat flies in search of its prey with a 

velocity vi at position (solution) xi with varying frequency. It has loudness Ai and pulses 

emission rate ri. For BA the loudness and pulse are set to 0.5 and the minimum and 

maximum frequency is taken as 0 and 2. 

The CS algorithm was developed based on the breeding behavior of cuckoo together with 

Levy flight behavior of some birds [20]. In the CS algorithm, the discovery rate of the 

alien egg is the only parameter that needs to be set and hence it is set to 0.25. 

The CCA, BA, and CS are run for every test function using the above-mentioned 

parameter values. The convergence towards the optimal value of each test function for 

each algorithm in 100 generations is shown in figure 5.6(a)-(f). The fitness value of each 

algorithm for the benchmark test functions in 100 generations is shown in table 5.2. The 

CCA shows better fitness value compared to the BA and CS with a fixed number of 100 

iterations. 

 

 

Table 5.2: Comparison of fitness values of CCA with BA and CS in 100 generations 

Function Name(f(x)) Fitness Value (fmin  ) 

BA CS CCA 

Alpine 1 1.17E-08 2.02E-08 2.52E-21 

Beale 1.63E-08 5.66E-07 8.93E-17 

Goldstein & Price 3 3 3 

Rastrigin 2.37E-06 0.000322 7.11E-15 

Sphere 7.17E-06 4.67E-09 7.03E-23 

Tripod 0.000146 0.008835 3.87E-11 
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Figure 5.7(a): Fitness value of BA, CS, and CCA for Alpine Function 

 

Figure 5.7(b): Fitness value of BA, CS, and CCA for Beale Function 

 

 

Figure 5.7(c): Fitness value of BA, CS, and CCA for Goldstein & price Function 



 
 

101 
 

 

Figure 5.7(d): Fitness value of BA, CS, and CCA for Rastrigin Function 

 

Figure 5.7(e): Fitness value of BA, CS, and CCA for Sphere Function 

 

 

Figure 5.7(f): Fitness value of BA, CS, and CCA for Tripod Function 
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 Table 5.3 shows the algorithm convergence for the benchmark test functions. In 

comparison with the so far best algorithms namely Bat and Cuckoo search, CCA requires 

a lesser number of iterations in lesser time to converge for each of the benchmark 

functions taken for experimental analysis. Each algorithm is executed 100 times and the 

mean of number of iterations and time taken to find the global optimal value is shown in 

table 5.3  

Table 5.4 Comparison of CCA before parameter tuning and after parameter tuning and improvement 

Test Functions CCA(Before 

Tuning) 

CCA(After 

Tuning) 

Improvement 

(%) 

Ackley 2475±194(100%) 1116±113(100%) 54.91 

Easom 4890±461(100%) 2488±194(100%) 49.12 

Griewangk 4227±259(100%) 1213±216(100%) 71.30 

Matyas 670±152(100%) 428±90(100%) 36.12 

Michalewicz 1364±182(100%) 546±90(100%) 59.97 

Rastrigin 1286±168(100%) 702±98(100%) 45.41 

Rosenbrock 1882±455(100%) 1485±444(100%) 21.09 

Schwefel 1705±195(100%) 809±86(100%) 52.55 

Shubert 2855±957(100%) 1630±766(100%) 42.91 

Sphere 804±117(100%) 352±78(100%) 56.22 

 

In table 5.4 the comparison of the mean and standard deviation of the number of 

iterations before and after tuning of parameters of CCA and its improvement is shown in 

percentage. The values of CCA before tuning are taken from table 4.4 of Chapter 4. From 

the experimental results, it is shown that after tuning the parameters the performance of 

CCA is improved. 

Table 5.3: Comparison of  the mean of number of iterations and time for BA, CS, and CCA 

Test 

Function 

BA CS CCA 

Iterations Time(sec) Iteration Time(sec) Iteration Time(sec) 

Alpine 1 742077.06 19.85605 146212.5 5.41595 3911.727 0.164807 

Beale 391078.12 1.25630 17994.06 0.637054 5124.63 0.234939 

Goldstein 7243.33 0.26624 6295.38 0.233315 1771.35 0.051165 

Rastrigin 529285.08 17.50211 9573.69 0.472673 1851.15 0.075483 

Sphere 241260.54 11.023255 195168.5 9.349882 34098.54 0.963831 

Tripod 263111.22 11.53656 483756 25.9116 47124.84 2.464338 
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5.3 STATISTICAL ANALYSIS 

 ANALYSIS I 

To test the significance of the results of CCA after tuning, a statistical analysis using one 

way ANOVA has been carried out on the number of iterations, taken by CCA before 

tuning and after tuning to converge to the optimal value, shown in table 4.4. The analysis 

is carried out by considering a 5% significance level over the number of iterations to find 

the optimal value with tolerance value τ ≤ 10
−5 

corresponding to the test functions.  Here 

the hypothesis is set as follows: 

Null hypothesis H0: There is no significant difference in the number of iterations 

between the CCA before tuning and after tuning.  

Alternative hypothesis H1: There is a significant difference in the number of 

between the CCA before tuning and after tuning. 

The test is conducted using SPSS tool and the results found in the experiment are shown 

in table 5.5. From the ANOVA test shown in table 5.5, the p values (Sig.=0.033) is less 

than 0.05 (5% significance level) that provides an evidence against the null hypothesis. 

So it is concluded that there is a significant difference between the iteration numbers to 

obtain the optimal value before parameter tuning and after parameter tuning. 

Table 5.5: ANOVA test over the methods CCA before and after tuning   

ANOVA 

iteration 

 Sum of Squares df Mean Square F Sig. 

Between Groups 6485466.050 1 6485466.050 5.320 .033 

Within Groups 21941586.500 18 1218977.028   

Total 28427052.550 19    

 

 ANALYSIS II 

After parameter tuning, the results found by CCA is compared with the other meta-

heuristics BA and CS. The differences in performance of all algorithms are statistically 

analyzed using one way ANOVA test. The hypothesis is set as follows: 
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Null hypothesis H0: There is no significant difference in the number of iterations 

among the methods BA, CS, and CCA.  

Alternative hypothesis H1: There is a significant difference in the number of among 

the methods BA, CS, and CCA. 

The results found in the experiment in the ANOVA Test are shown in table 5.6. Since  

the p-value 0.015 is less than 0.05, the null hypothesis is rejected. So it is concluded that 

there is a significant difference between the iteration numbers to obtain the global 

optimal value among the techniques. 

Table 5.6: ANOVA test over the methods CCA , BA and CS  before and after tuning 

ANOVA 

Iterations 

 Sum of Squares df Mean Square F Sig. 

Between Groups 368994211215.896 2 184497105607.948 5.575 .015 

Within Groups 496423190956.499 15 33094879397.100   

Total 865417402172.394 17    

 

5.4 SUMMARY   

In this chapter, the impact of the different parameters used in CCA is analyzed. The 

parameters environmental Temperature Tc, Aggression Rate Ar, Crossover Rate Cr and 

Female Selection Fs have an effective contribution to the performance of CCA. When 

comparing the initial and final set of parameters, it is found that the final set provides 

better results compared to the case of initial parameter configuration for the problem 

under study. As per the analysis of the experiment the higher the temperature, the higher 

the fitness value of the crickets. The cricket produces high-frequency sound at high 

temperatures.  But, in low aggression rate, it shows better performance for low dimension 

problems. In female selection, the best fit female selection converges faster compared to 

other female selection schemes. The values obtained through various experimental 

settings could be fixed as the standard parameters for the CCA algorithm in future. The 

comparison with its counterparts also shows that CCA performs better than others and 

hence it could be used as a good optimization technique. 
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Chapter 6 

CRICKET CHIRPING ALGORITHM FOR MULTI-

OBJECTIVE OPTIMIZATION (MOCCA) 

In MOO, there are two or more objective functions to be optimized resulting in a set of 

optimal solutions which is also known as Pareto-optimal (PO) set whereas in SOO only 

one global optimum value is to be found. The fitness functions are evaluated either using a 

weighted-sum approach or the Pareto-ranking approach. In this chapter, CCA has been 

extended to solve MOO problems using two approaches which are discussed here. These 

two approaches are as follows: 

1. Multi-objective CCA using Weighted Sum Approach (MOCCA-W) 

2. Multi-objective CCA using Pareto Based Approach (MOCCA-P) 

The several MOO algorithms, that falls into either of the two classes. They basically differ 

in the fitness function evaluation procedure. This research has concentrated on both the 

types and hence CCA was extended in both directions. The first one, i.e. MOCCA-W is an 

extension of CCA to solve MOO problems using the weighted sum approach. The second 

one, i.e. MOCCA-P uses the concept of Pareto dominance for solving MOO problems. 

Here we get a set of solution that balances the objectives. For MOO, different metrics are 

used to analyze the performance of Generational Distance, Spacing, and Maximum 

Spread. These are used to validate the performance of MOCCA in this chapter. The next 

section discusses MOCCA using weighted sum approach followed by experiment results 

and analysis. 

6.1 MULTI-OBJECTIVE  CCA  USING WEIGHTED  SUM 

APPROACH (MOCCA-W) 

In the weighted sum method, the user needs to assign the weights before the fitness 

evaluation takes place. Each objective function is given a weight value and the weights are 

added to give a composite fitness value for the individuals of the MOO problem. In 
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Pareto-ranking approach, the dominance rule is used to rank the whole population and 

then each solution based upon its rank is assigned a fitness value, instead of its actual 

objective function value. Each solution is assumed to be equally important and all of them 

comprise the global optimum solutions. The problem in MOO is to optimize the set of 

objective functions simultaneously where the objectives in the problems often may 

conflict with each other and an improvement of one objective may lead to plummeting of 

another making it  more difficult to solve. 

The MOP deals with the minimization or maximization of objectives F(x) and can be 

subjected to a number of bounds or constraints. The normal optimization problem can be e 

formulated mathematically using equation 6.1 as follows: 

Minimize/maximize,  

 𝐹(𝑥) = 𝑓1(𝑥), 𝑓2(𝑥), … . , 𝑓𝑚(𝑥)                                                (6.1) 

Subject to,              𝐺𝑖(𝑥) ≤ 0          𝑖 = 1,… . , 𝑝 

𝐻𝑗(𝑥) ≤ 0          𝑖 = 1,… . , 𝑞 

 

Here, m is the number of objective functions, p is the number of inequality constraints,  q 

is the  number of equality constraint  and 𝑥 = [𝑥1,𝑥2, …… , 𝑥𝑘]
𝑇
 are the decision variables,  

and Gi,  Hj  are the constraints function of the problem.  

In this section, the weighted sum approach is used along with CCA to solve the multi-

objective design problem. It combines all the objectives fj into a single objective and the 

sum of assigned weight is always equal to 1 as shown in equation 6.2. 

                                                                             (6.2) 

 Here, wj is the weight generated randomly from a uniform distribution. The algorithm for 

multi-objective Cricket Chirping Algorithm is shown in table 6.1.  
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Table 6.1: Algorithm for multi-objective CCA with Weighted Sum 

          Algorithm_MOCCA-W( ) 

Begin 

1. Initialize the cricket population xi (i = 1, 2, ...,n)  

2. Choose  m crickets randomly as female crickets, such that m<=n/2 

3. for i = 1 to N (Number of Pareto fronts), generate k weights wj ≥ 0;   

                      such that        

4. Form a single objective using equation (6.2) 

5. Evaluate the crickets using the objective functions and the weights. 

6.  While (stopping criteria not met) 

 Allow the cricket for mating chirp // Call procedure calling_chirp()// 

 Mate with female // Call procedure mating()// 

 Allow the cricket for aggression // Call procedure aggression_chirp()// 

 Return the winner 

 Return the  best cricket x* 

7. End while 

End  

 

6.1.1 MULTI-OBJECTIVE TEST FUNCTIONS 

Two benchmark test functions with convex and non-convex Pareto fronts that are widely 

used are considered to validate the proposed MOCCA. The functions are listed below: 

 ZDT1: This is a function of convex front and mathematically stated as equation 6.3 as 

below:  𝑓1(𝑥) = 𝑥1  ,   

𝑓2(𝑥) = 𝑔(𝑥) ⌊1 − √𝑥1 𝑔(𝑥)⁄ ⌋                                                  (6.3) 

   Where,                                
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Here, n is the dimension number. When g=1, it reached to the Pareto-optimality and the 

true Pareto front for ZDT1 is     𝑓2 = 1 − √𝑓1  

 ZDT2: This is a function with a non-convex front. It is mathematically formulated by 

using equation 6.4:  

  11 xxf                           

      212 1 xgxxgxf                                        (6.4) 

  Where,                            191
2









 



nxxg
n

i

i
 (2) 

The true Pareto front for ZDT2 is 𝑓2 = 1 − (𝑓1)
2    

To quantify the performance of the algorithm, the error rate (Er) is calculated. This error 

rate is the distance from the estimated Pareto front (𝑃𝐹)𝑒 to its corresponding true Pareto 

front(𝑃𝐹)𝑡. It is defined by using equation 6.5 as follows: 

𝐸𝑟 = ‖(𝑃𝐹)
𝑒 − 𝑃𝐹𝑡‖ = ∑ ((𝑃𝐹𝑖)

𝑒 − (𝑃𝐹 )
𝑡)2𝑁

𝑖=1                     (6.5)                   

Where N defines the number of Pareto points. 

6.1.2 EXPERIMENTAL RESULTS AND ANALYSIS 

First, the algorithm is validated for some benchmark test functions. The parameters used 

in MOCCA-W are population size (n), Temperature (Tc), Crossover rate (Cr) and the 

Aggression rate (Ar) with the values of Pa=0.05 to 0.5, n=20 to 50 and Cr=0.80 to 0.95.   

The algorithm is run for 1000 iterations and generated 100 Pareto points by MOCCA. In 

figure 6.1 and figure 6.2, the true Pareto front and the estimated Pareto front by MOCCA 

for function ZDT1 and ZDT2 are shown respectively. 

6.1.3 COMPARISON WITH OTHER METHODS 

In order to measure the performance of the proposed MOCCA, it is compared with other 

MOO algorithms. The basic Particle Swarm Optimization (PSO) and Bat Algorithm (BA) 

with weighted sum approach are considered for comparison with the MOCCA-W.  
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Figure 6.1: Pareto front of MOCCA-W and true Pareto front of ZDT1 

 

Figure 6.2: Pareto front of MOCCA-W and true Pareto front of ZDT2 

The standard PSO is used to solve the problems with weighted sum approach. The 

parameter swarm size n=50 and inertia weight w=0.9 are used for all test problems. The 

parameters for BA is set as population size n=50, pulse reduction rate r= 0.7 and loudness 

A=0.25. 
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All the three algorithms are run for 1000 iterations and the distance between the true 

Pareto front and the estimated Pareto front of the algorithm (error rate) is calculated. The 

error rate is calculated by using equation 6.5. 

 Table 6.2 shows the error rate of each algorithm for both the test function ZDT1 and 

ZDT2. The experimental result shows that MOCCA has less error rate compared to its 

counterparts.   

Table 6.2: Comparison of the error rate of the test problems 

Functions Error (t=1000) 

PSO BA MOCCA-W 

ZDT1 3.4e-3 2.2e-3 2.7e-5 

ZDT2 1.9e-2 5.8e-3 6.4e-4 

 

6.2 MULTI-OBJECTIVE  CCA USING  PARETO  BASED 

APPROACH (MOCCA-P) 

Having presented the MOCCA-W which uses the weighted sum strategy for MOO, this 

section describes the design and implementation of MOCCA-P which uses the Pareto 

approach for extending the CCA to solve MOO problems.  

The main differences noticed in CCA for MOP are as follows: 

 Instead of choosing female cricket from the population, allow the male cricket to 

find/search female cricket. Their chirping rate will increase as the temperature 

increases and based on their chirping rate female cricket gets attracted.  

 When the cricket chirps for aggression, it fights with other male crickets and the 

winner is chosen based on six aggression levels:  

i. Mutual Avoidance [20]: In this level no aggressive interaction takes place. 

The winner is decided mutually. 



 
 

111 
 

ii. Pre-Established Dominance [20]: In this level one cricket attacks and the 

other retreats. 

Table 6.3: Algorithm for Multi-objective Cricket Chirping algorithm with Pareto based 

Algorithm for Multi-objective Cricket Chirping algorithm (MOCCA-P) 

1. Inputs: N: Number of cricket population, M_gen: Maximum number of 

generation, T: environment temperature, Pagg: the probability of aggression, nrep: 

size of the repository, ngrid: number of grids. 

2. Problem definition: d: dimension of the cricket in search space, x: the position of 

the cricket, M: number of objectives, ub: upper bound, lb: lower bound. 

3. Initialization: initialize cricket population in the search space randomly; 

                               x (i,d) = lb (1 ,d) + (ub (1 ,d) − lb (1 ,d) ) · rand 

                        Initialize the repository : rep=[ ] 

4. Evaluate the objective function: f(i, m) 

5. Calculate the fitness:  

                             fitness(i) ←calculate_ fitness(x(i,d), f(i,m)) 

6. While stopping criteria is not met: 

a. Allow the cricket for mating chirp: 

i. female ←Search_female(x(i,d)) 

ii. offsprings ←mating(female, x(i,d)) 

iii. rep←best(offsprings, parents)  //Choose the best one among  parents 

and offspring 

b. Allow for aggression chirp on aggression rate Ar 

winner←fight()   //Warn the other male cricket for fighting 

7. End while  

8. Return the optimal solution 

iii. Antenna fencing [20]: In antenna fencing crickets lashes with their antenna. 

It is an enthusiastically inexpensive signal that carries mostly motivational 

information about resource value. 

iv. Mandible spreading (Unilateral) [20], [161]: One cricket shows broadly 

spread mandibles, which indicate that it is superior to the other. 
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v. Mandible Spreading (bilateral) [125]: In this level, both crickets display 

their spread jawbones. Mandible spreading indicates the strength of the 

cricket. 

vi. Wrestling [145]: In this level a thoroughgoing fight where the crickets may 

repeatedly disengage, combat and bite other body parts and re-engage 

mandibles to show their strength. 

The fight can be settled at any of the levels (i)-(vi) by an opponent. The looser retreating, 

upon which the established winner typically produces the rivalry song together with 

characteristic body tremulous (jerking).  

Based on these behaviors of cricket the fitness calculation of two crickets is implemented. 

In Multi-objective Cricket Chirping Algorithm (MOCCA) an external repository is used 

to store the non-dominated solutions (Pareto front). The pseudocode is shown in table 6.3 

and the detailed stepwise procedure is given in the next section. 

6.2.1 GENERAL FRAMEWORK OF MOCCA 

 INPUT 

N: Size of the cricket population, M_gen: Maximum number of generations, T: 

Environment’s Temperature, Pagg: the probability of aggression, nrep: size of the 

repository, ngrid: number of grids. 

 OUTPUT 

rep: An external repository ‘rep’ is used to store Pareto front. 

 INITIALIZATION 

Initialize the cricket population in the search space randomly; 

             x (i,d) = lb (1 ,d) + (ub (1 ,d) − lb (1 ,d) ) · rand                                           (6.6) 

Where d is the dimension of the decision variables and i=1,2,…N , lb  is the lower bound 

and ub is the upper bound of the variable in the search space. 
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 Initialize the repository ‘rep’ which stores the non-dominated crickets in the initial x. 

 EVALUATE THE OBJECTIVE FUNCTION 

Calculate the objective function value of each objective for all the crickets. For cricket i, 

the value of each objective f(i, m), where m = 1 , 2, . . . , M, is calculated. 

 FITNESS CALCULATION 

This procedure involves calculating the strength of each cricket. The fitness calculation 

of the crickets is shown in table 6.4.   

Table 6.4: Algorithm for fitness calculation of cricket 

 

 

Calculate_fitness() 

For  each cricket (i=1 to N) 

      For each cricket (j=i+1 to N) 

            For  each objective (k=1 to M) 

                   If (x(i,k)<x(j,k))  and (x(i,k)!=x(j,k))         // in case of minimization problems 

                         greater(i)=greater(i)+1; less(j)= less(j)+1; 

                   else if (x(i,k)==x(j,k))  

                          equal(i)= equal(i)+1;  equal(j)= equal(j)+1; 

                   else  

                          greater(j)=greater(j)+1;  less(i)= less(i)+1;  

                  end 

                  fit(i)=[ greater(i)+ equal(i)+ less(i)]; 

                  fit(j)=[ greater(j)+ equal(j)+ less(j)]; 

                  if (fit(i)>= fit(j)) 

                          strength(i)= strength(i)+1; 

                  End 

          End           

 End 
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 MATING PHASE 

In this phase, the cricket will search for female crickets and mate with them. After 

successful completion of mating, they produce the offspring. 

SEARCH FEMALE CRICKET 

In this phase, the cricket makes calling chirps to search for female crickets and based on 

their chirping rate the female crickets get attracted. The movement of the cricket is 

calculated by equations 4.1 to 4.6 given in Chapter 4.   

MATING  

The mating process is done similar to the crossover process of the genetic algorithm. The 

mating process produces offspring and selects the best one among the offspring and 

parents. Then the non-dominated cricket is stored in the repository ‘rep'. 

 AGGRESSION PHASE 

The male cricket gets into the aggression phase with probability rate Ar. The two crickets 

fight with each other and the winner is selected based on the six aggression levels. The 

levels are described as follows: 

LEVEL 1:  MUTUAL AVOIDANCE 

When the values of each objective of a solution p are equal to the corresponding values of 

each objective of the solution q, then anyone solution (cricket individual) will be selected 

as the winner. For example, p and q have two objectives and the fitness (f) of both 

solutions is equal. In this case, any solution p or q is selected randomly. 

                                



 
 

115 
 

LEVEL 2:  ANTENNAL FENCING 

When the values of each objective of a solution p are greater than the corresponding 

values of each objective of the solution q then p wins. For example, in the following 

figure all the objectives of p are greater than q, so p will win. 

                          

 

LEVEL 3:  PRE-ESTABLISHED DOMINANCE 

For this phase fix a priority (Pr) for each objective and based on priority and objective 

value choose the winner. For example, the priority is assigned high in objective 2. Here 

higher value is having high priority. In this case, the solution q will win since q is having 

the highest value of objective 2, that is having higher priority. 

       

 

 

LEVEL 4: MANDIBLE SPREADING (UNILATERAL)  

In this phase, One solution p that satisfies the constraints, whereas another one q is not, 

then p will win.  
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              Satisfying Constraints          Not satisfying Constraints  

 

LEVEL 5: MANDIBLE SPREADING (BILATERAL) 

In this case, both the solutions are satisfying constraints, but a number of constraints 

satisfying solution will win. Check the number of constraints satisfied by each solution. 

For example, from the figure number of constraints satisfied by q is more than p. So q 

will win. 

                               

        No. of Satisfying Constraints=2                                No. of Satisfying Constraints=3 

 

LEVEL 6: WRESTLING 

At this level, the cricket will fight with each other but not exploited in this research. 

 RETAINING OF NON-DOMINATED SOLUTION 

An external repository or archive is used to store the records of non-dominated solutions. 

It consists of an archive controller and an adaptive grid. The function of addition or 

deletion of a solution to the archive is controlled by the archive controller. The main 

purpose of the adaptive grid is to produce well-distributed Pareto fronts. The reason for 

choosing an adaptive grid is its computational cost that is easy and lower than niching. 
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6.2.2 EXPERIMENTAL RESULTS AND ANALYSIS 

This section first describes the standard benchmark test functions that are considered for 

experiments. The different performance metrics used for performance measurement and 

the implementation results of MOCCA-P are described in the following sections.  

6.2.2.1 MULTI-OBJECTIVE TEST FUNCTIONS 

There are a large number of standard test functions that are available for MOO problems. 

To validate the proposed MOCCA-P, a subset of a few widely used functions is selected 

that is convex, non-convex and discontinuous. The test functions without constraints are 

given in table 6.5 and the test problems with constraints are given in table 6.6. 

6.2.2.2 PERFORMANCE METRICS 

Any algorithm is validated by using a set of performance metrics. The metrics used for 

validating SOO problems may not correctly evaluate the performance of MOO problem. 

Hence there exists a separate set of performance metrics exclusively designed for 

validating MOO problems. The important ones that are used to evaluate the performance 

of the proposed MOCCA are given below. 

 GENERATIONAL DISTANCE (GD) 

The most commonly used performance metric is Generational distance. It is measured as 

the extent to which the actual Pareto Front and the obtained Pareto Front are distant from 

each other. It is mathematically computed as shown in Equation (6.7) 

𝐺𝐷 =
1

𝑛
√∑ 𝑑𝑖𝑠𝑡𝑖

2𝑛
𝑖=1                                                                          (6.7) 

In equation 6.7, 𝑛 indicates the cardinality of solutions in the generated Pareto-Front. disti 

signifies the Euclidean distance between solution i in the actual Pareto front and its 

closest neighbor in the generated Pareto front. The lesser is the value of GD, the better 

will be the convergence. 
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Table 6.5: Test problem without Constraint 
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Table 6.6: Test problem with Constraints 
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 SPACING (SP) 

The primary intention of spacing metrics is to determine the extent to which the solutions 

are equally spread along the generated Pareto front. It can be mathematically defined as 

in equation 6.8 [175]: 

 𝑆𝑃 = √
1

𝑛
∑ (𝑑𝑖𝑠𝑡𝑖 − �̅�)

2𝑛
𝑖=1                                                (6.8) 

       Where,         �̅� = √
1

𝑛
∑ (𝑑𝑖𝑠𝑡𝑖) 
𝑛
𝑖=1  

In equation 6.8, n and 𝑑𝑖𝑠𝑡𝑖 holds similar meaning as that of equation 6.7. When this 

metric holds a small value, it signifies a more uniform spread of the solutions. 

 MAXIMUM  SPREAD (MS) 

The maximum spread (MS) metric exhibits the extent to which the actual Pareto Front 

encloses the generated Pareto-optimal front. This is identified in accordance with the  

hyper boxes constructed by the optimal function values from the actual Pareto-optimal 

front and the generated Pareto-optimal front. It is mathematically expressed as in 

Equation 6.9.  

𝑀𝑆 = [
1

𝑚
∑ [

𝑚𝑖𝑛(𝑓𝑖
𝑚𝑎𝑥,𝐹𝑖

𝑚𝑎𝑥)−𝑚𝑖𝑛(𝑓𝑖
𝑚𝑖𝑛,𝐹𝑖

𝑚𝑖𝑛)

𝐹𝑖
𝑚𝑎𝑥−𝐹𝑖

𝑚𝑖𝑛 ]
2

𝑚
𝑖=1 ]

1
2⁄

             (6.9) 

In Equation 6.9, m indicates the number of objectives. 𝑓𝑖
𝑚𝑎𝑥and 𝑓𝑖

𝑚𝑖𝑛 signify the 

respective maximum and minimum of associated i
th

 objective in the generated Pareto-

front, respectively, and 𝐹𝑖
𝑚𝑎𝑥and 𝐹𝑖

𝑚𝑖𝑛are the maximum and minimum of the i
th

 objective 

in the true Pareto-front. When maximum spread metric characterizes a larger value, it 

depicts that the spread of the solutions is better.  

6.2.2.3  PARAMETER SETTINGS 

Generally, meta-heuristics approaches need parameter settings for better performance. 

The different parameters used in MOCCA, MOPSO, SPEA2, and NSGA2 are given in 

table 6.7 
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Table 6.7: Parameters used in MOCCA and the other algorithms 

Parameters MOPSO SPEA2 NSGA2 MOCCA 

Population Size 100 100 100 100 

External Archive Size 100   100 

No. of adaptive grid 7   7 

Inertia weight 0.4    

c1 and c2 [0,1] - - - 

Aggression rate - - - 0.50 

 

6.2.2.4 EXPERIMENTAL RESULTS  

To illustrate the validity of the proposed MOCCA, a number of experiments are 

conducted over test functions for both multi-objectives optimizations with constraint and 

without constraints. Figure 6.3 (a)-(g) shows the non-dominated Pareto front produce by 

MOCCA-P for MOO without constraints and figure 6.4 (a)-(d) shows the Pareto front 

produce by MOCCA for MOO with constraints. 

 

Figure 6.3(a): Pareto front produced by MOCCA-P for ZDT1 
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Figure 6.3(b): Pareto front produced by MOCCA-P for ZDT2 

 

 

Figure 6.3(c): Pareto front produced by MOCCA-P for ZDT3 

 

Figure 6.3(d): Pareto front produced by MOCCA-P for ZDT4 
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Figure 6.3(e): Pareto front produced by MOCCA-P for ZDT6 

 

Figure 6.3(f): Pareto front produced by MOCCA-P for SCH 
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Figure 6.4(a): Pareto front produced by MOCCA-P for  TNK  

 

Figure 6.4(b): Pareto front produced by MOCCA-P for  BNH 
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Figure 6.4(c): Pareto front produced by MOCCA-P for  OSY 

 

 

Figure 6.4(d): Pareto front produced by MOCCA-P for  CONSTR 
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6.2.3 COMPARISON WITH OTHER ALGORITHMS 

Having obtained the Pareto solutions for the various benchmark functions using 

MOCCA-P, it has to be compared with another such algorithm for its performance 

efficiency. Hence MOCCA-P is compared with a set of standard MOO algorithms such 

as SPEA2, NSGA-II, and MOPSO. The parameter values used in all MOO methods are 

given in table 6.7 and three performance metrics are considered for evaluating the 

experimental results and these are briefly explained in Section 6.2.2.2. Each algorithm is 

executed 50 times for every method and the statistical results of the performance metrics 

SP, MS and GD are reported in table 6.8, table 6.9 and table 6.10 respectively.  From the 

statistical analysis, it is shown that the MOCCA performs better compared to its 

counterpart considering the performance metrics GD, SP, and MS. 

Table 6.8 Comparison of MOCCA with other algorithms regarding the mean of SP 

Problem MOPSO SPEA2 NSGA-II MOCCA 

ZDT1 0.312 0.02671 0.03128 0.0011 

ZDT2 0.3167 0.1067 0.0187 0.00406 

ZDT3 0.03299 0.0129 0.00856 0.00299 

ZDT4 0.5776 0.03109 0.0189 0.0058 

ZDT6 0.29 0.04899 0.01589 0.00369 

 

Table 6.9 Comparison of MOCCA with other algorithms regarding the mean of MS 

Problem MOPSO SPEA2 NSGA-II MOCCA 

ZDT1 0.9982 0.89986 0.9992 1 

ZDT2 0.9862 0.8906 1 1 

ZDT3 0.88927 0.98902 0.99018 1 

ZDT4 0.9852 0.93058 0.9988 0.99998 

ZDT6 0.8485 0.98905 1 1 
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Table 6.10 Comparison of MOCCA with other algorithms regarding the mean of GD 

Problem MOPSO SPEA2 NSGA-II MOCCA 

ZDT1 0.0645 0.01809 0.01925 0.001 

ZDT2 0.0523 0.1523 0.0053 0.0013 

ZDT3 0.07853 0.03553 0.00607 0.00238 

ZDT4 0.2609 0.23284 0.20244 0.03001 

ZDT6 0.0513 0.0765 0.04394 0.0017 

 

6.2.4 STATISTICAL ANALYSIS 

To test the significance of the results produced by MOCCA-P, a statistical analysis using 

ANOVA has been carried out on the basis of SP, MS, and GD produced by various 

algorithms that are shown in table 6.8, 6.9 and 6.10 respectively. The analysis is done by 

considering a 5% significance level over the performance metrics produced by the 

algorithms corresponding to the test problems for the three different methods i.e. 

MOPSO, SPEA2 NSGA2 and MOCCA-P.  

 ANALYSIS I 

In this analysis the hypothesis is set as follows: 

Null hypothesis H0: There is no significant difference in the SP among the 

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.  

Alternative hypothesis H1: There is a significant difference in the SP among the 

methods MOPSO, SPEA2, NSGA2, and MOCCA-P. 

The one way ANOVA Test is done and the results found in the experiment are shown in 

table 6.11. Here, p values (Sig.= 0.000) is less than 0.05 that strongly oppose the null 

hypothesis. So it is concluded that there is a significant difference of the SP among the 

methods MOPSO, SPEA2, NSGA2, and MOCCA-P. 
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Table 6.11 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2, NSGA2 based on SP 

ANOVA 

SP 

 Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 
.306 3 .102 10.558 .000 

Within Groups .154 16 .010   

Total .460 19    

 

 

 ANALYSIS II 

In this analysis the hypothesis is set as follows: 

Null hypothesis H0: There is no significant difference in the MS among the 

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.  

Alternative hypothesis H1: There is a significant difference in the MS among the 

methods MOPSO, SPEA2, NSGA2, and MOCCA-P. 

 

Table 6.12 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2, NSGA2 based on MS 

ANOVA 

MS 

 Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 
.017 3 .006 3.283 .048 

Within Groups .028 16 .002   

Total .044 19    
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The one way ANOVA test is performed and the results found in the experiment are 

shown in the table 6.12. From the ANOVA test shown in table 6.12, it is found that the p 

values (Sig.=0.048) are less than the significance value 0.05. So it is concluded that there 

is a significant difference in the MS among the methods MOPSO, SPEA2, NSGA2, and 

MOCCA-P. 

 ANALYSIS III 

In this analysis the hypothesis is set as follows: 

Null hypothesis H0: There is no significant difference in the GD among the 

methods MOPSO, SPEA2, NSGA2, and MOCCA-P.  

Alternative hypothesis H1: There is a significant difference in the GD among the 

methods MOPSO, SPEA2, NSGA2, and MOCCA-P. 

Table 6.13 ANOVA test over the methods MOCCA-P with MOPSO, SPEA2, NSGA2 based on GD 

ANOVA 

GD 

 Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 
.031 3 .010 1.782 .191 

Within Groups .093 16 .006   

Total .124 19    

 

The one way ANOVA test is done and the results found in the experiment are shown in 

the table 6.13. From the results, it is shown that p values (Sig.=0.191) are greater than 

0.05 (5% significance level). Therefore, the null hypothesis H0 is accepted. So it is 

concluded that there is no significant difference of the GD among the methods MOPSO, 

SPEA2, NSGA2, and MOCCA-P. 
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6.3 SUMMARY 

In this chapter, the CCA is extended for solving MOO problems in two ways i.e. 

MOCCA-W and MOCCA-P. The MOCCA is differing from the basic CCA in two terms. 

First, the male cricket is allowed to search the female cricket in the search space and 

secondly, when the male cricket chirps for aggression the winner is selected depends on 

the seven aggression levels. A different fitness calculation method is also developed and 

an external archive is used to retain the non-dominated solutions. The MOCCA is 

implemented and experimented with some of the standard benchmark test problems with 

constraint and without constraints and compared with three popular techniques i.e. 

MOPSO, SPEA2, and NSGA2. The experiment result shows better results compared to 

its counterparts in term of generational distance, spacing and maximum spread. The 

performance of the methods is statistically analyzed by using one way ANOVA test 

based on the SP, MS, and GD. Though the MOCCA-P shows better result corresponding 

to GD, there is no significant difference among the methods over the performance metrics 

GD, but shows significant difference among the methods over the performance metrics 

SP and MS.    
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Chapter 7 

CASE STUDY  

In this chapter, several case studies have been taken up to test the performance of CCA 

and MOCCA for real-world problems that involve single and multi-objective 

optimization. The Cricket Chirping Algorithm is applied in varied fields to test its 

performance and efficiency. The following case studies have been taken up in each 

category and tested. 

A. For Single Objective Optimization 

 Engineering Design Optimization Problem 

 Multilevel Thresholding for Image Segmentation 

B. For Multi-objective Optimization 

 Engineering Design Optimization Problem. 

7.1 ENGINEERING DESIGN OPTIMIZATION USING CCA 

Among the several real-world engineering problems, two standard optimization problems 

namely tension/compression spring design and welded beam design are considered in this 

research since it has been extensively used by other meta-heuristics algorithms like a 

benchmark problem. 

7.1.1 SPRING DESIGN OPTIMIZATION PROBLEM (SDOP) 

A mechanical engineering design problem namely spring design optimization is an 

important problem in engineering optimization. There are different types of springs based 

on their load force, shape etc. Two mostly used springs in Engineering are Tension and 

Compression spring where the first one is designed to wield with a tension load and the 

second one is designed to operate compression load.  For this optimization problem, the 

objective is to minimize the tension or compression spring weight. It constitutes with the 

constraints of surge frequency, minimum deflection, shear stress, as well as limits on 

outside diameter and on design variables. It consists of three design variables namely the 
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wire diameter d1, the mean coil diameter d2, and the number of active coils d3. The 

mathematical statement of this problem given below is as described in [176],[143]. 

Minimize:    𝑓(𝑥) = (𝑑3 + 2)𝑑2𝑑1
2                                                                   (7.1) 

Subject to,  

   𝑔1(𝑥) = 1 −
𝑑2
3𝑑3

7178𝑑1
4 ≤ 0 

   𝑔2(𝑥) = 1 −
140.45𝑑1

𝑑2
2𝑑3

≤ 0 

   𝑔3(𝑥) =
𝑑2+𝑑1

1.5
− 1 ≤ 0 

   𝑔4(𝑥) =
4𝑑2

2−𝑑1𝑑2

12566(𝑑2𝑑1
3)−𝑑1

4 +
1

5108𝑑1
2 − 1 ≤ 0 

With the limits 0.05≤d1≤2.0,  0.25≤d2≤ 1.3,  2.0≤d3≤15.0. 

7.1.2 WELDED BEAM DESIGN OPTIMIZATION PROBLEM (WBDOP) 

Another mechanical engineering design problem that is considered in this research is 

welded beam design problem. A rectangular beam is designed as a cantilever beam to 

carry a certain load with the minimum overall cost of fabrication [145], [143]. The 

objective of this problem is to minimize the cost, subject to a set of constraints on bending 

stress in the beam (σ), shear stress (τ), end reflection of the beam (Ω), buckling load on the 

bar PC, and side constraints. The problem consists of four design variables: the width d1 

and length d2 of the welded area, the depth d3 and thickness d4 of the main beam. 

This problem can be mathematically formulated as equation 7.2. 

Minimize 

                                     𝑓(𝑥) = 1.10471𝑑1
2𝑑2 + 0.04811𝑑3𝑑4(14 + 𝑑2)                     (7.2) 

Subject to 

   𝑔1(𝑥) = 𝑑1 − 𝑑4 ≤ 0, 

   𝑔2(𝑥) = 𝛿(𝑥) − 0.25 ≤ 0, 
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   𝑔3(𝑥) = 𝜏(𝑥) − 13600 ≤ 0, 

   𝑔4(𝑥) = 𝜎(𝑥) − 30000 ≤ 0, 

   𝑔6(𝑥) = 0.125 − 𝑑1 ≤ 0, 

   𝑔7(𝑥) = 6000 − 𝑃𝑐(𝑥) ≤ 0, 

   𝑔5(𝑥) = 0.10471𝑑1
2 + 0.04811𝑑3𝑑4 (14 + 𝑑2) − 5 ≤ 0 

Where,  

   𝜏(𝑥) = √𝐴2 + (2𝐴𝐵)
𝑑2

2𝑅
+ 𝐵2 

   𝐴 =
6000

√2𝑑1𝑑2
 , 𝐵 =

𝑀𝑅

𝐽
 , 

                                     𝑀 = 6000 (14 +
𝑑2

2
) , 

                                     𝑅 = √
𝑑2
2

4
+ (

𝑑1+𝑑2

2
)
2

  , 

               𝐽 = 2 {𝑑1𝑑2√2 [
𝑑2
2

12
+ (

𝑑1+𝑑2

2
)
2

]} 

   𝜎(𝑥) =
504000

𝑑4𝑑3
2  

    𝛿(𝑥) =
65,856,000

(30×106)𝑑4𝑑3
3 

     

                                      𝑝𝑐(𝑥) =
4013(30×106)√

𝑑3
2𝑑2
6

36

196

(

 
 
1 −

𝑑3√
30×106

4(12×106)

28

)

 
 

 

With the range 0.1≤d1≤2.0,  0.1≤d2≤10,  0.1≤d3≤10,  0.1≤d4≤20. 

 

7.1.3 EXPERIMENTAL  RESULTS AND ANALYSIS 

The Cricket Chirping Algorithm is applied to solve the above mentioned two Engineering 

Design Optimization Problems. Results of CCA are compared with respect to the best 

results reported in literature i.e. Simple Constrained PSO (SiC-PSO) from [177] and 
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Cuckoo Search (CS) algorithm from [67]. The parameters used in our algorithm are 

cricket population n=20, temperature Tc=100 and aggression rate Ar=0.20. For cuckoo 

search algorithm the parameters are used as n=20 and pa=0.25 and the results for SiC-PSO 

is taken from [67] 

The problem SDOP gives optimal value within 16000 objective function evaluations and 

WBDOP required less than or equal to 8000 objective function evaluations. The table 7.1 

and table 7.2 shows the best solution found by the proposed algorithm and its counterparts 

for both problems including a number of evaluations.  

 

From the test results, it is found that the proposed algorithm is more powerful in terms of 

speed and accuracy. The SiC-PSO found the best result after 24,000 objective function 

evaluations for both problems and CS found the best solution after 30,000 evaluations for 

problem SDOP and 10,000 objective function evaluations for WBDOP. But the CCA 

required 16,000 evaluations for SDOP and 8000 evaluations for WBDOP to get the best 

solutions. 

 

 

Table 7.1  Best solution for SDOP  

 Best Solution 

SiC-PSO CS CCA 

d1 0.051583 0.0518764 0.05179146 

d2 0.354190 0.361241 0.35918632 

d3 11.438675 11.0287 11.145769823 

g1(x) -2.000E-16 -0.000005302 0.000006543 

g2(x) -1.000E-16 -0.000002880 -0.000004109 

g3(x) -4.048765 -4.06389202 -4.06129878 

g4(x) -0.729483 -0.72411871 -0.725068250 

f(x) 0.012665 0.012665 0.012665 

Eval. 24,000 30,000 16,000 
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The algorithm is executed for 30 times and the mean and Standard Deviation (SD) of the 

best value is found. This value produced by the proposed algorithm is compared with SiC-

PSO and CS.  Table 7.3 shows the mean and SD with their respective evaluation numbers. 

The CCA obtained the optimal values for both the test problems in a lesser number of 

evaluations.  

 

 

 

 

 

 

 

Table 7.2:  Best solution for WBDOP 

 Best Solution 

SiC-PSO CS CCA 

d1 0.205729 0.17814       0.24027       

d2 3.470488 3.6573   3.9728       

d3 9.036624 8.7405      6.4223      

d4 0.205729 0.20385 0.26197 

g1(x) -1.819E-12 -0.00000017  -0.0000001155  

g2(x) -0.003721 -0.00000018 -0.00000032648   

g3(x) 0.000000 -0.00156325 0.00014037122  

g4(x) -3.432983 -0.28420437 -2.5009783685 

g5(x) -0.080729 -0.00000147  -0.0000343018  

g6(x) -0.235540 -0.00000039  -0.0000019851  

g7(x) 0.000000 -1.89356441 -1.7266043670 

f(x) 1.724852 1.72485 1.724801 

Eval. 24,000 10,000 8,000 

Table 7.3 Comparison of SiC-PSO, CS and CCA 

Problems SiC-PSO CS CCA 

 

SDOP 

Mean 0.0131 0.014742 0.0126722 

SD 4.1E-04 1.98E-03 1.62E-05 

Evaluation 24,000 30,000 16,000 

 

WBDOP 

Mean 2.0574 1.80649 1.7482081 

SD 0.2154 0.333653 0.2880167 

Evaluation 24,000 10,000 8,000 
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7.2 MULTILEVEL THRESHOLDING FOR IMAGE 

SEGMENTATION  USING  CCA 

Image processing plays a crucial role in different fields such as medical discipline, 

industry, agriculture, navigation, environment modeling, automatic event detection, 

surveillance, texture and pattern recognition, damage detection etc. It is motivated by 

three major applications like pictorial information improvement for human perception, 

image processing in the case of autonomous machine application and efficient storage 

and transmission. One of the major and primary tasks in image processing is image 

segmentation. Image segmentation is the partitioning of an image into multiple sets of 

pixels or segments or regions that share some common characteristics such as color or 

intensity or similarity or discontinuity etc.   

In this section, Cricket Chirping Algorithm is combined with Kapur’s Entropy Criterion 

method and Otsu’s between-class variance method and applied in multi-level 

thresholding for image segmentation. In this process, a random solution is taken place 

from the feasible search space inside the image histogram. The fitness of the solution is 

evaluated by considering the objective functions, Kapur’s and Otsu’s method. Directed 

by this objective value, the set of candidate solutions are adapted using the CCA 

operators and search for the optimal solution in the search space proceeds.  

7.2.1 MULTILEVEL THRESHOLDING (MT) 

In thresholding process [147], the pixel of the grayscale image is divided into groups 

based on the intensity level 𝑙.  To make the grouping it is necessary to choose a threshold 

value (𝜃)  following some simple rules as follows:  

                            𝐺0 ← 𝑝,                     𝑖𝑓 0 ≤ 𝑝 ≤ 𝜃, 

                            𝐺1 ← 𝑝,                     𝑖𝑓𝜃 ≤ 𝑝 ≤ 𝑙 − 1, 

where p is one of the 𝑚 × 𝑛 pixels of the grayscale image 𝐼𝑔 and it can be represented in 

‘l’ grayscale levels  𝑙 = {0, 1, 2, . . . , 𝑙 − 1} and   𝐺1 and  𝐺2 are the groups in which the 

  (7.3) 
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pixel namely p, can be located. This can be extended for multilevel thresholding as 

follows [67]: 

𝐺0 ← 𝑝,                      𝑖𝑓 0 ≤ 𝑝 ≤ 𝜃1, 

𝐺1 ← 𝑝,                      𝑖𝑓𝜃1 ≤ 𝑝 ≤ 𝜃2, 

                                    ….                              ....    ….. 

𝐺𝑖 ← 𝑝,                     𝑖𝑓𝜃𝑖 ≤ 𝑝 ≤ 𝜃𝑖+1, 

                                     ….                            …..  …. 

𝐺𝑛 ← 𝑝,                  𝑖𝑓𝜃𝑛 ≤ 𝑝 ≤ 𝑙 − 1, 

where {𝜃1, 𝜃2,…… . , 𝜃𝑖+1, . . , 𝜃𝑛} are different thresholds. Here, the main objective is to 

select the θ values that identify the classes correctly for both bi-level and multi-level 

thresholding. The popular thresholding method, Otsu’s and Kapur’s methods are 

generally applied for identifying such values where the objective function is to maximize 

to find the optimal threshold values. The details of the objective functions proposed by 

them are given in the subsequent sections. 

 KAPUR’S METHOD (ENTROPY CRITERION METHOD) 

One of the most popular thresholding methods, the Kapur’s method, was developed based 

on the entropy and the probability distribution of the image histogram. It is also known as 

the Entropy Criterion Method [177], [178]. This method is intended to obtain the optimal 

threshold value θ that exploits the overall entropy of an image that processes the density 

and separability among classes or groups. Incidentally, when the optimal θ value 

appropriately separates the classes the entropy has the maximum value. The objective 

function of the Kapur’s problem for bi-level example can be defined by using equation 

7.5. 

                                    I(θ) = H1
c+ H2

c , 

c = {
1,2,3                             if RGB image
1,                        if Grayscale image

 

 

Where, H1
c and H2

c are entropies and computed using the following model 

H1
c = ∑

𝑃𝑖
𝑐

𝑤0
𝑐

𝑡ℎ𝑟
𝑖=1 ln (

𝑃𝑖
𝑐

𝑤0
𝑐) , 

 (7.4) 

 (7.5) 

 (7.6) 
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 H2
c = ∑

𝑃𝑖
𝑐

𝑤1
𝑐

𝑙

𝑡ℎ𝑟=1

ln (
𝑃𝑖
𝑐

𝑤1
𝑐) 

where, 𝑃𝑖
𝑐 is the probability distribution of the intensity levels which is gained using 

equation 7.9, 𝑤0
𝑐 and 𝑤1

𝑐 are probability distributions for 𝑐1 and 𝑐2 . 

For multiple threshold values, the image is divided into ‘k’ classes using a similar 

number of thresholds. Then a new objective function can be defined as follow: 

                                     𝐹𝑘𝑎𝑝𝑢𝑟(TH) = max(∑ Hi
ck

i )  , 

c = {
1,2,3                             if RGB image
1,                        if Grayscale image

 

 

Where TH = [𝜃1,𝜃2,...,𝜃𝑘−1] is a vector that has multiple thresholds. Each entropy is 

computed separately with its corresponding θ value. It is expanded for k entropies as 

follows: 

H1
c = ∑

𝑃𝑖
𝑐

𝑤0
𝑐

𝜃1
𝑖=1 ln (

𝑃𝑖
𝑐

𝑤0
𝑐) , 

 H2
c = ∑

𝑃𝑖
𝑐

𝑤1
𝑐

𝜃2

𝑖=𝜃1+1

ln (
𝑃𝑖
𝑐

𝑤1
𝑐),  

                                                      …        … 

                                                     …         … 

Hk
c = ∑

𝑃𝑖
𝑐

𝑤𝑘−1
𝑐

𝜃

𝑖=𝜃𝑘+1+1

ln (
𝑃𝑖
𝑐

𝑤𝑘−1
𝑐 ) 

Where, 𝜔0(𝜃) = ∑ 𝑃𝑖
𝜃1
𝑖=1 ,  𝜔1(𝜃) = ∑ 𝑃𝑖

𝜃2
𝑖=𝜃1+1

. . . .𝜔𝑘−1(𝜃) = ∑ 𝑃𝑖
𝑙
𝑖=𝜃𝑘+1

 

 OTSU’S METHOD (BETWEEN-CLASS VARIANCE) 

Another thresholding method, that incorporates between-class variance, has been 

propounded by Otsu [178]. It is non-parametric and unsupervised. Maximum variance is 

estimated for all the classes. Based on this value, image segmentation is carried out. 

 (7.7) 

 (7.8) 
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Considering 𝑙 intensity levels from a grayscale image or from each RGB component (red, 

green, and blue) image, the probability distribution of the intensity values is computed as 

follows: 

 

𝑃𝑖
𝑐 =

ℎ𝑖
𝑐

𝑁𝑃
    ,     ∑ 𝑃𝑖

𝑐𝑁𝑃
𝑖=1 = 1   

𝑐 = {
1, 2, 3                       𝑖𝑓𝑅𝐺𝐵𝑖𝑚𝑎𝑔𝑒
1,                   𝑖𝑓𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒𝑖𝑚𝑎𝑔𝑒

 

where, 

i     is a specific intensity level (0 ≤ 𝑖 ≤ 𝑙 − 1), 

c    is the component of the image which depends on the image type ( grayscale or    

      RGB), 

NP  is the total number of pixels in the image.  

ℎ𝑖
𝑐   (Histogram) is the number of pixels that corresponds to the i intensity level in c.  

The histogram is normalized within a probability distribution 𝑃𝑖
𝑐 

For bi-level segment, that is the simplest segmentation, two classes are defined as:  

𝐺1 =
𝑃1
𝑐

𝜔0
𝑐 , …… . . …… ,

𝑃𝜃
𝑐

𝜔0
𝑐 

𝐺2 =
𝑃𝜃+1
𝑐

𝜔1
𝑐 , ……… ,

𝑃𝑙
𝑐

𝜔1
𝑐 

 

Where, 𝑤0
𝑐 and 𝑤1

𝑐 are probabilities distributions for 𝐺1 and 𝐺2 , as it is shown below 

 𝜔0
𝑐 = ∑ 𝑃𝑖

𝑐𝜃
𝑖=1 ,     𝜔1

𝑐 = ∑ 𝑃𝑖
𝑐𝑙

𝑖=𝜃+1  

The mean level is calculated as follows: 

     𝜇0 = ∑
𝑖𝑃𝑖
𝑐

𝜔0𝑐
𝜃
𝑖=1 𝜇1 = ∑

𝑖𝑃𝑖
𝑐

𝜔1𝑐
𝜃
𝑖=1  

Then Otsu variance between classes 𝜎2is calculated as follows: 

 𝜎2 = 𝜎1 + 𝜎2 

 (7.9) 

  (7.10) 

 (7.11) 

(7.12) 

(7.13) 
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Where, 𝜎1 and 𝜎2 are variances of  𝐺1 and 𝐺2 that is calculated as follows: 

 𝜎1 = 𝜔0
𝑐(𝜇0 + 𝜇𝑇)

2𝜎2 = 𝜔1
𝑐(𝜇1 + 𝜇𝑇)

2 

Where,    𝜇𝑇 = 𝜔0
𝑐𝜇0 + 𝜔1

𝑐𝜇1  and 𝜔0
𝑐 + 𝜔1

𝑐=1 

Based on the values 𝜎1 and 𝜎2 the objective function is shown as below: 

𝐹𝑂𝑡𝑠𝑢(𝜃) = max (𝜎
2(𝜃)), 0 ≤ 𝜃 ≤ 𝑙 − 1 

Where 𝜎2 is the Otsu’s variance for a given θ value. The optimization problem is reduced 

to find the intensity levels (θ) that maximizes equation (7.15). This equation can be 

rewritten for multiple threshold value as follows: 

    𝐹𝑂𝑡𝑠𝑢(𝑋) = max (𝜎
2(𝑋)), 

0 ≤ 𝜃𝑖 ≤ 𝑙 − 1,    𝑖 = 1,2, … 𝑘 

Where X= [𝜃0, 𝜃1, 𝜃2, … . . , 𝜃𝑘−1] is a vector containing thresholds and the variances are 

computed as:  

𝜎2 =∑𝜎𝑖

𝑘

𝑖=1

=∑𝜔𝑖(𝜇𝑖 + 𝜇𝑇)
2

𝑘

𝑖

 

Here i represent a specific class. ωi and μi are the probability of occurrence and the mean 

of a class, respectively.  

For MT such values are obtained as follows: 

    𝜔0(𝜃) = ∑ 𝑃𝑖
𝜃1
𝑖=1  

    𝜔1(𝜃) = ∑ 𝑃𝑖
𝜃2
𝑖=𝜃1+1

 

                                                …. 

.𝜔𝑘−1(𝜃) = ∑ 𝑃𝑖
𝑙
𝑖=𝜃𝑘+1

 

And for mean values,  

𝜇0 =∑
𝑖𝑃𝑖

𝜔0(𝜃1)

𝜃1

𝑖=1

 

(7.14)

 
 ….……… (12) 

(7.15) 

 (7.16) 

 (7.17) 
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𝜇1 = ∑
𝑖𝑃𝑖

𝜔0(𝜃2)

𝜃2

𝑖=𝜃1+1

 

……….. 

𝜇𝑘−1 = ∑
𝑖𝑃𝑖

𝜔1(𝜃𝑘)

𝑙

𝑖=𝜃𝑘+1

 

7.2.2 MULTI-LEVEL THRESHOLDING USING CRICKET CHIRPING 

ALGORITHM 

In this section, the cricket chirping algorithm is utilized to find the optimal threshold 

values for multilevel thresholding problem in image segmentation. The problem is 

viewed as an optimization problem and the methodology to apply CCA for optimizing 

threshold values is presented. Here the algorithm is implemented considering the two 

objective functions namely Otsu’s between class variance and Kapur’s entropy criteria. 

The segmentation problem is represented as an optimization problem as given below: 

Maximize,    𝐹(𝑥), 

𝑥 = [∫ (𝑇𝐻)
 

𝑘𝑎𝑝𝑢𝑟

𝑜𝑟∫ (𝑇𝐻)
 

𝑂𝑡𝑠𝑢

] 

𝑇𝐻 = [𝜃1, 𝜃2, … . . , 𝜃𝑘] 

            Subject to,       𝑇𝐻 ∈ 𝑋 

Where, 𝑋 = {𝑇𝐻 ∈ 𝜃𝑖
 |0 ≤ 𝜃𝑖 ≤ 255, 𝑖 = 1, . . 𝑘} refers to the bounded feasible region 

constrained within the interval [0-255]. 

In cricket population, k various decision variables are adopted by each individual. Each 

represents a different threshold point ɵ, which will be employed for segmenting the 

image. The entire population of cricket is expressed as 𝑆 = [𝑇𝐻1, 𝑇𝐻2…… . . , 𝑇𝐻𝑁],  

𝑇𝐻𝑖 = [𝜃1,𝜃2,…… , 𝜃𝑘]
𝑇 with boundary search space lb=0 and ub=255.  N signifies the 

cardinality of the entire cricket population. The implementation of the proposed method 

is summarized in table 7.4.  

 (7.18) 



 
 

142 
 

The performance of CCA depends on the parameter settings. In this implementation, we 

set the aggression rate to 0.45, the mating rate to 0.80 and population size to 50 as shown 

in table 7.5. The temperature of outside environment is fixed to 100-degree Celsius. The 

female population k is chosen randomly such that k≤n/2 and the one point crossover for 

mating. 

Table 7.4: Algorithm for multilevel image segmentation using CCA 

Image_seg_cca( ) 

Begin 

1. Read the image Ig  orIrgb. 

2.  Get the histograms, for RGB images hr, hg, hb and for grayscale images hgr. 

3. Calculate the probability distribution with equation 7.9 and obtain the histograms 

4.  Initialize the CCA parameters: T, k, Cr, Paggr 

5.  Initialize the cricket. 

6. Evaluate the fitness using Kapur’s or Otsu’s methods. 

7. While (i<max iter or stopping criteria not met) 

a. Allow the cricket to chirp for mating.  

i. Compute Cn, vi and sti using equation (4.3), (4.4) and (4.5). 

ii. Mate with female cricket 

b. Allow the cricket to chirp for aggression 

i. Fight with other male cricket 

c. Calculate the fitness using Kapur’s or Otsu’s methods. 

d. Select the cricket with the best fit objective value. 

8. While end 

9. Apply the thresholds values contained in best to the image Ig  or Irgb. 

End 

 

 

Table 7.5: Control parameters of CCA 

Population Size(n) Female pop. Size(k) Aggression rate Mating rate 

50 25 0.45 0.80 
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7.2.3 EXPERIMENTAL  RESULTS AND ANALYSIS 

The proposed CCA algorithm for multi-level thresholding has been tested for 8 

benchmark test images which are in JPEG format and provided by the Berkeley 

segmentation dataset [179],
 
[180]. The experiments are carried out with an Intel® 

Core(TM) i5 CPU and 4 GB RAM with Windows 7 Operating system. The algorithms 

were implemented using MATLAB. The required parameters are set as in table 7.5 for all 

the test images. The program was run 50 times for each image separately and the 

performance of the proposed method is evaluated using the well-known parameters such 

as peak signal to noise ratio (PSNR) and structural similarity indices (SSIM). PSNR is 

used to assess the similarity of the segmented image against a reference image (original 

image) based on θ. The PSNR is defined as equation 7.19. 

                             𝑃𝑆𝑁𝑅 = 20 log10 (
255

√𝑀𝑆𝐸
), 

         𝑀𝑆𝐸 =
∑ ∑ [𝐼𝑜

 (𝑖,𝑗)−𝐼𝑠
 (𝑖,𝑗)]2𝑐

𝑗=1
𝑟
𝑖=1

𝑟×𝑐
 

Where, 𝐼𝑜
  is the original image and 𝐼𝑠

  is the segmented image, r and c are the total 

number of rows and columns of the image respectively.  

The Structural SIMilarity (SSIM) index is a full reference metric used for measuring the 

similarity between two images [67]. It is the measurement or prediction of image quality 

based on an initial uncompressed or distortion-free image as reference [145]. SSIM 

evaluates the visual similarity between the original image x and the segmented 

image  and of common size N×N is 

                        𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 

Where 𝜇𝑥 
is the average  of , 

 
is the average of ,  the variance of , 

the variance of , 
 

the covariance of   and , 
, 

  two 

variables to stabilize the division with the weak denominator,  the dynamic range of the 

pixel-values (typically this is );  and  by default. 

 

y

x y y
2

x x 2

y

y xy x y  211 lkC   222 lkC 

l

12# elbitsperpix
01.01 k 03.02 k

 (7.19) 

 (7.20) 

https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Dynamic_range
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7.2.3.1 IMAGE SEGMENTATION USING CCA AND KAPUR’S METHOD 

In this section, the CCA is executed considering Kapur’s Entropy method as the objective 

function that is given in equation 7.7. For the complete set of benchmark images, this 

method is applied by considering four different threshold points 2,3,4,5 and the results 

like PSNR, SSIM, execution time etc. are calculated.  The original image and segmented 

image with different threshold values and their histogram and fitness graph are shown in 

table 7.6. From the results, it is shown that the PSNR and SSIM values increase their 

magnitude as the number of threshold points increases. The best results found using CCA 

with Kapur’s function in the 50 runs for each image with the different threshold value is 

shown in table 7.7. 

7.2.3.2 IMAGE SEGMENTATION USING CCA AND OTSU’S METHOD 

In this section, the CCA is executed considering Otsu’s between class variances method 

as the objective function that is given in equation 7.15. This is applied over the whole set 

of benchmark images considering four different threshold points 2,3,4,5 and the best 

results like PSNR, SSIM, time etc. are stated in table 7.9 and the segmented image, 

histogram, and fitness graph is shown in table 7.8. From the results, it is shown that the 

PSNR and SSIM values increment their magnitude when there is an increment in the 

number of threshold points. 

7.2.4 COMPARISONS AND STATISTICAL ANALYSIS 

In this section, three different comparisons are done to analyze the performance of the 

CCA. The first comparison is executed between the two versions of CCA, via the Kapur 

function and Otsu’s criterion. Secondly, examines the comparison among the CCA with 

the other meta-heuristics algorithm. The third one is the statistical analysis of the 

obtained results of CCA and MTEMO to validate its performance and computational 

effort. All the algorithms are executed 50 times over each selected image. For each 

image, the PSNR, SSIM, Time and the mean of the objective function values are 

calculated. The complete test is performed using both Otsu`s and Kapur`s objective 

functions.  
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Table 7.6: Resultant images after applying the CCA using Kapur’s Function 

Original image Θ =2 Θ=3 Θ=4 Θ=5 

 
Cameraman 

    
 

 

Histogram 

   
 

 

 

Fitness Graph 

    

 
Zebra    

 

 

 

Histogram 

    
 

Fitness Graph 

    

 
Sea Fish     

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30



 
 

146 
 

 

 

Histogram 

    
 

Fitness Graph 

    

 
Boat man     

 

 

Histogram 

    
 

 

Fitness Graph 

    

 
Ostrish     

 

 

Histogram 

    
 

Fitness Graph 

    

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

-3

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35



 
 

147 
 

 
Boat     

 

 

Histogram 

    
 

 

Fitness Graph 

    

 
Tree     

 

 

Histogram 

    
 

 

Fitness Graph 

    

 
Snake     

 

 

Histogram 

    
 

Fitness Graph 

    

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35



 
 

148 
 

Table 7.7: Best Results after applying the CCA using Kapur’s function  

Image Ɵ Best 

fitness 

PSNR SSIM Time(sec) Threshold value 

Cameramen 2 17.5526 14.1796 0.5394 0.4604 120   193 

3 20.8251 17.9649 0.6351 0.5469 100   137   216 

4 25.8039 18.0425 0.6310 0.6300 36    82   155   199 

5 30.2333 21.8695 0.7037 0.7115 31    91   126   149   194 

Star Fish 2 18.7536 14.4390 0.4081 0.4665 90   170 

3 23.2861 17.0826 0.5248 0.5484 65   127   179 

4 27.4114 19.2181 0.6367 0.6410 58    93   138   193 

5 31.4256 20.4641 0.7104 0.7221 43    76   121   165   207 

Zebra 2 17.8065 14.4871 0.4552 0.4592 92   160 

3 22.1330 16.0182 0.5352 0.5602 78   138   189 

4 25.8618 19.1451 0.5639 0.6451 44    87   136   168 

5 29.8213 21.2276 0.6913 0.7214 44    88   122   165   197 

Boat man 2 18.0242 16.0707 0.6066 0.4620 61   147 

3 22.6285 19.2583 0.7321 0.5506 66   115   177 

4 26.9793 21.1183 0.7657 0.6339 45    82   131   166 

5 30.9901 22.6232 0.7820 0.7164 48    78   119   148   184 

Ostrich 2 22.5240 16.2691 0.0771 0.4633 64   125   186 

3 22.5229 16.1868 0.4785 0.5496 73   116   176 

4 26.7208 19.9436 0.7018 0.6325 27    79   121   180 

5 30.4907 22.7053 0.7524 0.7199 32    64    92   141   192 

Boat 2 18.0903 9.2283 0.1788 0.4734 138   202 

3 22.7516 17.5315 0.5702 0.5494 66   121 196 

4 26.7387 19.8912 0.6812 0.6466 65    94   139   192 

5 30.8757 21.2346 0.7143 0.7208 57    89   121   168   209 

Tree 2 17.2734 15.5238 17.2734 0.2463 81   141 

3 21.7707 16.5785 21.7707 0.2905 68   127   196 

4 25.6561 18.6202 25.6561 0.3299 57   102   141   187 

5 29.2947 21.4849 29.2947 0.3922 40    79   104   149   201 

Snake 2 17.9342 14.6194 0.5222 0.4603  84   176 

3 22.5789 15.4028 0.5948 0.5548 84   154   199 

4 26.7863 18.4103 0.7405 0.6347 66   104   165   220 

5 30.5564 21.0050 0.8358 0.7187 42    86   119   164   207 
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Table 7.8: Resultant images after applying the CCA using Otsu’s function 

Original image Θ=2 Θ=3 Θ=4 Θ=5 
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Table 7.9: Best Results after applying the CCA using Otsu’s function  

 

Image Ɵ Best fitness PSNR MSSIM Time(sec) Threshold value 

Cameramen 2 3.6517e+003 18.5827 0.5738 0.3777 70   145 

3 3.7269e+003 21.1954 0.6444 0.4221 58   127   157 

4 3.7733e+003 22.6114 0.686 0.4691 43    98   135   159 

5 3.8033e+003 23.6897 0.6981 0.5438 52   103   130   151   175 

Sea star 2 2.5466e+003 15.5738  0.4545 0.3466 84   155 

3 2.7757e+003 17.8468 0.5645 0.3857 66  119  171 

4 2.8594e+003 19.2581 0.6483 0.4147 52    98   132   183 

5 2.8942e+003 21.2615 0.7152 0.4520 39    77   119   141   188 

Zebra 2 1.3940e+003 13.9618 0.4453 0.3568 98   171 

3 1.5184e+003 16.3846   0.5785 0.5267 81   121   205 

4 1.5648e+003 18.6222 0.6714 0.6239 72    98   137   208 

5 1.5780e+003 20.1544 0.7101 0.6898 64    81   104   154   203 

Boat man 2 5.0744e+003 14.2071 0.5385 0.3552 107   193 

3 5.2342e+003 17.5607 0.6743 0.3840 83   134   193 

4 3080e+003 20.2656 0.7661 0.4268 59   107   153   234 

5 5.3443e+003 21.3697 0.7818 0.4473 68   108   135   159   205 

Ostrich 2 1.0729e+003 16.2329 0.4439 0.3614 73   133 

3 1.1352e+003 17.3580 0.4815 0.3907 63    96   136 

4 1.1716e+003 18.3364 0.5447 0.4205 57    84   133   180 

5 1.1958e+003 22.7184 0.7019 0.4480 47    68    90   123   163 

Boat 2 1.2643e+003 12.3241 0.3490 0.3654 100   153 

3 1.3699e+003 18.6936 0.6477 0.3915 64   107   162 

4 1.4299e+003 18.3164 0.6735 0.4215 62    99   138   190 

5 1.4689e+003 21.0115 0.7260 0.2464 69    91   113   139   182 

Tree 2 1.1887e+003 16.7795 0.5392 0.3101 72   119 

3 1.2672e+003 19.1352 0.6553 0.3674 56    92   129 

4 1.3031e+003 20.9931 0.7367 0.4197 47    80   111   153 

5 1.3220e+003 24.4303 0.8341 0.4828 36    56    85   112   136 

Snake 2 1.1178e+003 15.7850 0.6250 0.3233 87   132 

3 1.2271e+003 18.7065 0.7594 0.3748 74   110   145 

4 1.2727e+003 20.5848 0.8205 0.46164 63    96   132   156 

5 1.3070e+003 22.0542 0.8619 0.5188 54    84   103   136   168 
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The MTEMO algorithm is considered for comparison as presented by Oliva et. al. [181] 

[180]. The other methods like Genetic Algorithms (GA), Particle Swarm Optimization 

(PSO) etc. are not considered for comparison as they were already compared  with 

MTEMO [67] and found inferior to its performance. 

7.2.4.1 COMPARISON BETWEEN OTSU AND KAPUR IN CCA 

A non-parametric statistical test known as the Wilcoxon’s rank test [182], [164] is used to 

compare the results of Otsu and Kapur and it has been done for 50 independent samples. 

By using this test method, the differences between two related methods can be measured. 

In this analysis, a 5% significance level is considered over the PSNR data corresponding 

to the test images with two to five threshold points. The hypothesis is considered as  

follows: 

 The Null Hypothesis: There is no difference between the values of the two 

objective functions Otsu and Kapur functions  

 The alternative Hypothesis: is considered that there is a significant difference 

between the values of the two objective functions.  

In table 7.10 the p-values produced by Wilcoxon’s rank test for a pairwise comparison of 

the PSNR values between the Otsu and Kapur objective functions are shown. Here, h 

represents the hypothesis. All p-values stated in table 7.10 are less than the significance 

value 0.05. Thus it is strongly evidenced against the null hypothesis. So it is concluded 

that there is a significant difference between the values of two methods, i.e. Otsu’s 

objective method’s performance is statistically better than Kapur’s objective method. 

7.2.4.2 COMPARISON OF CCA WITH MTEMO 

The proposed method is compared with another meta-heuristic method MTEMO 

(Multilevel Thresholding using Electro-Magnetism Optimization) as it has proved itself 

to be better than another popular metaheuristic algorithm. Both the algorithms are run 50 

times for each image. The mean of the objective function values, PSNR, SSIM,  and time 
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for each image are reported in table 7.7 and 7.9. Table 7.11 and table 7.12 shows the 

comparison of CCA and MTEMO for Kapur’s and Otsu’s methods respectively. 

 

Table 7.10: Wilcoxon’s rank test comparing Otsu vs. Kapur over PSNR 

Image ɵ P-value: Otsu 

vs. Kapur 

h  Image ɵ P-value: Otsu 

vs. Kapur 

H 

Cameramen 2 0.00 1 Ostrich 2 0.00 1 

3 0.00 1 3 0.00 1 

4 0.00 1 4 0.00 1 

5 0.00 1 5 0.00 1 

Sea star 2 0.00 1 Boat 2 0.00 1 

3 0.00 1 3 0.00 1 

4 0.00 1 4 0.00 1 

5 0.00 1 5 0.00 1 

Zebra 2 0.00 1 Tree 2 0.00 1 

3 0.00 1 3 0.00 1 

4 0.00 1 4 0.00 1 

5 0.00 1 5 0.00 1 

Boat man 2 0.00 1 Snake 2 0.00 1 

3 0.00 1 3 0.00 1 

4 0.00 1 4 0.00 1 

5 0.00 1 5 0.00 1 
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Table 7.11: Comparison of CCA and MTEMO using Kapur's method 

Image ɵ MTEMO CCA 

 PSNR mean SSIM Time PSNR Mean SSIM Time 

Cameramen 2 13.626 17.5842 0.5202 3.1307 14.1255 17.5663 0.5394 0.4604 

3 14.4602 21.976 0.5966 4.6054 17.4939 21.9109 0.6351 0.5469 

4 20.1531 26.586 0.6672 6.2591 20.1656 26.2674 0.6310 0.6300 

5 20.661 30.506 0.6850 8.0842 21.8695 30.2333 0.7037 0.7115 

Sea star 2 14.3982 18.7542 0.4008 3.1986 14.5611 18.7503 0.4081 0.4665 

3 16.987 23.3233 0.5257 4.6772 17.0149 23.2790 0.5248 0.5484 

4 18.304 27.5817 0.5901 6.2660 18.9300 27.4544 0.6367 0.6410 

5 20.165 31.5626 0.6697 8.1592 20.7114 31.1217 0.7104 0.7221 

Zebra 2 13.8051 17.8802 0.4455 3.2240 14.2625 17.7929 0.4552 0.4592 

3 15.0013 22.3129 0.5162 4.8551 15.8788 22.1162 0.5352 0.5602 

4 15.5085 26.5212 0.5440 6.7635 16.2427 26.0255 0.5639 0.6451 

5 20.2723 30.2664 0.7052 8.2603 20.5283 29.5575 0.6913 0.7214 

Boat man 2 15.8962 18.0625 0.6238 3.3536 16.0127 18.0066 0.6258 0.4620 

3 18.1776 22.8079 0.7079 4.7672 19.1801 22.6660 0.7498 0.5708 

4 20.1480 27.2968 0.7738 6.4385 21.0354 26.8740 0.7852 0.6469 

5 22.2361 31.3337 0.8137 8.1236 22.6732 30.9901 0.8355 0.7264 

Ostrich 2 10.8341 18.1959 0.0804 3.3250 10.9067 18.1839  0.0840 0.4833 

3 16.0263 22.5932 0.4415 4.8669 16.3296 22.5554 0.4785 0.5496 

4 16.2206 26.8341 0.4528 6.7516 19.1780 26.6143 0.7018 0.6325 

5 20.7745 31.0419 0.7763 8.6439 21.5161 30.4390 0.7825 0.7220 

Boat 2 9.3556 18.0709 0.1629 3.2673 9.7614 18.0781 0.1963 0.4705 

3 17.1017 22.9471 0.5558 4.7784 17.4877 22.8050 0.5702 0.5494 

4 18.9648 27.1648 0.6253 6.4803 19.7622 26.8680 0.6812 0.6466 

5 19.8263 31.0884 0.6556 8.4225 20.5056 30.5153 0.7143 0.7208 

Tree 2 15.6147 17.2739 0.4821 3.3594 15.8236 17.2706 0.4962 0.4776 

3 15.7403 21.8542 0.4905 4.8322 16.3621 21.7709 0.5507 0.5578 

4 16.9652 26.0243 0.5553 6.6374 18.4098 25.8224 0.6246 0.6436 

5 18.5409 29.9408 0.6343 8.5643 21.4849 29.4536 0.7698 0.7108 

Snake 2 14.7184 17.9398 0.5357 3.2498 14.8246 17.9321 0.5431 0.4748 

3 15.4042 22.6388 0.5879 4.7376 16.2885 22.5853 0.5604 0.6482 

4 17.5795 26.9963 0.7205 6.7119 18.4103 26.7863 0.7405 0.6347 

5 19.7672 31.0221 0.8011 8.8380 21.0050 30.5564 0.8358 0.7187 
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Table 7.12: Comparison of CCA with MTEMO using Otsu’s method 

Image ɵ MTEMO CCA  

 PSNR Mean SSIM Time(s) PSNR Mean SSIM Time(s) 

Cameramen 2 17.2474 3.6519e+003 0.5964 2.9145 18.1827 3.6519e+003 0.6022 0.3777 

3 20.2114 3.7270e+003 0.6415 4.5650 21.0693 3.7227e+003 0.6512 0.4221 

4 21.5328 3.7824e+003 0.6648 6.5646 22.6114 3.7733e+003 0.6599 0.4691 

5 23.2235 3.8119e+003 0.6951 8.6998 23.5897 3.8033e+003 0.7058 0.5438 

Star Fish 2 14.8158 2.5469e+003 0.4230 3.6676 15.5738 2.5466e+003 0.4545 0.3466 

3 17.3301 2.7799e+003 0.5485 5.8401 17.8468 2.7757e+003 0.5645 0.3857 

4 19.1259 2.8657e+003 0.6386 8.1728 19.2581 2.8594e+003 0.6483 0.4147 

5 20.7674 2.9128e+003 0.7092 10.7722 21.2615 2.8942e+003 0.7152 0.4520 

Zebra 2 13.4728 1.3947e+003 0.4310 3.8425 13.9618 1.3940e+003 0.4453 0.3568 

3 15.2286 1.5263e+003 0.5444 5.9443 16.3846 1.5184e+003 0.5785 0.5267 

4 16.8718 1.5825e+003 0.6509 8.3692 18.6222 1.5648e+003 0.6714 0.6239 

5 18.2373 1.6105e+003 0.7101 10.8720 20.1544 1.5780e+003 0.7101 0.6898 

Boat man 2 12.6309 5.0750e+003 0.5422 3.5575 14.0071 5.0744e+003 0.5385 0.3552 

3 15.0155 5.2399e+003 0.6383 5.4001 17.3007 5.2342e+003 0.6743 0.3840 

4 17.6208 5.3169e+003 0.7547 7.4238 20.0656 5.3080e+003 0.7661 0.4268 

5 18.8359 5.3559e+003 0.7973 9.5893 21.0697 5.3443e+003 0.7818 0.4473 

Ostrich 2 15.6925 1.0735e+003 0.4219 3.7034 16.0329 1.0729e+003 0.4439 0.3614 

3 16.8151 1.1392e+003 0.4534 5.7863 17.3580 1.1352e+003 0.4815 0.3907 

4 17.4478 1.1786e+003 0.4870 8.2029 18.3164 1.1716e+003 0.5447 0.4205 

5 18.7970 1.2037e+003 0.5584 10.2127 22.1184 1.1958e+003 0.7019 0.4480 

Boat 2 12.3263 1.2645e+003 0.3492 3.8212 12.3241 1.2643e+003 0.3490 0.3654 

3 17.8963 1.3749e+003 0.5972 6.7030 18.6936 1.3699e+003 0.6477 0.3915 

4 19.1961 1.4373e+003 0.6504 9.0585 18.3164 1.4299e+003 0.6735 0.4215 

5 20.9881 1.4794e+003 0.7201 11.8090 20.9115 1.4689e+003 0.7260 0.2464 

Tree 2 16.7057 1.1890e+003 0.5241 4.1409 16.7595 1.1886e+003 0.5392 0.3101 

3 18.6252 1.2693e+003 0.6271 6.4711 19.1352 1.2663e+003 0.6553 0.3674 

4 20.2430 1.3135e+003 0.7005 8.5807 20.9931 1.3038e+003 0.7367 0.4197 

5 21.7758 1.3344e+003 0.7497 11.1699 24.0303 1.3225e+003 0.8341 0.4828 

Snake 2 15.6662 1.1186e+003 0.6226 3.8269 15.7050 1.1182e+003 0.6250 0.3233 

3 17.9818 1.2313e+003 0.7354 5.9151 18.4765 1.2275e+003 0.7594 0.3748 

4 19.6907 1.2865e+003 0.8005 8.0355 20.3848 1.2770e+003 0.8205 0.46164 

5 20.8990 1.3170e+003 0.8395 10.8160 22.0442 1.3032e+003 0.8619 0.5188 
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7.2.4.3 STATISTICAL ANALYSIS 

For statistical analysis of the result shown in the table 7.11 and 7.12, one way ANOVA 

test has been done. To perform the analysis a 5% significance level is considered over the 

execution time corresponding to the test images with two to five threshold points. In this 

analysis, the hypothesis is set as follows. 

Null hypothesis H0: There is no significant difference in the execution time 

between the two methods MTEMO and CCA.  

Alternative hypothesis H1: There is a significant difference in the execution time 

between the two approaches MTEMO and CCA.  

Table 7.13:  ANOVA test based on Kapur’s  method for the CCA and MTEMO. 

ANOVA 
Time 

 Sum of 

Squares 

Df Mean 

Square 

F Sig. 

Between 

Groups 
422.678 1 422.678 220.149 .000 

Within Groups 119.037 62 1.920   

Total 541.715 63    

 

Table 7.14:  ANOVA test for the CCA and MTEMO based on Otsu’s method 

ANOVA 
Time 

 Sum of 

Squares 

Df Mean 

Square 

F Sig. 

Between 

Groups 
695.128 1 695.128 195.789 .000 

Within Groups 220.124 62 3.550   

Total 915.253 63    
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The one way ANOVA Test is conducted using SPSS tool and the results found in the 

experiment is shown in table 7.13 and table 7.14.  Table 7.13 presents the result of 

ANOVA test regarding execution time that is obtained from table 7.11. Table 7.14 

presents the result of ANOVA test regarding execution time that is obtained from table 

7.12. Here the null hypothesis is rejected since the p-value (0.00) is less than the 

significance value 0.05. Therefore it can be concluded that there is a significant 

difference in the execution time between MTEMO and CCA. 

7.3 MULTI-OBJECTIVE ENGINEERING DESIGN 

OPTIMIZATION   USING  MOCCA-W 

The design optimization using meta-heuristics algorithm has many applications in 

engineering and industry [128], [125], [183]. There are plenty of benchmarks design 

optimization problem, among them the disc brake design and design of welded beam are 

most popular. In this section, these two design benchmark problems are solved using 

MOCCA-W.  

7.3.1 DESIGN OF A WELDED BEAM  

The design of welded beam problem is a multi-objective design problem which has been 

solved by many researchers using different methods [19] [179], [184] . This design 

problem consists of four design variables such as length of the welded area (l), the 

thickness of the main beam (h), width (w) and the depth (d). It has two objectives to 

optimize. The objective is to minimize both the end deflection δ and the overall 

fabrication cost. The mathematical formulation of the problem is given below:  

Minimize, 

                                                                     (7.21)     

 
Subject to 
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Where,  

 

 

 

 

 

   

 

 

With the range 0.1≤l≤2.0,  0.1 ≤d≤10,  0.125≤w≤10, 0.1≤h≤2.0. 

7.3.2 DESIGN OF A DISC BRAKE 

The disc brake design is an optimization problem having two objectives. The objectives of 

designing multiple disc brakes are to minimize the braking time and the overall mass by 

choosing optimal design variables. This problem has also four design variables such as 

outer radius (R) of the discs, the inner radius(r), the number of the friction surface (S) and 

the engaging force (F). It consists of some design constraints such as temperature, 

pressure, the length of the brake and torque [185] [54]. It is mathematically formulated as: 

Minimize,
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     Subject to, 

 

 

 

 

 

g5(x) = 900 −
0.0266Fs(R3 − r3)

(R2 − r2)
≤ 0

 
 

 g4(x) =
2.22×10-3F(R3-r3)

(R2-r2)
-1 ≤ 0,With the range 1000≤F≤3000, 75≤R≤110, 55≤r≤80, 

2≤s≤20. 

7.3.3 EXPERIMENTAL RESULTS 

The algorithm is run for 1000 iterations for both the welded beam design and the design 

of disc brake problem. The optimal Pareto fronts found in the experiments for both the 

problem are shown in figure 7.1 and figure 7.2. 

 

Figure 7.1 Pareto front of the Welded Beam Design using CCA 
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Figure 7.2 Pareto front of Disc Brake Design using CCA 

 

7.4 MULTI-OBJECTIVE ENGINEERING DESIGN OPTIMIZATION  

USING MOCCA-P 

In this section, the engineering design problems Welded Beam Design and Disc brake 

problem are solved using MOCCA-P. The details about both the problems are explained 

in the previous section 7.3.1 and 7.3.2.  

The algorithm MOCCA-P is run for 1000 iterations for both the welded beam design and 

the design of disc brake problem. The optimal Pareto front found in the experiment is for 

both problems welded beam design and disc brake are shown in figure 7.3 and figure 7.4 

respectively. 
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Figure 7.3: Pareto front of welded beam design using MOCCA-P 

 

 

Figure 7.4: Pareto front of Disc brake design using MOCCA-P 
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7.5 SUMMARY 

In this Chapter, different case studies for both SOO and MOO have been taken up and 

optimized using CCA and its variants. CCA is applied to mechanical engineering design 

problems and multilevel thresholding (MT) for image segmentation. In engineering 

design, two problems namely spring design and welded beam design are solved using 

CCA and compared the performance with PSO and BA algorithm. Then the CCA is 

applied to solve multilevel thresholding in image segmentation. Two popular MT 

methods Otsu’s and Kapur’s method are used as objective function and combined with 

the searching capabilities of CCA. With the purpose of measuring the performance, the 

PSNR that measures the quality of segmentation by complying the oddity between the 

segmented and the original images, SSIM (Structural Similarity) and Computational time 

is used. To analyze the performance of Otsu’s and Kapur’s methods with CCA for 

multilevel thresholding of image segmentation, the Wilcoxon’s rank test is used. The 

proposed algorithm is then compared with MTEMO and statistically analyzed using one 

way ANOVA test. Finally, it is concluded that CCA is better than its counterparts in term 

of fitness value, PSNR, SSIM and computational times. The algorithm MOCCA-W and 

MOCCA-P are applied to solve the engineering design problem having multiple 

objectives like welded beam design and disc brake design problem. 
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CHAPTER 8 

CONCLUSION AND FUTURE ENHANCEMENTS 

This chapter provides the conclusions derived from this work and discusses the possible 

enhancements that could be done in future. 

8.1 CONCLUSION 

The NP-hard combinatorial optimization problems are the most challenging problems 

nowadays. Compared to other methods for solving the optimization problem, meta-

heuristics techniques are getting more attention in the research field because of their 

efficiency, optimality, and speed. There has previously been plenty of research on meta-

heuristics techniques. In this research work, the research motivations have been 

thoroughly analyzed from the literature review and the research objectives have been 

framed. 

Based on the research motivation and objectives a new meta-heuristics bio-inspired 

algorithm called Cricket Chirping Algorithm (CCA) is developed for SOO. A set of 

benchmark functions have been used to test and validate the CCA and compare its 

performance with some of the popular algorithms such as GA, PSO, ABC, BA, and CS 

for both lower dimension and higher dimension problems.  

Since the tuning of parameter plays a vigorous role in the performance of an algorithm, 

the impact of various parameters used in CCA is analyzed. The parameters viz., 

environmental Temperature Tc, Aggression Rate Ar, Crossover Rate Cr and Female 

Selection Fs have an effective contribution to the performance of CCA. When comparing 

the initial and final set of parameters, it is found that the final set provides better results 

than the initial parameter configuration for the problem under study. As per the analysis 

of the experiment the higher the temperature, the higher the fitness value of the crickets. 

The cricket produces high-frequency sound at high temperatures.  But, in low aggression 

rate, it shows better performance for low dimension problems. In female selection, the 

best fit female selection converges faster compared to other female selection schemes. 
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The values obtained through various experimental settings could be fixed as the standard 

parameters for the CCA algorithm in future.  

The CCA is extended for solving MOO problems in two ways i.e. using weighted sum 

approach (MOCCA-W) and Pareto based technique, mimicking some interesting 

behavior of crickets (MOCCA-P). The MOCCA-P differs from the basic CCA in two 

terms. First, the male cricket is allowed to search the female cricket in the search space 

and secondly, when the male cricket chirps for aggression the winner is selected 

depending on the seven aggression levels. A different fitness calculation method is also 

developed and an external archive is used to retain the non-dominated solutions. The 

MOCCA-P is implemented and experimented with some standard benchmark test 

problems with constraints and without constraints and compared with three popular 

techniques i.e. MOPSO, SPEA2, and NSGA2. The experimental results show better 

results compared to its counterparts in term of generational distance, spacing and 

maximum spread, the popular metrics used to validate Multiobjective optimization 

algorithm. 

 In the last, the different case studies for both single and MOO has been taken up and 

optimized using CCA and its variants. CCA is applied to mechanical engineering design 

problems and multilevel thresholding (MT) for image segmentation problem. In 

engineering design, two problems, namely spring design, and welded beam design are 

solved using CCA and compared the performance with PSO and BA algorithm. Then the 

CCA is applied to solve multilevel thresholding in image segmentation. Two popular MT 

methods Otsu’s and Kapur’s method are used as objective function and combined with 

the searching capabilities of CCA. With the purpose of measuring the performance, the 

PSNR that measures the quality of segmentation by complying the oddity between the 

segmented and the original images, SSIM (Structural Similarity) and Computational time 

is used. To see the effect of Otsu’s and Kapur's methods with CCA for multilevel 

thresholding of image segmentation, the Wilcoxon’s rank test is used. The performance 

of the algorithm is then compared with MTEMO and statistically analyzed using one way 

ANOVA test. Then, it is concluded that CCA is better than the popular meta-heuristics 

algorithm in terms of fitness value, PSNR, SSIM and computational times.  
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Finally, the extended version of CCA, i.e.,  MOCCA-W and MOCCA-P are applied to 

solve the engineering design problem having multiple objectives like welded beam 

design and disc brake design problem and found to produce promising results. 

8.2  FUTURE ENHANCEMENTS 

In this research work, CCA is applied only in a few areas. The CCA can be extensively 

used and modified or improved for various fields of real-world SOO and MOO problems. 

In future, the MOCCA-P could be tested for many objective optimization problems and 

applied to various fields. Moreover, the algorithm could be tested for many objective 

functions with and without constraints by exploiting other characteristics of crickets. 
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